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The Success of Combinatorial Solving (and the Dirty Little Secret. . . )

Combinatorial Solving and Optimisation

Revolution last couple of decades in combinatorial solvers for
Boolean satisfiability (SAT) solving [BHvMW21]1

Constraint programming (CP) [RvBW06]
Mixed integer linear programming (MIP) [AW13, BR07]

Solve NP-complete problems (or worse) very successfully in practice!

Except solvers are sometimes wrong. . . (Even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, GS19, BMN22, BBN+23]

Even get feasibility of solutions wrong (though this should be straightforward!)

And how to check the absence of solutions?

Or that a solution is optimal? (Even off-by-one mistakes can snowball into large errors if
solver used as subroutine)

1See end of slides for all references with bibliographic details
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The Success of Combinatorial Solving (and the Dirty Little Secret. . . )

What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct
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Ensuring Correctness with the Help of Proof Logging

Proof Logging with Certifying Solvers: Workflow

Checker

Input Answer
Solver

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed input + answer + proof to proof checker

4 Verify that proof checker says answer is correct
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Proof Logging Desiderata

Proof

Input Answer
Solver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning

dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?
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This Tutorial

Take-Away Message from This Tutorial

Proof logging for combinatorial optimisation is possible with single, unified method!

Build on successes in proof logging for SAT solvers with proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .

But represent constraints as 0–1 integer linear inequalities

Formalize reasoning using cutting planes [CCT87] proof system

Add well-chosen strengthening rules [Goc22, GN21, BGMN23]

Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)
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This Tutorial

The Sales Pitch For Proof Logging

1 Certifies correctness of computed results

2 Detects errors even if due to compiler bugs, hardware failures, or cosmic rays

3 Provides debugging support during development [EG21, GMM+20, KM21, BBN+23]

4 Facilitates performance analysis

5 Helps identify potential for further improvements

6 Enables auditability

7 Serves as stepping stone towards explainability
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This Tutorial

The Rest of This Tutorial

Explain how to use VeriPB to do proof logging for

SAT solving (including advanced techniques)

SAT-based optimisation (MaxSAT)

Subgraph algorithms

Constraint programming

in a unified way

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 7 / 95



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

SAT Basics

The SAT Problem

Variable 𝑥 : takes value true (=1) or false (=0)

Literal ℓ : variable 𝑥 or its negation 𝑥

Clause 𝐶 = ℓ1 ∨ · · · ∨ ℓ𝑘 : disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

Conjunctive normal form (CNF) formula 𝐹 = 𝐶1 ∧ · · · ∧𝐶𝑚 : conjunction of clauses

The SAT Problem

Given a CNF formula 𝐹 , is it satisfiable?

For instance, what about:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧
(𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)
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SAT Basics

Proofs for SAT

For satisfiable instances: just specify satisfying assignment

For unsatisfiability: a sequence of clauses (CNF constraints)

Each clause follows “obviously” from everything we know so far

Final clause is empty, meaning contradiction (written ⊥)
Means original formula must be inconsistent
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SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
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Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1
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Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable

Reverse unit propagation (RUP) clause [GN03, Van08]

𝐶 is a reverse unit propagation (RUP) clause with respect to 𝐹 if

assigning 𝐶 to false

then unit propagating on 𝐹 until saturation

leads to contradiction

If so, 𝐹 clearly implies 𝐶 , and this condition is easy to verify efficiently

Fact

Backtrack clauses from DPLL solver generate a RUP proof
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What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict
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Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict
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Conflict Analysis
Time to analyse this conflict and learn from it!

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)
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⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last decision

But want to learn from conflict and cut away as much of search
space as possible

Case analysis over 𝑧 for last two clauses:

𝑥 ∨ 𝑦 ∨ 𝑧 wants 𝑧 = 1
𝑦 ∨ 𝑧 wants 𝑧 = 0
Resolve clauses by merging them & removing 𝑧 — must
satisfy 𝑥 ∨ 𝑦

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjump
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Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)
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d
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d
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𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
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propagation, not a decision

Then continue as before. . .
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Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

CDCL Reasoning and the Resolution Proof System

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥

𝐶 ∨ 𝐷

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 16 / 95



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

CDCL Reasoning and the Resolution Proof System

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥

𝐶 ∨ 𝐷

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 16 / 95



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

CDCL Reasoning and the Resolution Proof System

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥

𝐶 ∨ 𝐷

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 16 / 95



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

CDCL Reasoning and the Resolution Proof System

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥

𝐶 ∨ 𝐷

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 16 / 95



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

Resolution Proofs from CDCL Executions

Obtain resolution proof. . .
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Proof System for SAT Proof Logging

Resolution Proofs from CDCL Executions

Obtain resolution proof from our example CDCL execution by stringing together conflict analyses:
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Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥
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Proof System for SAT Proof Logging

More Ingredients in Proof Logging for SAT

Fact

RUP proofs can be viewed as shorthand for resolution proofs

See [BN21] for more on this and connections to SAT solving

But RUP and resolution are not enough for preprocessing, inprocessing, and some other kinds of
reasoning
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Proof System for SAT Proof Logging

Extension Variables, Part 1

Suppose we want a variable 𝑎 encoding

𝑎 ⇔ (𝑥 ∧ 𝑦)

Extended resolution [Tse68]

Resolution rule plus extension rule introducing clauses

𝑎 ∨ 𝑥 ∨ 𝑦 𝑎 ∨ 𝑥 𝑎 ∨ 𝑦

for fresh variable 𝑎 (this is fine since 𝑎 doesn’t appear anywhere previously)

Fact

Extended resolution (RUP + definition of new variables) is essentially equivalent to the DRAT proof
logging system most commonly used for SAT solving
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Why Aren’t We Done?

Practical limitations of current SAT proof logging technology:

Difficulties dealing with stronger reasoning efficiently (even for SAT solving)

Clausal proofs can’t easily reflect what algorithms for other problems do

Surprising claim: a slight change to 0-1 integer linear inequalities does the job!
Enables proof logging for advanced SAT techniques so far beyond reach for efficient DRAT
proof logging:

Cardinality reasoning
Gaussian elimination
Symmetry breaking

Supports use of SAT solvers for optimisation problems (MaxSAT)

Can justify graph reasoning without knowing what a graph is

Can justify constraint programming inference without knowing what an integer variable is
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Pseudo-Boolean Constraints and Cutting Planes Reasoning

Pseudo-Boolean Constraints

0–1 integer linear inequalities or (linear) pseudo-Boolean constraints:∑︁
𝑖

𝑎𝑖ℓ𝑖 ≥ 𝐴

𝑎𝑖 , 𝐴 ∈ Z

literals ℓ𝑖 : 𝑥𝑖 or 𝑥𝑖 (where 𝑥𝑖 + 𝑥𝑖 = 1)

Sometimes convenient to use normalized form [Bar95] with all 𝑎𝑖 , 𝐴 positive
(without loss of generality)
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Pseudo-Boolean Constraints and Cutting Planes Reasoning

Some Types of Pseudo-Boolean Constraints

1 Clauses
𝑥1 ∨ 𝑥2 ∨ 𝑥3 ⇔ 𝑥1 + 𝑥2 + 𝑥3 ≥ 1

2 Cardinality constraints
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≥ 2

3 General pseudo-Boolean constraints

𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
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Pseudo-Boolean Constraints and Cutting Planes Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Input/model axioms From the input

Literal axioms ℓ𝑖 ≥ 0

Addition
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴
∑

𝑖 𝑏𝑖ℓ𝑖 ≥ 𝐵∑
𝑖 (𝑎𝑖 + 𝑏𝑖 )ℓ𝑖 ≥ 𝐴 + 𝐵

Multiplication for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖 𝑐𝑎𝑖ℓ𝑖 ≥ 𝑐𝐴

Division for any 𝑐 ∈ N+

(assumes normalized form)

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑

𝑖

⌈
𝑎𝑖
𝑐

⌉
ℓ𝑖 ≥

⌈
𝐴
𝑐

⌉
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Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d
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Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 25 / 95



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Multiply by 2
2𝑧 ≥ 0

Add
3𝑤 + 6𝑥 + 6𝑦 ≥ 7

Divide by 3
𝑤 + 2𝑥 + 2𝑦 ≥ 2 13

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 25 / 95



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Multiply by 2
2𝑧 ≥ 0

Add
3𝑤 + 6𝑥 + 6𝑦 ≥ 7

Divide by 3
𝑤 + 2𝑥 + 2𝑦 ≥ 3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 25 / 95



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Multiply by 2
2𝑧 ≥ 0

Add
3𝑤 + 6𝑥 + 6𝑦 ≥ 7

Divide by 3
𝑤 + 2𝑥 + 2𝑦 ≥ 3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 25 / 95



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Multiply by 2
2𝑧 ≥ 0

Add
3𝑤 + 6𝑥 + 6𝑦 ≥ 7

Divide by 3
𝑤 + 2𝑥 + 2𝑦 ≥ 3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 25 / 95



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Proof Logging for SAT Solving

Resolution and Cutting Planes

To simulate resolution step such as

𝑦 ∨ 𝑧 𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

we can perform the cutting planes steps

𝑦 + 𝑧 ≥ 1 𝑥 + 𝑦 + 𝑧 ≥ 1
Add

𝑥 + 2𝑦 ≥ 1
Divide by 2

𝑥 + 𝑦 ≥ 1

Given that the premises are clauses 7 and 5 in our example CNF formula, using references

Constraint 7 � 𝑦 + 𝑧 ≥ 1
Constraint 5 � 𝑥 + 𝑦 + 𝑧 ≥ 1

we can write this in the proof log as

pol 7 5 + 2 d
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Pseudo-Boolean Proof Logging for SAT Solving

Pseudo-Boolean Proof Logging for Example CDCL Conflict Analyses
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(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟 )2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧
(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

pol 7 5 + 2 d 4 + 2 d ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
pol 8 6 + 2 d ⇝ Constraint 11 � 𝑥 ≥ 1

pol 9 1 + 2 d 10 + 2 d 11 + 2 d ⇝ Constraint 12 � 0 ≥ 1 E
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Pseudo-Boolean Proof Logging for SAT Solving

RUP Revisited

Can define (reverse) unit propagation in a pseudo-Boolean setting

Constraint 𝐶 propagates variable 𝑥 if setting 𝑥 to “wrong value” would make 𝐶 unsatisfiable

E.g., if 𝑥5 is false,
𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

would propagate 𝑥4 (since other coefficients do not add up to 7)

Risk for confusion:
Constraint programming people might call this (reverse) integer bounds consistency

Does the same thing if we’re working with clauses
More interesting for general pseudo-Boolean constraints

SAT people beware: constraints can propagate multiple times and multiple variables
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Pseudo-Boolean Proof Logging for SAT Solving

Pseudo-Boolean Proof Logging for Example CDCL Execution with RUP
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𝑦 ∨ 𝑧
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⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟 )2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧
(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

rup 1 u 1 x >= 1 ; ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
rup 1 ∼x >= 1 ; ⇝ Constraint 11 � 𝑥 ≥ 1

rup >= 1 ; ⇝ Constraint 12 � 0 ≥ 1 E
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More Pseudo-Boolean Proof Logging Rules

Extension Variables, Part 2

Suppose we want new, fresh variable 𝑎 encoding

𝑎 ⇔ (3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3)

This time, introduce constraints

3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5

Again, needs support from the proof system
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More Pseudo-Boolean Proof Logging Rules

Proof Logs for “Extended Cutting Planes”

For satisfiable instances: just specify a satisfying assignment.

For unsatisfiability: a sequence of pseudo-Boolean constraints in (slight extension of) OPB
format [RM16]

Each constraint follows “obviously” from what is known so far

Either implicitly, by RUP. . .

Or by an explicit cutting planes derivation. . .

Or as an extension variable reifying a new constraint∗

Final constraint is 0 ≥ 1

(*) Not actually implemented this way — details in extended version of this tutorial
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More Pseudo-Boolean Proof Logging Rules

Deleting Constraints

In practice, important to erase constraints to save memory and time during verification

Fairly straightforward to deal with from the point of view of proof logging

So ignored in this tutorial for simplicity and clarity
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More Pseudo-Boolean Proof Logging Rules

Enumeration and Optimisation Problems

Enumeration:

When a solution is found, can log it

Introduces a new constraint saying “not this solution”

So the proof semantics is “infeasible, except for all the solutions I told you about”

For optimisation:

Define an objective 𝑓 =
∑

𝑖 𝑤𝑖ℓ𝑖 ,𝑤𝑖 ∈ Z, to minimise subject to the contraints in the formula

To maximise, negate objective

Log a solution 𝛼 ; get an objective-improving constraint
∑

𝑖 𝑤𝑖ℓ𝑖 ≤ −1 +∑
𝑖 𝑤𝑖𝛼 (ℓ𝑖 )

Semantics for proof of optimality: “infeasible to find better solution than best so far”
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More Pseudo-Boolean Proof Logging Rules

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0–1 integer linear program (ILP)

just do proof logging

Otherwise

do trusted or verified translation to 0–1 ILP
provide proof logging for 0–1 ILP formulation

Proof logging philosophy:
do not change input for solver

do not change reasoning in
solver

only add print statements (in
PB format) here and there

Goldilocks compromise between expressivity and simplicity:

1 0–1 ILP expressive formalism for combinatorial problems (including objective)

2 Powerful reasoning capturing many combinatorial arguments (even for SAT)
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More Pseudo-Boolean Proof Logging Rules

The VeriPB Format and Tool

https://gitlab.com/MIAOresearch/software/VeriPB

Released under MIT Licence

Various features to help development:
Extended variable name syntax allowing human-readable names
Proof tracing
“Trust me” assertions for incremental proof logging

Documentation:
Description of VeriPB checker [BMM+23] used in SAT 2023 competition
(https://satcompetition.github.io/2023/checkers.html)
Specific details on different proof logging techniques covered in research papers
[EGMN20, GMN20, GMM+20, GN21, GMN22, GMNO22, VDB22, BBN+23, BGMN23, MM23]
Lots of concrete example files at https://gitlab.com/MIAOresearch/software/VeriPB
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Proof Logging for Parity Reasoning

Parity (XOR) Reasoning

Given clauses
𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

and
𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

want to derive
𝑥 ∨𝑤

𝑥 ∨𝑤

This is just parity reasoning:

𝑥 + 𝑦 + 𝑧 = 1 (mod 2)
𝑦 + 𝑧 +𝑤 = 1 (mod 2)

imply
𝑥 +𝑤 = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too inefficient in practice!

Could add XORs to language, but prefer to keep things
super-simple
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Proof Logging for Parity Reasoning

Pseudo-Boolean Proof Logging for XOR Reasoning

Given clauses
𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

and
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𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

want to derive
𝑥 ∨𝑤

𝑥 ∨𝑤

Introduce extension variables 𝑎, 𝑏 and derive

𝑥 + 𝑦 + 𝑧 + 2𝑎 = 3
𝑦 + 𝑧 +𝑤 + 2𝑏 = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

𝑥 +𝑤 + 2𝑦 + 2𝑧 + 2𝑎 + 2𝑏 = 6

From this can extract

𝑥 +𝑤 ≥ 1
𝑥 +𝑤 ≥ 1

VeriPB can certify XOR reasoning [GN21]
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Proof Logging for Translations of Pseudo-Boolean Constraints to CNF

CDCL Solvers on Pseudo-Boolean Inputs
Can re-encode to CNF and run CDCL:

MiniSat+ [ES06]

Open-WBO [MML14]

NaPS [SN15]

E.g., encode pseudo-Boolean constraint

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≥ 2

to clauses with extension variables

𝑠𝑖,𝑘 ⇔ ∑𝑖
𝑗=1 𝑥 𝑗 ≥ 𝑘

𝑘 · 𝑠𝑖,𝑘 +
∑𝑖

𝑗=1 𝑥 𝑗 ≥ 𝑘

(𝑖 − 𝑘 + 1) · 𝑠𝑖,𝑘 +
∑𝑖

𝑗=1 𝑥 𝑗 ≥ 𝑖 − 𝑘 + 1

𝑠1,1 ∨ 𝑥1

𝑠2,1 ∨ 𝑠1,1 ∨ 𝑥2

𝑠2,2 ∨ 𝑠1,1

𝑠2,2 ∨ 𝑥2

𝑠3,1 ∨ 𝑠2,1 ∨ 𝑥3

𝑠3,2 ∨ 𝑠2,1

𝑠3,2 ∨ 𝑠2,2 ∨ 𝑥3

𝑠4,1 ∨ 𝑠3,1 ∨ 𝑥4

𝑠4,2 ∨ 𝑠3,1

𝑠4,2 ∨ 𝑠3,2 ∨ 𝑥4

𝑠4,2

How to know translation is correct?

VeriPB can certify pseudo-Boolean-to-CNF rewriting [GMNO22, VDB22]
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Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Maximum Satisfiability (MaxSAT) Solving

Minimize linear objective subject to satisfying formula in conjunctive normal form (CNF)

min 2𝑥1 + 𝑥2

s.t. 𝑥1 ∨ 𝑧

𝑧 ∨ 𝑥2

MaxSAT solver
Result:

optimum 1

Many MaxSAT solvers internally make use of SAT solver.

Idea:
Find optimal solution (checking that it is a solution is easy)

Add clauses claiming a better solution exists

Requires proof logging — can be done with VeriPB

Use one extra SAT call to get proof of optimality (with standard SAT proof logging)

Causes serious overhead

Does not work

Only proves answer correct, not reasoning within solver!
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Proof Logging for SAT-Based Optimisation (MaxSAT solving)

MaxSAT Solvers

Three main categories:
Linear SAT-UNSAT search

1 Call SAT solver to find some solution
2 Add clauses encoding “I want a better solution”
3 Repeat (last found solution is optimal)

VeriPB-based proof logging available [VDB22, Van23]
Core-guided search

1 Call SAT solver to find solution under most optimistic assumptions
2 If impossible, rewrite objective given output of SAT solver
3 Repeat (first solution is optimal)

VeriPB-based proof logging available [BBN+23]
Implicit Hitting Set

1 Call SAT solver to find solution under most optimistic assumptions
2 Use hitting set solver (MIP solver) to recompute what most possible optimistic assumptions are
3 Repeat (first solution is optimal)

No proof logging available yet
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Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Linear SAT-UNSAT Search

Run SAT solver to
find model

Encode model im-
proving constraints

Last found model is
optimal

SAT UNSAT
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Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification

𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4

𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

SAT UNSAT
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Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation

{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

𝑥1, 𝑥2, 𝑥3, 𝑥4
𝑟 1, 𝑟2, 𝑟3
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∑
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∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗
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𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
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𝑝1 ⊥

Run SAT solver to
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Encode model im-
proving constraints

Last found solution
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Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖
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derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
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∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
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Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖
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{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

PB(𝑝1 ⇔ (∑𝑖 𝑟𝑖 ≥ 1)) Fresh variable
PB(𝑝2 ⇔ (∑𝑖 𝑟𝑖 ≥ 2))

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
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𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
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Certified LSU Search (Example)
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∑
𝑖 𝑟𝑖
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∑
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∑
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{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
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Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
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𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation

𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥
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Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
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𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
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𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
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𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
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Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
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∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation

𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))

𝑝2 𝑥4
𝑝1 ⊥
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Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
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{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
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𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
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𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

SAT UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
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∑
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∑
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Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
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∑
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∑
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𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
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0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
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Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution

∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
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Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

𝑥1, 𝑥2, 𝑥3, 𝑥4
𝑟 1, 𝑟2, 𝑟 3

UNSAT
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LSU Example in VeriPB Syntax

pseudo-Boolean proof version 2.0
f 7
* Clauses derived by solver
rup 1 x1 1 r2 >= 1 ;
* Log incumbent solution
soli ~x1 ~x2 ~x3 ~x4 ~r1 r2 r3
* introduce fresh variables
red 2 ~p2 1 r1 1 r2 1 r3 >= 2 ; p2 -> 0 ;
red 2 p2 1 ~r1 1 ~r2 1 ~r3 >= 2; p2 -> 1 ;
red 1 ~p1 1 r1 1 r2 1 r3 >= 1; p1 -> 0 ;
red 3 p1 1 ~r1 1 ~r2 1 ~r3 >= 3; p1 -> 1 ;
* Derive CNF encoding of totalizer
. . . - coming soon
* Derive counter falsity
pol 9 10 + s
* Clauses derived by solver
rup 1 x4 >= 1 ;

* Log incumbent solution
soli ~x1 ~x2 ~x3 x4 ~r1 r2 ~r3
* Derive counter falsity
pol -1 12 +
* Inconsistency derived by solver
rup >= 1 ;
* Conclusion
output NONE
conclusion BOUNDS 1 1
end pseudo-Boolean proof



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Encoding of the Model-Improving Constraint

How to encode 𝑝 𝑗 ⇔
∑

𝑖 𝑟𝑖 ≥ 𝑗 in CNF?

Different MaxSAT solvers use different PB-to-CNF encodings, e.g.,

Totalizer Encoding [BB03]

Binary Adder [War98]

Modulo-Based Totalizer [OLH+13]
Sorting Networks [ES06, ANOR09]

(Dynamic) Polynomial Watchdog [PRB18]

Totalizer encoding demonstrated here; ideas generalize to other encodings [Van23]
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Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Totalizer Encoding of Cardinality Constraints

How to encode 𝑝𝐼𝑗 ⇔
∑

𝑖∈𝐼 𝑟𝑖 ≥ 𝑗?

Totalizer encoding [BB03]

Create binary tree (leaves are the 𝑟𝑖 ); and
introduce counter variables in all nodes

Example: 𝐼 = {1, · · · , 8}, 𝐼1 = {1, · · · , 4} and
𝐼2 = {5, · · · , 8}

𝑝𝐼1, 𝑝
𝐼
2, 𝑝

𝐼
3, 𝑝

𝐼
4, 𝑝

𝐼
5, 𝑝

𝐼
6, 𝑝

𝐼
7, 𝑝

𝐼
8

𝑝
𝐼1
1 , 𝑝

𝐼1
2 , 𝑝

𝐼1
3 , 𝑝

𝐼1
4 𝑝

𝐼2
1 , 𝑝

𝐼2
2 , 𝑝

𝐼2
3 , 𝑝

𝐼2
4

Clauses encoding 𝑝𝐼6 ⇐
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝

𝐼2
4 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝

𝐼2
3 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝

𝐼2
2 ∨ 𝑝𝐼6

Clauses encoding 𝑝𝐼6 ⇒
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝

𝐼
6 𝑝

𝐼1
3 ∨ 𝑝

𝐼2
4 ∨ 𝑝

𝐼
6 𝑝

𝐼1
4 ∨ 𝑝

𝐼2
3 ∨ 𝑝

𝐼
6 𝑝

𝐼2
2 ∨ 𝑝

𝐼
6
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Certifying the Totalizer encoding using cutting planes

To be derived: 𝑝𝐼14 ∨ 𝑝
𝐼2
2 ∨ 𝑝𝐼6

Counting variables introduced using

4 · 𝑝𝐼14 +
∑︁
𝑖∈𝐼1

𝑟𝑖 ≥ 4

2 · 𝑝𝐼22 +
∑︁
𝑖∈𝐼2

𝑟𝑖 ≥ 2

3 · 𝑝𝐼6 +
∑︁
𝑖∈𝐼

𝑟 𝑖 ≥ 3

Adding these three constraints yields

4 · 𝑝𝐼14 + 2 · 𝑝𝐼22 + 3 · 𝑝𝐼6 + 8 ≥ 9

1
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Complete LSU Example in VeriPB Syntax

pseudo-Boolean proof version 2.0
f 7
* Clauses derived by solver
rup 1 x1 1 r2 >= 1 ;
* Log incumbent solution
soli ~x1 ~x2 ~x3 ~x4 ~r1 r2 r3
* introduce fresh variables
red 2 ~p2 1 r1 1 r2 1 r3 >= 2 ; p2 -> 0 ;
red 2 p2 1 ~r1 1 ~r2 1 ~r3 >= 2; p2 -> 1 ;
red 1 ~p1 1 r1 1 r2 1 r3 >= 1; p1 -> 0 ;
red 3 p1 1 ~r1 1 ~r2 1 ~r3 >= 3; p1 -> 1 ;
* Auxiliary variables for CNF encoding
red 2 ~p_1-2_2 1 r1 1 r2 >= 2 ; p_1-2_2 -> 0 ;
red 1 p_1-2_2 1 ~r1 1 ~r2 >= 1; p_1-2_2 -> 1 ;
red 1 ~p_1-2_1 1 r1 1 r2 >= 1; p_1-2_1 -> 0 ;
red 2 p_1-2_1 1 ~r1 1 ~r2 >= 2; p_1-2_1 -> 1 ;
* Cutting planes derivation of totalizer clauses
pol 10 15 + s
pol 10 17 + ~r3 + s

pol 11 14 + r3 + s
pol 11 16 + s
pol 12 17 + s
pol 13 16 + r3 + s
pol 13 r1 + r2 + s
* Derive counter falsity
pol 9 10 + s
* Clauses derived by solver
rup 1 x4 >= 1 ;
* Log incumbent solution
soli ~x1 ~x2 ~x3 x4 ~r1 r2 ~r3
* Derive counter falsity
pol -1 12 +
* Inconsistency derived by solver
rup >= 1 ;
* Conclusion
output NONE
conclusion BOUNDS 1 1
end pseudo-Boolean proof
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Core-Guided Search

Run SAT solver
under optimistic
assumptions

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT
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Certified Core-Guided Search (Example)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3

= 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification

𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟1 + 𝑟2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Solution
𝑟1 + 𝑟2 + 𝑟3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4

𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions
𝑟1 = 𝑟2 = 𝑟3 = 0

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT
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Explicit CP derivations:

CNF encoding (totalizer): see part on
LSU

Adding up definition of 𝑝2 and core
constraint yields

2 · 𝑝2 + 2 · 𝑟1 + 2 · 𝑟2 ≥ 3

2

.

which is the same as 𝑟1 + 𝑟2 ≥ 1 + 𝑝2.
Other direction already given

Previously derived cores guarantee
that objective is at least 1:
𝑟1 + 𝑟2 ( + 𝑟3) ≥ 1
Adding this to objective improvement
constraint gives contradiction
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Complete CG Example in VeriPB Syntax

pseudo-Boolean proof version 2.0
f 7
* Clauses derived by solver (inc core)
rup 1 x1 1 r2 >= 1 ;
rup 1 r1 1 r2 >= 1 ;
* Introduce fresh variable
red 2 ~p2 1 r1 1 r2 >= 2 ; p2 -> 0 ;
red 1 p2 1 ~r1 1 ~r2 >= 1; p2 -> 1 ;
* Encode this in CNF
pol 10 ~r1 +
pol 10 ~r2 +
* Rewriting the objective
pol 9 10 + 2 d
* Check that we have indeed
* derived that r1 + r2 = 1 + p2
e 14 : 1 r1 1 r2 -1 p2 >= 1 ;
e 11 : -1 r1 -1 r2 1 p2 >= -1 ;

* Solution found
soli x1 x2 x3 x4 r1 ~r2 ~r3
* Prove optimality of solution:
pol -1 9 +
ia -1 : >= 1 ;
* Conclusion
output NONE
conclusion BOUNDS 1 1
end pseudo-Boolean proof



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Advanced Techniques for Core-Guided MaxSAT

Important to deal with all state-of-the-art solver techniques

Additional techniques that are skipped in this example

Intrinsic at-most-one constraints [IMM19]
Hardening [ABGL12]
Lazy counter variables [MJML14]

VeriPB Proof logging also convenient for these techniques [BBN+23]
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Recap (1/2)

Proof

Input Answer
Solver

Checker

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed answer + proof to proof checker together with input

4 Verify that proof checker says answer is correct
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Recap (1/2)

Proof

Input Answer
Solver

Checker
✓ / ✗
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Recap (2/2)

Proof logging implementation

Don’t change solver

Just add proof logging statements (plus some book-keeping)

Performance goals

Want linear(ish) scaling in terms of solver running time for

proof size

proof checking time
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Progress So Far

We’ve seen proof logging, and how it works for SAT

We’ve learned about

pseudo-Boolean constraints (0–1 linear inequalities)
cutting planes reasoning

VeriPB

Coming next, some worked examples from dedicated graph solvers
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

The Maximum Clique Problem
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

Maximum Clique Solvers

There are a lot of dedicated solvers for clique problems

But there are issues:

“State-of-the-art” solvers have been buggy.

Often undetected: error rate of around 0.1 [MPP19]

Often used inside other solvers

An off-by-one result can cause much larger errors
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Proof Logging for Maximum Clique Solvers

A Brief and Incomplete Guide to Clique Solving (1/4)

Recursive maximum clique algorithm:

Pick a vertex 𝑣
Either 𝑣 is in the clique. . .

Throw away every vertex not adjacent to 𝑣
If vertices remain, recurse

. . . or 𝑣 is not in the clique
Throw 𝑣 away and pick another vertex
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Proof Logging for Maximum Clique Solvers

A Brief and Incomplete Guide to Clique Solving (2/4)

Key data structures:

Growing clique 𝐶
Set of potential vertices 𝑃

All the vertices we haven’t thrown away yet
Every 𝑣 ∈ 𝑃 is adjacent to every𝑤 ∈ 𝐶

Branch and bound:

Remember the biggest clique 𝐶★ found so far

If |𝐶 | + |𝑃 | ≤
��𝐶★

��, no need to keep going
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

A Brief and Incomplete Guide to Clique Solving (3/4)

1

39

2

4

7 5
6

10

8

11
12

Given a 𝑘-colouring of a subgraph, that subgraph cannot have a clique of more than 𝑘 vertices

We can use |𝐶 | + #colours(𝑃) as a bound, for any colouring
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Proof Logging for Maximum Clique Solvers

A Brief and Incomplete Guide to Clique Solving (4/4)

This brings us to 1997

Many improvements since then
better bound functions
clever vertex selection heuristics
efficient data structures
local search
. . .

But key ideas for proof logging can be explained without worrying about such things

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 61 / 95



Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

Making a Proof Logging Clique Solver

1 Output a pseudo-Boolean encoding of the problem
Clique problems have several standard file formats

2 Make the solver log its search tree
Output a small header
Output something on every backtrack
Output something every time a solution is found
Output a small footer

3 Figure out how to log the bound function
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Proof Logging for Maximum Clique Solvers

A Slightly Different Proof Logging Workflow

Checker

Input Answer
Solver

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed answer + proof to proof checker together with

4 Verify that proof checker says answer is correct
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A Slightly Different Proof Logging Workflow

Proof

Encoded input

Input Answer
Solver

Checker

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed answer + proof to proof checker together with 0–1 ILP encoding of input

4 Verify that proof checker says answer is correct
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Proof Logging for Maximum Clique Solvers

A Slightly Different Proof Logging Workflow

Proof

Encoded input

Input Answer
Solver

Checker
✓ / ✗

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed answer + proof to proof checker together with 0–1 ILP encoding of input

4 Verify that proof checker says answer is correct
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Proof Logging for Maximum Clique Solvers

A Pseudo-Boolean Encoding for Clique (in OPB Format)

3

4

6
7

9

10

11
12

1

2

5

8

* #variable= 12 #constraint= 41
min: -1 x1 -1 x2 -1 x3 -1 x4 . . . and so on. . . -1 x11 -1 x12 ;
1 ~x3 1 ~x1 >= 1 ;
1 ~x3 1 ~x2 >= 1 ;
1 ~x4 1 ~x1 >= 1 ;
* . . . and a further 38 similar lines for the remaining non-edges
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Proof Logging for Maximum Clique Solvers

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12pseudo-Boolean proof version 2.0

f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof
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First Attempt at a Proof
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Start with a header
Load the 41 problem axioms

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
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Branch accepting 12
Throw away non-adjacent vertices
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conclusion BOUNDS -4 -4
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First Attempt at a Proof

1
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Branch also accepting 9
Throw away non-adjacent vertices
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Proof Logging for Maximum Clique Solvers

First Attempt at a Proof
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We branched on 12, 7, 9
Found a new incumbent
Now looking for a ≥ 4 vertex clique

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
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Proof Logging for Maximum Clique Solvers

First Attempt at a Proof

1
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5
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9

10

11
12

Backtrack from 12, 7
9 explored already, only 6 feasible
No ≥ 4 vertex clique possible
Effectively this deletes the 7–12 edge

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof
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First Attempt at a Proof
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10
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12

Backtrack from 12
Only 1, 6 and 9 feasible (1-colourable)
No ≥ 4 vertex clique possible
Effectively this deletes vertex 12

pseudo-Boolean proof version 2.0
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Proof Logging for Maximum Clique Solvers

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11

Branch on 11 then 10
Only 1, 3 and 9 feasible (1-colourable)
No ≥ 4 vertex clique possible
Backtrack, deleting the edge

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
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First Attempt at a Proof
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Backtrack from 11
2-colourable, so no ≥ 4 clique
Delete the vertex

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
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Proof Logging for Maximum Clique Solvers

First Attempt at a Proof
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9
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Branch on 8, 5, 1, 2
Find a new incumbent
Now looking for a ≥ 5 vertex clique

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof
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Proof Logging for Maximum Clique Solvers

First Attempt at a Proof
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9

10

Backtrack from 8, 5
Only 4 vertices; can’t have a ≥ 5 clique
Delete the edge

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof
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Proof Logging for Maximum Clique Solvers

First Attempt at a Proof
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10

Backtrack from 8
Still not enough vertices
Delete the vertex

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof
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Proof Logging for Maximum Clique Solvers

First Attempt at a Proof
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3
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10

Remaining graph is 3-colourable
Backtrack from root node

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof
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Proof Logging for Maximum Clique Solvers

First Attempt at a Proof

1

2

3

4

5
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7

9

10

Finish with what we’ve concluded
We specify a lower and an upper bound
Remember we’re minimising

∑
𝑣 −1 × 𝑣 , so a 4-clique

has an objective value of −4

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

Verifying This Proof (Or Not. . . )

$ veripb clique.opb clique-attempt-one.veripb
Verification failed.
Failed in proof file line 6.
Hint: Failed to show '1 ~x10 1 ~x11 >= 1' by reverse unit propagation.
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Verifying This Proof (Or Not. . . )

$ veripb clique.opb clique-attempt-one.veripb
Verification failed.
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

Verifying This Proof (Or Not. . . )

$ veripb --trace clique.opb clique-attempt-one.veripb
line 002: f 41

ConstraintId 001: 1 ~x1 1 ~x3 >= 1
ConstraintId 002: 1 ~x2 1 ~x3 >= 1

...
ConstraintId 041: 1 ~x11 1 ~x12 >= 1

line 003: soli x7 x9 x12 ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x8 ~x10 ~x11
ConstraintId 042: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 >= 4

line 004: rup 1 ~x12 1 ~x7 >= 1 ;
ConstraintId 043: 1 ~x7 1 ~x12 >= 1

line 005: rup 1 ~x12 >= 1 ;
ConstraintId 044: 1 ~x12 >= 1

line 006: rup 1 ~x11 1 ~x10 >= 1 ;
Verification failed.
Failed in proof file line 6.
Hint: Failed to show '1 ~x10 1 ~x11 >= 1' by reverse unit propagation.
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

Dealing With Colourings

The colour bound doesn’t follow by RUP. . .

But we can lazily recover at-most-one constraints for each colour class!

(𝑥1 + 𝑥6 ≥ 1)
+ (𝑥1 + 𝑥9 ≥ 1) = 2𝑥1 + 𝑥6 + 𝑥9 ≥ 2
+ (𝑥6 + 𝑥9 ≥ 1) = 2𝑥1 + 2𝑥6 + 2𝑥9 ≥ 3

/ 2 = 𝑥1 + 𝑥6 + 𝑥9 ≥ 2
i.e. 𝑥1 + 𝑥6 + 𝑥9 ≤ 1

This generalises to colour classes of any size 𝑣

Each non-edge is used exactly once, 𝑣 (𝑣 − 1) additions
𝑣 − 3 multiplications and 𝑣 − 2 divisions

Solvers don’t need to “understand” cutting planes to write this derivation to proof log
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What This Looks Like in the Proof Log

pseudo-Boolean proof version 2.0
f 41
soli x12 x7 x9
rup 1 ~x12 1 ~x7 >= 1 ;
* bound, colour classes [ x1 x6 x9 ]
pol 71≁6 191≁9 + 246≁9 + 2 d
pol 42obj -1 +
rup 1 ~x12 >= 1 ;
* bound, colour classes [ x1 x3 x9 ]
pol 11≁3 191≁9 + 213≁9 + 2 d
pol 42obj -1 +
rup 1 ~x11 1 ~x10 >= 1 ;
* bound, colour classes [ x1 x3 x7 ]
* [ x9 ]
pol 11≁3 101≁7 + 123≁7 + 2 d
pol 42obj -1 +
rup 1 ~x11 >= 1 ;

soli x8 x5 x2 x1
rup 1 ~x8 1 ~x5 >= 1 ;
* bound, colour classes [ x1 x9 ] [ x2 ]
pol 53obj 191≁9 +
rup 1 ~x8 >= 1 ;
* bound, colour classes [ x1 x3 x7 ]
* [ x2 x4 x9 ] [ x5 x6 x10 ]
pol 11≁3 101≁7 + 123≁7 + 2 d
pol 53obj -1 +
pol 42≁4 202≁9 + 224≁9 + 2 d
pol 53obj -3 + -1 +
pol 95≁6 265≁10 + 276≁10 + 2 d
pol 53obj -5 + -3 + -1 +
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof
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Proof Logging for Maximum Clique Solvers

Verifying This Proof (For Real, This Time)

$ veripb --trace clique.opb clique-attempt-two.veripb
=== begin trace ===
line 002: f 41

ConstraintId 001: 1 ~x1 1 ~x3 >= 1
ConstraintId 002: 1 ~x2 1 ~x3 >= 1

...
ConstraintId 041: 1 ~x11 1 ~x12 >= 1

line 003: soli x7 x9 x12 ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x8 ~x10 ~x11
ConstraintId 042: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 >= 4

line 004: rup 1 ~x12 1 ~x7 >= 1 ;
ConstraintId 043: 1 ~x7 1 ~x12 >= 1

line 005: * bound, colour classes [ x1 x6 x9 ]
line 006: pol 7 19 + 24 + 2 d

ConstraintId 044: 1 ~x1 1 ~x6 1 ~x9 >= 2
line 007: pol 42 43 +

ConstraintId 045: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x8 1 x9 1 x10 1 x11 >= 3
...

ConstraintId 061: 1 ~x5 1 ~x6 1 ~x10 >= 2
line 028: pol 53 57 + 59 + 61 +

ConstraintId 062: 1 x8 1 x11 1 x12 >= 2
line 029: rup >= 1 ;

ConstraintId 063: >= 1
line 030: output NONE
line 031: conclusion BOUNDS -4 -4
line 032: end pseudo-Boolean proof
=== end trace ===

Verification succeeded.
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

Different Clique Algorithms

Different search orders?

✓ Irrelevant for proof logging

Using local search to initialise?

✓ Just log the incumbent

Different bound functions?

Is cutting planes strong enough to justify every useful bound function ever invented?

So far, seems like it. . .

Weighted cliques?

✓ Multiply a colour class by its largest weight

✓ Also works for vertices “split between colour classes”
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Subgraph Isomorphism

Find the pattern inside the target

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Subgraph Isomorphism in Pseudo-Boolean Form

Each pattern vertex gets a target vertex:∑︁
𝑡 ∈V(𝑇 )

𝑥𝑝,𝑡 = 1 𝑝 ∈ V(𝑃)

Each target vertex may be used at most once:∑︁
𝑝∈V(𝑃 )

−𝑥𝑝,𝑡 ≥ −1 𝑡 ∈ V(𝑇 )

Adjacency constraints, if 𝑝 is mapped to 𝑡 , then 𝑝’s neighbours must be mapped to 𝑡 ’s neighbours:

𝑥𝑝,𝑡 +
∑︁

𝑢∈N(𝑡 )
𝑥𝑞,𝑢 ≥ 1 𝑝 ∈ V(𝑃), 𝑞 ∈ N(𝑝), 𝑡 ∈ V(𝑇 )
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Degree Reasoning in Cutting Planes

Pattern vertex 𝑝 of degree deg(𝑝) can never be mapped to target vertex 𝑡 of degree < deg(𝑝) in
any subgraph isomorphism

Observe N(𝑝) = {𝑞, 𝑟, 𝑠} and N(𝑡) = {𝑢, 𝑣}
We wish to derive 𝑥𝑝,𝑡 ≥ 1

o

p

q

r

s

t

u

v

x

y

z
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Degree Reasoning in Cutting Planes

Adjacency: 𝑥𝑝,𝑡 + 𝑥𝑞,𝑢 + 𝑥𝑞,𝑣 ≥ 1
𝑥𝑝,𝑡 + 𝑥𝑟,𝑢 + 𝑥𝑟,𝑣 ≥ 1
𝑥𝑝,𝑡 + 𝑥𝑠,𝑢 + 𝑥𝑠,𝑣 ≥ 1

Injectivity: −𝑥𝑜,𝑢 + −𝑥𝑝,𝑢 + −𝑥𝑞,𝑢 + −𝑥𝑟,𝑢 + −𝑥𝑠,𝑢 ≥ −1
−𝑥𝑜,𝑣 + −𝑥𝑝,𝑣 + −𝑥𝑞,𝑣 + −𝑥𝑟,𝑣 + −𝑥𝑠,𝑣 ≥ −1

Literal axioms: 𝑥𝑜,𝑢 ≥ 0
𝑥𝑜,𝑣 ≥ 0
𝑥𝑝,𝑢 ≥ 0
𝑥𝑝,𝑣 ≥ 0

Add these together . . .

3 · 𝑥𝑝,𝑡 ≥ 1

o

p

q

r

s

t

u

v

x

y

z
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−𝑥𝑜,𝑣 + −𝑥𝑝,𝑣 + −𝑥𝑞,𝑣 + −𝑥𝑟,𝑣 + −𝑥𝑠,𝑣 ≥ −1

Literal axioms: 𝑥𝑜,𝑢 ≥ 0
𝑥𝑜,𝑣 ≥ 0
𝑥𝑝,𝑢 ≥ 0
𝑥𝑝,𝑣 ≥ 0

Add these together and divide by 3 to get

𝑥𝑝,𝑡 ≥ 1

o

p
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u

v

x

y

z
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Degree Reasoning in VeriPB

pol 18𝑝∼𝑡 :𝑞 19𝑝∼𝑡 :𝑟 + 20 𝑝∼𝑡 :𝑠 + * sum adjacency constraints
12𝑖𝑛 𝑗 (𝑢 ) + 13𝑖𝑛 𝑗 (𝑣) + * sum injectivity constraints
xo_u + xo_v + * cancel stray xo_*
xp_u + xp_v + * cancel stray xp_*
3 d * divide, and we're done

Or we can ask VeriPB to do the last bit of simplification automatically:

pol 18𝑝∼𝑡 :𝑞 19𝑝∼𝑡 :𝑟 + 20 𝑝∼𝑡 :𝑠 + * sum adjacency constraints
12𝑖𝑛 𝑗 (𝑢 ) + 13𝑖𝑛 𝑗 (𝑣) + * sum injectivity constraints

ia -1 : 1 ~xp_t >= 1 ; * desired conclusion is implied
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Other Forms of Reasoning

We can also log all of the other things state of the art subgraph solvers do:

Injectivity reasoning and filtering

Distance filtering

Neighbourhood degree sequences

Path filtering

Supplemental graphs

Proof steps are “efficient” using cutting planes

Length of proof ≈ time complexity of the reasoning algorithms

Most proof steps require only trivial additional computations
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Limitations

Why trust the encoding?

Correctness of encoding can be formally verified! Work in progress. . .

Proof logging can introduce large slowdowns

Writing to disk is much slower than bit-parallel algorithms

Verification can be even slower

Unit propagation is much slower than bit-parallel algorithms

Works up to moderately-sized hard instances

Even an 𝑂 (𝑛3) encoding is painful
Particularly bad when the pseudo-Boolean encoding talks about “non-edges” but large sparse
graphs are “easy”
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Code for Proof Logging Subgraph Solver

https://github.com/ciaranm/glasgow-subgraph-solver

Released under MIT Licence
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

What About Constraint Programming?

Non-Boolean variables?

Constraints?

Encoding constraints in pseudo-Boolean form?

Justifying inferences?

Reformulations?
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Non-Boolean Variables

Compiling CP Variables (1/2)

Given 𝐴 ∈ {−3 . . . 9}, the direct encoding is:
𝑎=−3 + 𝑎=−2 + 𝑎=−1 + 𝑎=0 + 𝑎=1 + 𝑎=2 + 𝑎=3

+ 𝑎=4 + 𝑎=5 + 𝑎=6 + 𝑎=7 + 𝑎=8 + 𝑎=9 = 1

This doesn’t work for large domains. . .

We could use a binary encoding:

−16𝑎neg + 1𝑎b0 + 2𝑎b1 + 4𝑎b2 + 8𝑎b3 ≥ −3 and

16𝑎neg + −1𝑎b0 + −2𝑎b1 + −4𝑎b2 + −8𝑎b3 ≥ −9
This doesn’t propagate much, but that isn’t a problem for proof logging

Convention in what follows:
Upper-case 𝐴, 𝐵,𝐶 are CP variables;
Lower-case 𝑎, 𝑏, 𝑐 are corresponding Boolean variables in PB encoding
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Non-Boolean Variables

Compiling CP Variables (2/2)

We can mix binary and an order encoding! Where needed, define:

𝑎≥4 ⇔ −16𝑎neg + 1𝑎b0 + 2𝑎b1 + 4𝑎b2 + 8𝑎b3 ≥ 4
𝑎≥5 ⇔ −16𝑎neg + 1𝑎b0 + 2𝑎b1 + 4𝑎b2 + 8𝑎b3 ≥ 5
𝑎=4 ⇔ 𝑎≥4 ∧ 𝑎≥5

When creating 𝑎≥𝑖 , also introduce pseudo-Boolean constraints encoding

𝑎≥𝑖 ⇒ 𝑎≥ 𝑗 and 𝑎≥ℎ ⇒ 𝑎≥𝑖

for the closest values 𝑗 < 𝑖 < ℎ that already exist

We can do this:

Inside the pseudo-Boolean model, where needed

Otherwise lazily during proof logging
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Constraints

Compiling Constraints

Also need to compile every constraint to pseudo-Boolean form

Doesn’t need to be a propagating encoding

Can use additional variables
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Constraints

Compiling Linear Inequalities

Given inequality
2𝐴 + 3𝐵 + 4𝐶 ≥ 42

where 𝐴, 𝐵,𝐶 ∈ {−3 . . . 9}

Encode in pseudo-Boolean form as

−32𝑎neg + 2𝑎b0 + 4𝑎b1 + 8𝑎b2 + 16𝑎b3
+ − 48𝑏neg + 3𝑏b0 + 6𝑏b1 + 12𝑏b2 + 24𝑏b3
+ − 64𝑐neg + 4𝑐b0 + 8𝑐b1 + 16𝑐b2 + 32𝑐b3 ≥ 42
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Constraints

Compiling Table Constraints

Constraints can be specified extensionally as list of feasible tuples, called a table
Variable assignments must match some row in table

Given table constraint
(𝐴, 𝐵,𝐶) ∈ [(1, 2, 3), (1, 3, 4), (2, 2, 5)]

define

3𝑡1 + 𝑎=1 + 𝑏=2 + 𝑐=3 ≥ 3 i.e., 𝑡1 ⇒ (𝑎=1 ∧ 𝑏=2 ∧ 𝑐=3)
3𝑡2 + 𝑎=1 + 𝑏=4 + 𝑐=4 ≥ 3 i.e., 𝑡2 ⇒ (𝑎=1 ∧ 𝑏=4 ∧ 𝑐=4)
3𝑡3 + 𝑎=2 + 𝑏=2 + 𝑐=5 ≥ 3 i.e., 𝑡3 ⇒ (𝑎=2 ∧ 𝑏=2 ∧ 𝑐=5)

using tuple selector variables

𝑡1 + 𝑡2 + 𝑡3 = 1
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Constraints

Encoding Constraint Definitions

Already know how to do it for any constraint with a sane encoding using some combination of

CNF

Integer linear inequalities

Table constraints

Auxiliary variables

Simplicity is important, propagation strength isn’t
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Proof Logging for the CP Solver

Justifying Search

Mostly this works as in earlier examples

Restarts are easy

No need to justify guesses or decisions — only justify backtracking
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Proof Logging for the CP Solver

Justifying Inference

Key idea

Anything the constraint programming solver knows must follow from unit propagation of guessed
assignments on constraints in proof log

If it follows from unit propagation on the encoding, nothing needed

Some propagators and encodings need RUP steps for inferences

A lot of propagators are effectively “doing a little bit of lookahead” but in an efficient way

A few need explicit cutting planes justifications written to the proof log

Linear inequalities just need to multiply and add

All-different needs a bit more
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Proof Logging for the CP Solver

Justifying All-Different Failures

𝑉 ∈ { 1 4 5 }
𝑊 ∈ { 1 2 3 }

[𝑊 takes some value]

𝑋 ∈ { 2 3 }

[ 𝑋 takes some value ]

𝑌 ∈ { 1 3 }

[ 𝑌 takes some value ]

𝑍 ∈ { 1 3 }

[ 𝑍 takes some value ]
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More About Proof Logging for Constraint Programming

Reformulation

Auto-tabulation is possible
Heavy use of extension variables

Can re-encode maximum common subgraph as a clique problem, without changing
pseudo-Boolean encoding

a

b c d

1 2

3 4

1 2 3 4𝑎 ↦→ { }

1

2

3

4

𝑏 ↦→

1 2 3 4𝑐 ↦→ { }

1

2

3

4

↦→𝑑
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More About Proof Logging for Constraint Programming

High Level Modelling Languages?

High level modelling languages like MiniZinc and Essence have complicated compilers

How do we know we’re giving a proof for the problem the user actually specified?

This would need a modelling language with formally specified semantics. . .
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More About Proof Logging for Constraint Programming

Code

https://github.com/ciaranm/glasgow-constraint-solver

Released under MIT Licence

Supports proof logging for global constraints including:

All-different

Integer linear inequality (including for very large domains)

Smart table and regular

Minimum / maximum of an array

Element

Absolute value

(Hamiltonian) Circuit

Details in [EGMN20, GMN22, MM23]
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Strengthening Rules (And Truth About Extension Variables)

When is it allowed to derive a new constraint? If it is (clear that it is) implied?

Sometimes weaker criterion needed — recall that to get variable 𝑎 encoding

𝑎 ⇔ (3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3)

we introduced pseudo-Boolean constraints

3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5

Cutting planes method inherently cannot certify such constraints — they are not implied!

Wish to allow without-loss-of-generality arguments that can derive non-implied constraints
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Strengthening Rules (and Symmetry)

VeriPB supports different forms of strengthening rules that enable such w.l.o.g. arguments

Care is needed in combination with deletion

Can be very powerful: VeriPB can certify automatic symmetry breaking for SAT
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Future Work

Future Research Directions

Performance and reliability of pseudo-Boolean proof logging
Trim proof while verifying (as in DRAT-Trim [HHW13a])
Compress proof file using binary format
Design formally verified proof checker (work in progress [BMM+23])

Proof logging for other combinatorial problems and techniques
Symmetric learning and recycling (substitution) of subproofs
Mixed integer linear programming (some work on SCIP in [CGS17, EG21])
Satisfiability modulo theories (SMT) solving (some work by Bjørner and others)
High-level modelling languages

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
Talk to us if you want to join the proof logging revolution! ,
We’re happy to collaborate, and we’re hiring
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Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Concluding Remarks

Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like most
promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet spot between
simplicity and expressivity

Action point: What problems can VeriPB solve for you?

Come talk to us. We’re hiring and open to collaboration!

The end. Or rather, the beginning!
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References for Getting Started with VeriPB

https://gitlab.com/MIAOresearch/software/VeriPB

Released under MIT Licence

Various features to help development:

Extended variable name syntax allowing human-readable names

Proof tracing

“Trust me” assertions for incremental proof logging

Documentation:

Description of VeriPB checker [BMM+23] used in SAT 2023 competition
(https://satcompetition.github.io/2023/checkers.html)

Specific details on different proof logging techniques covered in research papers
[EGMN20, GMN20, GMM+20, GN21, GMN22, GMNO22, VDB22, BBN+23, BGMN23, MM23]

Lots of concrete example files at https://gitlab.com/MIAOresearch/software/VeriPB

https://gitlab.com/MIAOresearch/software/VeriPB
https://satcompetition.github.io/2023/checkers.html
https://gitlab.com/MIAOresearch/software/VeriPB
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References Experimental Evaluation

Experiments: Parity Reasoning

Parity Reasoning: Experimental Evaluation

Implemented parity reasoning and PB proof logging engine2

Also DRAT proof logging for XOR constraints as described in [PR16]

Experiments with MiniSat3

Set-up:4

Intel Core i5-1145G7 @2.60GHz × 4

Memory limit 8GiB

Disk write speed roughly 200 MiB/s

Read speed of 2 GiB/s

2https://gitlab.com/MIAOresearch/tools-and-utlities/xorengine
3http://minisat.se/
4Tools, benchmarks, data and evaluation scripts available at https://doi.org/10.5281/zenodo.7083485
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Experiments: Parity Reasoning

Parity Reasoning: Proof Size for DRAT and PB Proof Logging
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Experiments: Parity Reasoning

Parity Reasoning: Solving and Proof Checking Time
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Experiments: Parity Reasoning

Parity Reasoning: Crypto Track of SAT 2021 Competition
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Experiments: Parity Reasoning

Parity Reasoning: Crypto Track Proof Size
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Experiments: Parity Reasoning

Parity Reasoning: Crypto Track Solving & Proof Checking Time

10

100

1000

10000

10 100
1000

10000
timeout

error

Verification Time with VeriPB (s)

S
ol

vi
ng

 T
im

e 
w

ith
 M

in
iS

AT
+

X
O

R
 (

s)
Satisfiability

SAT

UNSAT

Time required for solving and proof checking for cryptographic instances

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 111 / 95



References Experimental Evaluation

Experiments: Pseudo-Boolean-to-CNF Translation

PB-to-CNF Translation: Experimental Evaluation

Certified translations for CNF encodings with VeritasPBLib5

Sequential counter [Sin05]
Totalizer [BB03]
Generalized totalizer [JMM15]
Adder network [ES06]

Proofs verified by proof checker VeriPB

Formulas solved with fork of Kissat6 syntactically modified to output VeriPB proofs
Benchmarks from PB 2016 Evaluation7 in 3 categories

Only cardinality constraints (sequential counter, totalizer)
Only general 0-1 ILP constraints (generalized totalizer, adder network)
Mixed cardinality & general 0-1 ILP constraints (sequential counter + adder network)

5https://github.com/forge-lab/VeritasPBLib
6https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork
7http://www.cril.univ-artois.fr/PB16/
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Experiments: Pseudo-Boolean-to-CNF Translation

PB-to-CNF: CNF Size vs Proof Size in KiB
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Nice scaling for proof size in terms of original CNF formula size
Except for some sequential encoding cases (which is not such a great encoding anyway)
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Experiments: Pseudo-Boolean-to-CNF Translation

PB-to-CNF: Translation Time vs Proof Checking Time in Seconds
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Translation faster — only has to generate clauses and proof
Proof checking slower — has to verify full proof
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Experiments: Pseudo-Boolean-to-CNF Translation

PB-to-CNF: Solving Time vs Proof Checking Time in Seconds
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Room for improvement of end-to-end proof checking process
But even first proof-of-concept implementation shows our approach is viable

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 115 / 95



References Experimental Evaluation

Experiments: Subgraph Algorithms

Clique Solving: Experimental Evaluation

Implemented in the Glasgow Subgraph Solver
Bit-parallel, can perform a colouring and recursive call in under a microsecond

59 of the 80 DIMACS instances take under 1,000 seconds to solve without logging

Produced and verified proofs for 57 of these 59 instances (the other two reached 1TByte disk
space)

Mean slowdown from proof logging is 80.1 (due to disk I/O)

Mean verification slowdown a further 10.1

Approximate implementation effort: one Masters student
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Experiments: Subgraph Algorithms

Subgraph Isomorphism Solving: Experimental Evaluation (1/3)

The Pseudo-Boolean models can be large: had to restrict to instances with no more than 260
vertices in the target graph

Took enumeration instances which could be solved without proof logging in under ten seconds
1,227 instances from Solnon’s benchmark collection:

789 unsatisfiable, up to 50,635,140 solutions in the rest
498 instances solved without guessing
Hardest solved satisfiable and unsatisfiable instances required 53,605,482 and 2,074,386 recursive
calls
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Experiments: Subgraph Algorithms

Subgraph Isomorphism Solving: Experimental Evaluation (2/3)
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Experiments: Subgraph Algorithms

Subgraph Isomorphism Solving: Experimental Evaluation (3/3)
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Experiments: Constraint Programming

Constraint Programming: How Expensive is Proof Logging? (1/2)

Laurent D. Michel, Pierre Schaus, Pascal Van Hentenryck: MiniCP: A Lightweight Solver for
Constraint Programming [MSH21]
Five benchmark problems allowing comparison of solvers “doing the same thing”:

Simple models
Fixed search order and well-defined propagation consistency levels
Few global constraints

Probably close to the worst case for proof logging performance

Also: Crystal Maze and World’s Hardest Sudoku
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Experiments: Constraint Programming

Constraint Programming: How Expensive is Proof Logging? (2/2)

Our solver: faster than the fastest ofMiniCP , OscaR, and Choco
Proof logging slowdown: between 8.4 and 61.1 factor

800,000 to 3,000,000 inferences per second
Proof logs can be hundreds of GBytes
No effort put into making the proof-writing code run fast

Verification slowdown: a further factor 10 to 100
Probably possible to reduce this substantially if we are prepared to put more care into writing
proofs
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Experiments: SAT Symmetry Breaking

SAT Symmetry Breaking: Experimental Evaluation
Evaluated on SAT competition benchmarks
BreakID [DBBD16, Bre] used to find and break symmetries
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Requires Breaking no unsolved yes

Proof logging overhead negligible
Proof checking at most 20 times slower than solving for 95% of instances
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