
Combinatorial Solving with Provably
Correct Results
Bart Bogaerts Ciaran McCreesh Jakob Nordström

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

The Success of Combinatorial Solving (and the Dirty Little Secret. . .)

Combinatorial Solving and Optimisation

Revolution last couple of decades in combinatorial solvers for
Boolean satisfiability (SAT) solving [BHvMW21]1

Constraint programming (CP) [RvBW06]
Mixed integer linear programming (MIP) [AW13, BR07]

Solve NP-complete problems (or worse) very successfully in practice!

Except solvers are sometimes wrong. . . (Even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, GS19, BMN22, BBN+23]

Even get feasibility of solutions wrong (though this should be straightforward!)

And how to check the absence of solutions?

Or that a solution is optimal? (Even off-by-one mistakes can snowball into large errors if
solver used as subroutine)

1See end of slides for all references with bibliographic details
Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 1 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

The Success of Combinatorial Solving (and the Dirty Little Secret. . .)

What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 2 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

The Success of Combinatorial Solving (and the Dirty Little Secret. . .)

What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 2 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

The Success of Combinatorial Solving (and the Dirty Little Secret. . .)

What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 2 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Ensuring Correctness with the Help of Proof Logging

Proof Logging with Certifying Solvers: Workflow

Checker

Input Answer
Solver

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed input + answer + proof to proof checker

4 Verify that proof checker says answer is correct

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 3 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Ensuring Correctness with the Help of Proof Logging

Proof Logging with Certifying Solvers: Workflow

CheckerProof

Input Answer
Solver

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed input + answer + proof to proof checker

4 Verify that proof checker says answer is correct

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 3 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Ensuring Correctness with the Help of Proof Logging

Proof Logging with Certifying Solvers: Workflow

Proof

Input Answer
Solver

Checker

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed input + answer + proof to proof checker

4 Verify that proof checker says answer is correct

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 3 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Ensuring Correctness with the Help of Proof Logging

Proof Logging with Certifying Solvers: Workflow

Proof

Input Answer
Solver

Checker
✓ / ✗

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed input + answer + proof to proof checker

4 Verify that proof checker says answer is correct

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 3 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Ensuring Correctness with the Help of Proof Logging

Proof Logging Desiderata

Proof

Input Answer
Solver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning

dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 4 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Ensuring Correctness with the Help of Proof Logging

Proof Logging Desiderata

Proof

Input Answer
Solver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning

dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 4 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Ensuring Correctness with the Help of Proof Logging

Proof Logging Desiderata

Proof

Input Answer
Solver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning

dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 4 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Ensuring Correctness with the Help of Proof Logging

Proof Logging Desiderata

Proof

Input Answer
Solver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning

dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 4 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Ensuring Correctness with the Help of Proof Logging

Proof Logging Desiderata

Proof

Input Answer
Solver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning

dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 4 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

This Tutorial

Take-Away Message from This Tutorial

Proof logging for combinatorial optimisation is possible with single, unified method!

Build on successes in proof logging for SAT solvers with proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .

But represent constraints as 0–1 integer linear inequalities

Formalize reasoning using cutting planes [CCT87] proof system

Add well-chosen strengthening rules [Goc22, GN21, BGMN23]

Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 5 / 95

https://gitlab.com/MIAOresearch/software/VeriPB

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

This Tutorial

Take-Away Message from This Tutorial

Proof logging for combinatorial optimisation is possible with single, unified method!

Build on successes in proof logging for SAT solvers with proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .

But represent constraints as 0–1 integer linear inequalities

Formalize reasoning using cutting planes [CCT87] proof system

Add well-chosen strengthening rules [Goc22, GN21, BGMN23]

Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 5 / 95

https://gitlab.com/MIAOresearch/software/VeriPB

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

This Tutorial

The Sales Pitch For Proof Logging

1 Certifies correctness of computed results

2 Detects errors even if due to compiler bugs, hardware failures, or cosmic rays

3 Provides debugging support during development [EG21, GMM+20, KM21, BBN+23]

4 Facilitates performance analysis

5 Helps identify potential for further improvements

6 Enables auditability

7 Serves as stepping stone towards explainability

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 6 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

This Tutorial

The Rest of This Tutorial

Explain how to use VeriPB to do proof logging for

SAT solving (including advanced techniques)

SAT-based optimisation (MaxSAT)

Subgraph algorithms

Constraint programming

in a unified way

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 7 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

SAT Basics

The SAT Problem

Variable 𝑥 : takes value true (=1) or false (=0)

Literal ℓ : variable 𝑥 or its negation 𝑥

Clause 𝐶 = ℓ1 ∨ · · · ∨ ℓ𝑘 : disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

Conjunctive normal form (CNF) formula 𝐹 = 𝐶1 ∧ · · · ∧𝐶𝑚 : conjunction of clauses

The SAT Problem

Given a CNF formula 𝐹 , is it satisfiable?

For instance, what about:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧
(𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 8 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

SAT Basics

Proofs for SAT

For satisfiable instances: just specify satisfying assignment

For unsatisfiability: a sequence of clauses (CNF constraints)

Each clause follows “obviously” from everything we know so far

Final clause is empty, meaning contradiction (written ⊥)
Means original formula must be inconsistent

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 9 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 10 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 10 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 10 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0

𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 10 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1

Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 10 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1

No further unit propagations

Proof checker should know how to unit propagate until saturation

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 10 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 10 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 10 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 11 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 11 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 11 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 11 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 11 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 11 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 11 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 11 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 11 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 11 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 11 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable

Reverse unit propagation (RUP) clause [GN03, Van08]

𝐶 is a reverse unit propagation (RUP) clause with respect to 𝐹 if

assigning 𝐶 to false

then unit propagating on 𝐹 until saturation

leads to contradiction

If so, 𝐹 clearly implies 𝐶 , and this condition is easy to verify efficiently

Fact

Backtrack clauses from DPLL solver generate a RUP proof

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 12 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable

Reverse unit propagation (RUP) clause [GN03, Van08]

𝐶 is a reverse unit propagation (RUP) clause with respect to 𝐹 if

assigning 𝐶 to false

then unit propagating on 𝐹 until saturation

leads to contradiction

If so, 𝐹 clearly implies 𝐶 , and this condition is easy to verify efficiently

Fact

Backtrack clauses from DPLL solver generate a RUP proof

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 12 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable

Reverse unit propagation (RUP) clause [GN03, Van08]

𝐶 is a reverse unit propagation (RUP) clause with respect to 𝐹 if

assigning 𝐶 to false

then unit propagating on 𝐹 until saturation

leads to contradiction

If so, 𝐹 clearly implies 𝐶 , and this condition is easy to verify efficiently

Fact

Backtrack clauses from DPLL solver generate a RUP proof

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 12 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 13 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)
Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 13 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0 Decision

Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 13 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0 Decision

Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 13 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 13 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 13 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 13 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 13 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 13 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 13 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 13 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 13 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

decision
level 1

decision
level 2

decision
level 3

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 13 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Conflict Analysis
Time to analyse this conflict and learn from it!

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last decision

But want to learn from conflict and cut away as much of search
space as possible

Case analysis over 𝑧 for last two clauses:

𝑥 ∨ 𝑦 ∨ 𝑧 wants 𝑧 = 1
𝑦 ∨ 𝑧 wants 𝑧 = 0
Resolve clauses by merging them & removing 𝑧 — must
satisfy 𝑥 ∨ 𝑦

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjump

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 14 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Conflict Analysis
Time to analyse this conflict and learn from it!

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last decision

But want to learn from conflict and cut away as much of search
space as possible

Case analysis over 𝑧 for last two clauses:

𝑥 ∨ 𝑦 ∨ 𝑧 wants 𝑧 = 1
𝑦 ∨ 𝑧 wants 𝑧 = 0
Resolve clauses by merging them & removing 𝑧 — must
satisfy 𝑥 ∨ 𝑦

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjump

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 14 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Conflict Analysis
Time to analyse this conflict and learn from it!

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last decision

But want to learn from conflict and cut away as much of search
space as possible

Case analysis over 𝑧 for last two clauses:

𝑥 ∨ 𝑦 ∨ 𝑧 wants 𝑧 = 1
𝑦 ∨ 𝑧 wants 𝑧 = 0
Resolve clauses by merging them & removing 𝑧 — must
satisfy 𝑥 ∨ 𝑦

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjump

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 14 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Conflict Analysis
Time to analyse this conflict and learn from it!

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

Could backtrack by erasing conflict level & flipping last decision

But want to learn from conflict and cut away as much of search
space as possible

Case analysis over 𝑧 for last two clauses:

𝑥 ∨ 𝑦 ∨ 𝑧 wants 𝑧 = 1
𝑦 ∨ 𝑧 wants 𝑧 = 0
Resolve clauses by merging them & removing 𝑧 — must
satisfy 𝑥 ∨ 𝑦

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjump

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 14 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Conflict Analysis
Time to analyse this conflict and learn from it!

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

Could backtrack by erasing conflict level & flipping last decision

But want to learn from conflict and cut away as much of search
space as possible

Case analysis over 𝑧 for last two clauses:

𝑥 ∨ 𝑦 ∨ 𝑧 wants 𝑧 = 1
𝑦 ∨ 𝑧 wants 𝑧 = 0
Resolve clauses by merging them & removing 𝑧 — must
satisfy 𝑥 ∨ 𝑦

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjump

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 14 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 15 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 15 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 15 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 15 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 15 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 15 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 15 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 15 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 15 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 15 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

𝑢

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 15 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

𝑢

𝑥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 15 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

𝑢

𝑥

⊥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 15 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

CDCL Reasoning and the Resolution Proof System

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥

𝐶 ∨ 𝐷

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 16 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

CDCL Reasoning and the Resolution Proof System

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥

𝐶 ∨ 𝐷

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 16 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

CDCL Reasoning and the Resolution Proof System

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥

𝐶 ∨ 𝐷

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 16 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

CDCL Reasoning and the Resolution Proof System

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥

𝐶 ∨ 𝐷

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 16 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

Resolution Proofs from CDCL Executions

Obtain resolution proof. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 17 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

Resolution Proofs from CDCL Executions

Obtain resolution proof from our example CDCL execution. . .

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

𝑢

𝑥

⊥

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 17 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

Resolution Proofs from CDCL Executions

Obtain resolution proof from our example CDCL execution by stringing together conflict analyses:

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 17 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

Resolution Proofs from CDCL Executions

Obtain resolution proof from our example CDCL execution by stringing together conflict analyses:

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 17 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 18 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥
Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 18 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥
Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 18 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥
Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 18 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥
Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 18 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥
Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 18 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥
Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 18 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥
Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 18 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥
Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 18 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥
Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 18 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥
Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 18 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

More Ingredients in Proof Logging for SAT

Fact

RUP proofs can be viewed as shorthand for resolution proofs

See [BN21] for more on this and connections to SAT solving

But RUP and resolution are not enough for preprocessing, inprocessing, and some other kinds of
reasoning

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 19 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

Extension Variables, Part 1

Suppose we want a variable 𝑎 encoding

𝑎 ⇔ (𝑥 ∧ 𝑦)

Extended resolution [Tse68]

Resolution rule plus extension rule introducing clauses

𝑎 ∨ 𝑥 ∨ 𝑦 𝑎 ∨ 𝑥 𝑎 ∨ 𝑦

for fresh variable 𝑎 (this is fine since 𝑎 doesn’t appear anywhere previously)

Fact

Extended resolution (RUP + definition of new variables) is essentially equivalent to the DRAT proof
logging system most commonly used for SAT solving

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 20 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof System for SAT Proof Logging

Extension Variables, Part 1

Suppose we want a variable 𝑎 encoding

𝑎 ⇔ (𝑥 ∧ 𝑦)

Extended resolution [Tse68]

Resolution rule plus extension rule introducing clauses

𝑎 ∨ 𝑥 ∨ 𝑦 𝑎 ∨ 𝑥 𝑎 ∨ 𝑦

for fresh variable 𝑎 (this is fine since 𝑎 doesn’t appear anywhere previously)

Fact

Extended resolution (RUP + definition of new variables) is essentially equivalent to the DRAT proof
logging system most commonly used for SAT solving

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 20 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Why Aren’t We Done?

Practical limitations of current SAT proof logging technology:

Difficulties dealing with stronger reasoning efficiently (even for SAT solving)

Clausal proofs can’t easily reflect what algorithms for other problems do

Surprising claim: a slight change to 0-1 integer linear inequalities does the job!
Enables proof logging for advanced SAT techniques so far beyond reach for efficient DRAT
proof logging:

Cardinality reasoning
Gaussian elimination
Symmetry breaking

Supports use of SAT solvers for optimisation problems (MaxSAT)

Can justify graph reasoning without knowing what a graph is

Can justify constraint programming inference without knowing what an integer variable is

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 21 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Why Aren’t We Done?

Practical limitations of current SAT proof logging technology:

Difficulties dealing with stronger reasoning efficiently (even for SAT solving)

Clausal proofs can’t easily reflect what algorithms for other problems do

Surprising claim: a slight change to 0-1 integer linear inequalities does the job!
Enables proof logging for advanced SAT techniques so far beyond reach for efficient DRAT
proof logging:

Cardinality reasoning
Gaussian elimination
Symmetry breaking

Supports use of SAT solvers for optimisation problems (MaxSAT)

Can justify graph reasoning without knowing what a graph is

Can justify constraint programming inference without knowing what an integer variable is

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 21 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Pseudo-Boolean Constraints

0–1 integer linear inequalities or (linear) pseudo-Boolean constraints:∑︁
𝑖

𝑎𝑖ℓ𝑖 ≥ 𝐴

𝑎𝑖 , 𝐴 ∈ Z

literals ℓ𝑖 : 𝑥𝑖 or 𝑥𝑖 (where 𝑥𝑖 + 𝑥𝑖 = 1)

Sometimes convenient to use normalized form [Bar95] with all 𝑎𝑖 , 𝐴 positive
(without loss of generality)

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 22 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Pseudo-Boolean Constraints

0–1 integer linear inequalities or (linear) pseudo-Boolean constraints:∑︁
𝑖

𝑎𝑖ℓ𝑖 ≥ 𝐴

𝑎𝑖 , 𝐴 ∈ Z

literals ℓ𝑖 : 𝑥𝑖 or 𝑥𝑖 (where 𝑥𝑖 + 𝑥𝑖 = 1)

Sometimes convenient to use normalized form [Bar95] with all 𝑎𝑖 , 𝐴 positive
(without loss of generality)

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 22 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Some Types of Pseudo-Boolean Constraints

1 Clauses
𝑥1 ∨ 𝑥2 ∨ 𝑥3 ⇔ 𝑥1 + 𝑥2 + 𝑥3 ≥ 1

2 Cardinality constraints
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≥ 2

3 General pseudo-Boolean constraints

𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 23 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Input/model axioms From the input

Literal axioms ℓ𝑖 ≥ 0

Addition
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴
∑

𝑖 𝑏𝑖ℓ𝑖 ≥ 𝐵∑
𝑖 (𝑎𝑖 + 𝑏𝑖)ℓ𝑖 ≥ 𝐴 + 𝐵

Multiplication for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖 𝑐𝑎𝑖ℓ𝑖 ≥ 𝑐𝐴

Division for any 𝑐 ∈ N+

(assumes normalized form)

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑

𝑖

⌈
𝑎𝑖
𝑐

⌉
ℓ𝑖 ≥

⌈
𝐴
𝑐

⌉

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 24 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Input/model axioms From the input

Literal axioms ℓ𝑖 ≥ 0

Addition
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴
∑

𝑖 𝑏𝑖ℓ𝑖 ≥ 𝐵∑
𝑖 (𝑎𝑖 + 𝑏𝑖)ℓ𝑖 ≥ 𝐴 + 𝐵

Multiplication for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖 𝑐𝑎𝑖ℓ𝑖 ≥ 𝑐𝐴

Division for any 𝑐 ∈ N+

(assumes normalized form)

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑

𝑖

⌈
𝑎𝑖
𝑐

⌉
ℓ𝑖 ≥

⌈
𝐴
𝑐

⌉

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 24 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Input/model axioms From the input

Literal axioms ℓ𝑖 ≥ 0

Addition
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴
∑

𝑖 𝑏𝑖ℓ𝑖 ≥ 𝐵∑
𝑖 (𝑎𝑖 + 𝑏𝑖)ℓ𝑖 ≥ 𝐴 + 𝐵

Multiplication for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖 𝑐𝑎𝑖ℓ𝑖 ≥ 𝑐𝐴

Division for any 𝑐 ∈ N+

(assumes normalized form)

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑

𝑖

⌈
𝑎𝑖
𝑐

⌉
ℓ𝑖 ≥

⌈
𝐴
𝑐

⌉

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 24 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Input/model axioms From the input

Literal axioms ℓ𝑖 ≥ 0

Addition
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴
∑

𝑖 𝑏𝑖ℓ𝑖 ≥ 𝐵∑
𝑖 (𝑎𝑖 + 𝑏𝑖)ℓ𝑖 ≥ 𝐴 + 𝐵

Multiplication for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖 𝑐𝑎𝑖ℓ𝑖 ≥ 𝑐𝐴

Division for any 𝑐 ∈ N+

(assumes normalized form)

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑

𝑖

⌈
𝑎𝑖
𝑐

⌉
ℓ𝑖 ≥

⌈
𝐴
𝑐

⌉

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 24 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Input/model axioms From the input

Literal axioms ℓ𝑖 ≥ 0

Addition
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴
∑

𝑖 𝑏𝑖ℓ𝑖 ≥ 𝐵∑
𝑖 (𝑎𝑖 + 𝑏𝑖)ℓ𝑖 ≥ 𝐴 + 𝐵

Multiplication for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖 𝑐𝑎𝑖ℓ𝑖 ≥ 𝑐𝐴

Division for any 𝑐 ∈ N+

(assumes normalized form)

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑

𝑖

⌈
𝑎𝑖
𝑐

⌉
ℓ𝑖 ≥

⌈
𝐴
𝑐

⌉
Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 24 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 25 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 25 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 25 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 25 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 25 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Multiply by 2
2𝑧 ≥ 0

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 25 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Multiply by 2
2𝑧 ≥ 0

Add
3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 + 2𝑧 ≥ 9

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 25 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Multiply by 2
2𝑧 ≥ 0

Add
3𝑤 + 6𝑥 + 6𝑦 + 2 ≥ 9

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 25 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Multiply by 2
2𝑧 ≥ 0

Add
3𝑤 + 6𝑥 + 6𝑦 ≥ 7

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 25 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Multiply by 2
2𝑧 ≥ 0

Add
3𝑤 + 6𝑥 + 6𝑦 ≥ 7

Divide by 3
𝑤 + 2𝑥 + 2𝑦 ≥ 2 13

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 25 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Multiply by 2
2𝑧 ≥ 0

Add
3𝑤 + 6𝑥 + 6𝑦 ≥ 7

Divide by 3
𝑤 + 2𝑥 + 2𝑦 ≥ 3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 25 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Multiply by 2
2𝑧 ≥ 0

Add
3𝑤 + 6𝑥 + 6𝑦 ≥ 7

Divide by 3
𝑤 + 2𝑥 + 2𝑦 ≥ 3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 25 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Multiply by 2
2𝑧 ≥ 0

Add
3𝑤 + 6𝑥 + 6𝑦 ≥ 7

Divide by 3
𝑤 + 2𝑥 + 2𝑦 ≥ 3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 25 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Proof Logging for SAT Solving

Resolution and Cutting Planes

To simulate resolution step such as

𝑦 ∨ 𝑧 𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

we can perform the cutting planes steps

𝑦 + 𝑧 ≥ 1 𝑥 + 𝑦 + 𝑧 ≥ 1
Add

𝑥 + 2𝑦 ≥ 1
Divide by 2

𝑥 + 𝑦 ≥ 1

Given that the premises are clauses 7 and 5 in our example CNF formula, using references

Constraint 7 � 𝑦 + 𝑧 ≥ 1
Constraint 5 � 𝑥 + 𝑦 + 𝑧 ≥ 1

we can write this in the proof log as

pol 7 5 + 2 d

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 26 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Proof Logging for SAT Solving

Resolution and Cutting Planes

To simulate resolution step such as

𝑦 ∨ 𝑧 𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

we can perform the cutting planes steps

𝑦 + 𝑧 ≥ 1 𝑥 + 𝑦 + 𝑧 ≥ 1
Add

𝑥 + 2𝑦 ≥ 1
Divide by 2

𝑥 + 𝑦 ≥ 1

Given that the premises are clauses 7 and 5 in our example CNF formula, using references

Constraint 7 � 𝑦 + 𝑧 ≥ 1
Constraint 5 � 𝑥 + 𝑦 + 𝑧 ≥ 1

we can write this in the proof log as

pol 7 5 + 2 d

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 26 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Proof Logging for SAT Solving

Pseudo-Boolean Proof Logging for Example CDCL Conflict Analyses

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟)2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧
(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

pol 7 5 + 2 d 4 + 2 d ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
pol 8 6 + 2 d ⇝ Constraint 11 � 𝑥 ≥ 1

pol 9 1 + 2 d 10 + 2 d 11 + 2 d ⇝ Constraint 12 � 0 ≥ 1 E

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 27 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Proof Logging for SAT Solving

Pseudo-Boolean Proof Logging for Example CDCL Conflict Analyses

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟)2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧
(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

pol 7 5 + 2 d 4 + 2 d ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
pol 8 6 + 2 d ⇝ Constraint 11 � 𝑥 ≥ 1

pol 9 1 + 2 d 10 + 2 d 11 + 2 d ⇝ Constraint 12 � 0 ≥ 1 E

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 27 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Proof Logging for SAT Solving

Pseudo-Boolean Proof Logging for Example CDCL Conflict Analyses

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟)2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧
(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

pol 7 5 + 2 d 4 + 2 d ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
pol 8 6 + 2 d ⇝ Constraint 11 � 𝑥 ≥ 1

pol 9 1 + 2 d 10 + 2 d 11 + 2 d ⇝ Constraint 12 � 0 ≥ 1 E

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 27 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Proof Logging for SAT Solving

Pseudo-Boolean Proof Logging for Example CDCL Conflict Analyses

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟)2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧
(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

pol 7 5 + 2 d 4 + 2 d ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
pol 8 6 + 2 d ⇝ Constraint 11 � 𝑥 ≥ 1

pol 9 1 + 2 d 10 + 2 d 11 + 2 d ⇝ Constraint 12 � 0 ≥ 1 E

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 27 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Proof Logging for SAT Solving

Pseudo-Boolean Proof Logging for Example CDCL Conflict Analyses

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟)2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧
(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

pol 7 5 + 2 d 4 + 2 d ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
pol 8 6 + 2 d ⇝ Constraint 11 � 𝑥 ≥ 1

pol 9 1 + 2 d 10 + 2 d 11 + 2 d ⇝ Constraint 12 � 0 ≥ 1 E
Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 27 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Proof Logging for SAT Solving

RUP Revisited

Can define (reverse) unit propagation in a pseudo-Boolean setting

Constraint 𝐶 propagates variable 𝑥 if setting 𝑥 to “wrong value” would make 𝐶 unsatisfiable

E.g., if 𝑥5 is false,
𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

would propagate 𝑥4 (since other coefficients do not add up to 7)

Risk for confusion:
Constraint programming people might call this (reverse) integer bounds consistency

Does the same thing if we’re working with clauses
More interesting for general pseudo-Boolean constraints

SAT people beware: constraints can propagate multiple times and multiple variables

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 28 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Proof Logging for SAT Solving

RUP Revisited

Can define (reverse) unit propagation in a pseudo-Boolean setting

Constraint 𝐶 propagates variable 𝑥 if setting 𝑥 to “wrong value” would make 𝐶 unsatisfiable

E.g., if 𝑥5 is false,
𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

would propagate 𝑥4 (since other coefficients do not add up to 7)

Risk for confusion:
Constraint programming people might call this (reverse) integer bounds consistency

Does the same thing if we’re working with clauses
More interesting for general pseudo-Boolean constraints

SAT people beware: constraints can propagate multiple times and multiple variables

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 28 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Proof Logging for SAT Solving

Pseudo-Boolean Proof Logging for Example CDCL Execution with RUP

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟)2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧
(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

rup 1 u 1 x >= 1 ; ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
rup 1 ∼x >= 1 ; ⇝ Constraint 11 � 𝑥 ≥ 1

rup >= 1 ; ⇝ Constraint 12 � 0 ≥ 1 E

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 29 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Pseudo-Boolean Proof Logging for SAT Solving

Pseudo-Boolean Proof Logging for Example CDCL Execution with RUP

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟)2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧
(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

rup 1 u 1 x >= 1 ; ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
rup 1 ∼x >= 1 ; ⇝ Constraint 11 � 𝑥 ≥ 1

rup >= 1 ; ⇝ Constraint 12 � 0 ≥ 1 E
Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 29 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

More Pseudo-Boolean Proof Logging Rules

Extension Variables, Part 2

Suppose we want new, fresh variable 𝑎 encoding

𝑎 ⇔ (3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3)

This time, introduce constraints

3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5

Again, needs support from the proof system

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 30 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

More Pseudo-Boolean Proof Logging Rules

Proof Logs for “Extended Cutting Planes”

For satisfiable instances: just specify a satisfying assignment.

For unsatisfiability: a sequence of pseudo-Boolean constraints in (slight extension of) OPB
format [RM16]

Each constraint follows “obviously” from what is known so far

Either implicitly, by RUP. . .

Or by an explicit cutting planes derivation. . .

Or as an extension variable reifying a new constraint∗

Final constraint is 0 ≥ 1

(*) Not actually implemented this way — details in extended version of this tutorial

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 31 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

More Pseudo-Boolean Proof Logging Rules

Proof Logs for “Extended Cutting Planes”

For satisfiable instances: just specify a satisfying assignment.

For unsatisfiability: a sequence of pseudo-Boolean constraints in (slight extension of) OPB
format [RM16]

Each constraint follows “obviously” from what is known so far

Either implicitly, by RUP. . .

Or by an explicit cutting planes derivation. . .

Or as an extension variable reifying a new constraint∗

Final constraint is 0 ≥ 1

(*) Not actually implemented this way — details in extended version of this tutorial

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 31 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

More Pseudo-Boolean Proof Logging Rules

Deleting Constraints

In practice, important to erase constraints to save memory and time during verification

Fairly straightforward to deal with from the point of view of proof logging

So ignored in this tutorial for simplicity and clarity

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 32 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

More Pseudo-Boolean Proof Logging Rules

Enumeration and Optimisation Problems

Enumeration:

When a solution is found, can log it

Introduces a new constraint saying “not this solution”

So the proof semantics is “infeasible, except for all the solutions I told you about”

For optimisation:

Define an objective 𝑓 =
∑

𝑖 𝑤𝑖ℓ𝑖 ,𝑤𝑖 ∈ Z, to minimise subject to the contraints in the formula

To maximise, negate objective

Log a solution 𝛼 ; get an objective-improving constraint
∑

𝑖 𝑤𝑖ℓ𝑖 ≤ −1 +∑
𝑖 𝑤𝑖𝛼 (ℓ𝑖)

Semantics for proof of optimality: “infeasible to find better solution than best so far”

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 33 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

More Pseudo-Boolean Proof Logging Rules

Enumeration and Optimisation Problems

Enumeration:

When a solution is found, can log it

Introduces a new constraint saying “not this solution”

So the proof semantics is “infeasible, except for all the solutions I told you about”

For optimisation:

Define an objective 𝑓 =
∑

𝑖 𝑤𝑖ℓ𝑖 ,𝑤𝑖 ∈ Z, to minimise subject to the contraints in the formula

To maximise, negate objective

Log a solution 𝛼 ; get an objective-improving constraint
∑

𝑖 𝑤𝑖ℓ𝑖 ≤ −1 +∑
𝑖 𝑤𝑖𝛼 (ℓ𝑖)

Semantics for proof of optimality: “infeasible to find better solution than best so far”

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 33 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

More Pseudo-Boolean Proof Logging Rules

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0–1 integer linear program (ILP)

just do proof logging

Otherwise

do trusted or verified translation to 0–1 ILP
provide proof logging for 0–1 ILP formulation

Proof logging philosophy:
do not change input for solver

do not change reasoning in
solver

only add print statements (in
PB format) here and there

Goldilocks compromise between expressivity and simplicity:

1 0–1 ILP expressive formalism for combinatorial problems (including objective)

2 Powerful reasoning capturing many combinatorial arguments (even for SAT)

3 Efficient reification of constraints — example:

𝑟 ⇒ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
𝑟 ⇐ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

7𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
9𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 9

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 34 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

More Pseudo-Boolean Proof Logging Rules

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0–1 integer linear program (ILP)

just do proof logging

Otherwise

do trusted or verified translation to 0–1 ILP
provide proof logging for 0–1 ILP formulation

Proof logging philosophy:
do not change input for solver

do not change reasoning in
solver

only add print statements (in
PB format) here and there

Goldilocks compromise between expressivity and simplicity:

1 0–1 ILP expressive formalism for combinatorial problems (including objective)

2 Powerful reasoning capturing many combinatorial arguments (even for SAT)

3 Efficient reification of constraints — example:

𝑟 ⇒ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
𝑟 ⇐ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

7𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
9𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 9

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 34 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

More Pseudo-Boolean Proof Logging Rules

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0–1 integer linear program (ILP)

just do proof logging

Otherwise

do trusted or verified translation to 0–1 ILP
provide proof logging for 0–1 ILP formulation

Proof logging philosophy:
do not change input for solver

do not change reasoning in
solver

only add print statements (in
PB format) here and there

Goldilocks compromise between expressivity and simplicity:

1 0–1 ILP expressive formalism for combinatorial problems (including objective)

2 Powerful reasoning capturing many combinatorial arguments (even for SAT)

3 Efficient reification of constraints — example:

𝑟 ⇒ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
𝑟 ⇐ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

7𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
9𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 9

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 34 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

More Pseudo-Boolean Proof Logging Rules

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0–1 integer linear program (ILP)

just do proof logging

Otherwise

do trusted or verified translation to 0–1 ILP
provide proof logging for 0–1 ILP formulation

Proof logging philosophy:
do not change input for solver

do not change reasoning in
solver

only add print statements (in
PB format) here and there

Goldilocks compromise between expressivity and simplicity:

1 0–1 ILP expressive formalism for combinatorial problems (including objective)

2 Powerful reasoning capturing many combinatorial arguments (even for SAT)

3 Efficient reification of constraints

— example:

𝑟 ⇒ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
𝑟 ⇐ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

7𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
9𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 9

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 34 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

More Pseudo-Boolean Proof Logging Rules

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0–1 integer linear program (ILP)

just do proof logging

Otherwise

do trusted or verified translation to 0–1 ILP
provide proof logging for 0–1 ILP formulation

Proof logging philosophy:
do not change input for solver

do not change reasoning in
solver

only add print statements (in
PB format) here and there

Goldilocks compromise between expressivity and simplicity:

1 0–1 ILP expressive formalism for combinatorial problems (including objective)

2 Powerful reasoning capturing many combinatorial arguments (even for SAT)

3 Efficient reification of constraints — example:

𝑟 ⇒ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
𝑟 ⇐ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

7𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
9𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 9

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 34 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

More Pseudo-Boolean Proof Logging Rules

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0–1 integer linear program (ILP)

just do proof logging

Otherwise

do trusted or verified translation to 0–1 ILP
provide proof logging for 0–1 ILP formulation

Proof logging philosophy:
do not change input for solver

do not change reasoning in
solver

only add print statements (in
PB format) here and there

Goldilocks compromise between expressivity and simplicity:

1 0–1 ILP expressive formalism for combinatorial problems (including objective)

2 Powerful reasoning capturing many combinatorial arguments (even for SAT)

3 Efficient reification of constraints — example:

𝑟 ⇒ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
𝑟 ⇐ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

7𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
9𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 9

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 34 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

More Pseudo-Boolean Proof Logging Rules

The VeriPB Format and Tool

https://gitlab.com/MIAOresearch/software/VeriPB

Released under MIT Licence

Various features to help development:
Extended variable name syntax allowing human-readable names
Proof tracing
“Trust me” assertions for incremental proof logging

Documentation:
Description of VeriPB checker [BMM+23] used in SAT 2023 competition
(https://satcompetition.github.io/2023/checkers.html)
Specific details on different proof logging techniques covered in research papers
[EGMN20, GMN20, GMM+20, GN21, GMN22, GMNO22, VDB22, BBN+23, BGMN23, MM23]
Lots of concrete example files at https://gitlab.com/MIAOresearch/software/VeriPB

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 35 / 95

https://gitlab.com/MIAOresearch/software/VeriPB
https://satcompetition.github.io/2023/checkers.html
https://gitlab.com/MIAOresearch/software/VeriPB

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for Parity Reasoning

Parity (XOR) Reasoning

Given clauses
𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

and
𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

want to derive
𝑥 ∨𝑤

𝑥 ∨𝑤

This is just parity reasoning:

𝑥 + 𝑦 + 𝑧 = 1 (mod 2)
𝑦 + 𝑧 +𝑤 = 1 (mod 2)

imply
𝑥 +𝑤 = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too inefficient in practice!

Could add XORs to language, but prefer to keep things
super-simple

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 36 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for Parity Reasoning

Parity (XOR) Reasoning

Given clauses
𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

and
𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

want to derive
𝑥 ∨𝑤

𝑥 ∨𝑤

This is just parity reasoning:

𝑥 + 𝑦 + 𝑧 = 1 (mod 2)
𝑦 + 𝑧 +𝑤 = 1 (mod 2)

imply
𝑥 +𝑤 = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too inefficient in practice!

Could add XORs to language, but prefer to keep things
super-simple

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 36 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for Parity Reasoning

Parity (XOR) Reasoning

Given clauses
𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

and
𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

want to derive
𝑥 ∨𝑤

𝑥 ∨𝑤

This is just parity reasoning:

𝑥 + 𝑦 + 𝑧 = 1 (mod 2)
𝑦 + 𝑧 +𝑤 = 1 (mod 2)

imply
𝑥 +𝑤 = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too inefficient in practice!

Could add XORs to language, but prefer to keep things
super-simple

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 36 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for Parity Reasoning

Parity (XOR) Reasoning

Given clauses
𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

and
𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

want to derive
𝑥 ∨𝑤

𝑥 ∨𝑤

This is just parity reasoning:

𝑥 + 𝑦 + 𝑧 = 1 (mod 2)
𝑦 + 𝑧 +𝑤 = 1 (mod 2)

imply
𝑥 +𝑤 = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too inefficient in practice!

Could add XORs to language, but prefer to keep things
super-simple

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 36 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for Parity Reasoning

Parity (XOR) Reasoning

Given clauses
𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

and
𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

want to derive
𝑥 ∨𝑤

𝑥 ∨𝑤

This is just parity reasoning:

𝑥 + 𝑦 + 𝑧 = 1 (mod 2)
𝑦 + 𝑧 +𝑤 = 1 (mod 2)

imply
𝑥 +𝑤 = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too inefficient in practice!

Could add XORs to language, but prefer to keep things
super-simple

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 36 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for Parity Reasoning

Parity (XOR) Reasoning

Given clauses
𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

and
𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

want to derive
𝑥 ∨𝑤

𝑥 ∨𝑤

This is just parity reasoning:

𝑥 + 𝑦 + 𝑧 = 1 (mod 2)
𝑦 + 𝑧 +𝑤 = 1 (mod 2)

imply
𝑥 +𝑤 = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too inefficient in practice!

Could add XORs to language, but prefer to keep things
super-simple

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 36 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for Parity Reasoning

Pseudo-Boolean Proof Logging for XOR Reasoning

Given clauses
𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

and
𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

want to derive
𝑥 ∨𝑤

𝑥 ∨𝑤

Introduce extension variables 𝑎, 𝑏 and derive

𝑥 + 𝑦 + 𝑧 + 2𝑎 = 3
𝑦 + 𝑧 +𝑤 + 2𝑏 = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

𝑥 +𝑤 + 2𝑦 + 2𝑧 + 2𝑎 + 2𝑏 = 6

From this can extract

𝑥 +𝑤 ≥ 1
𝑥 +𝑤 ≥ 1

VeriPB can certify XOR reasoning [GN21]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 37 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for Parity Reasoning

Pseudo-Boolean Proof Logging for XOR Reasoning

Given clauses
𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

and
𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

want to derive
𝑥 ∨𝑤

𝑥 ∨𝑤

Introduce extension variables 𝑎, 𝑏 and derive

𝑥 + 𝑦 + 𝑧 + 2𝑎 = 3
𝑦 + 𝑧 +𝑤 + 2𝑏 = 3

(“=” syntactic sugar for “≥” plus “≤”)

Add to get
𝑥 +𝑤 + 2𝑦 + 2𝑧 + 2𝑎 + 2𝑏 = 6

From this can extract

𝑥 +𝑤 ≥ 1
𝑥 +𝑤 ≥ 1

VeriPB can certify XOR reasoning [GN21]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 37 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for Parity Reasoning

Pseudo-Boolean Proof Logging for XOR Reasoning

Given clauses
𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

and
𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

want to derive
𝑥 ∨𝑤

𝑥 ∨𝑤

Introduce extension variables 𝑎, 𝑏 and derive

𝑥 + 𝑦 + 𝑧 + 2𝑎 = 3
𝑦 + 𝑧 +𝑤 + 2𝑏 = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

𝑥 +𝑤 + 2𝑦 + 2𝑧 + 2𝑎 + 2𝑏 = 6

From this can extract

𝑥 +𝑤 ≥ 1
𝑥 +𝑤 ≥ 1

VeriPB can certify XOR reasoning [GN21]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 37 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for Parity Reasoning

Pseudo-Boolean Proof Logging for XOR Reasoning

Given clauses
𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

and
𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

want to derive
𝑥 ∨𝑤

𝑥 ∨𝑤

Introduce extension variables 𝑎, 𝑏 and derive

𝑥 + 𝑦 + 𝑧 + 2𝑎 = 3
𝑦 + 𝑧 +𝑤 + 2𝑏 = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

𝑥 +𝑤 + 2𝑦 + 2𝑧 + 2𝑎 + 2𝑏 = 6

From this can extract

𝑥 +𝑤 ≥ 1
𝑥 +𝑤 ≥ 1

VeriPB can certify XOR reasoning [GN21]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 37 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for Parity Reasoning

Pseudo-Boolean Proof Logging for XOR Reasoning

Given clauses
𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦 ∨ 𝑧

and
𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

𝑦 ∨ 𝑧 ∨𝑤

want to derive
𝑥 ∨𝑤

𝑥 ∨𝑤

Introduce extension variables 𝑎, 𝑏 and derive

𝑥 + 𝑦 + 𝑧 + 2𝑎 = 3
𝑦 + 𝑧 +𝑤 + 2𝑏 = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

𝑥 +𝑤 + 2𝑦 + 2𝑧 + 2𝑎 + 2𝑏 = 6

From this can extract

𝑥 +𝑤 ≥ 1
𝑥 +𝑤 ≥ 1

VeriPB can certify XOR reasoning [GN21]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 37 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for Translations of Pseudo-Boolean Constraints to CNF

CDCL Solvers on Pseudo-Boolean Inputs
Can re-encode to CNF and run CDCL:

MiniSat+ [ES06]

Open-WBO [MML14]

NaPS [SN15]

E.g., encode pseudo-Boolean constraint

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≥ 2

to clauses with extension variables

𝑠𝑖,𝑘 ⇔ ∑𝑖
𝑗=1 𝑥 𝑗 ≥ 𝑘

𝑘 · 𝑠𝑖,𝑘 +
∑𝑖

𝑗=1 𝑥 𝑗 ≥ 𝑘

(𝑖 − 𝑘 + 1) · 𝑠𝑖,𝑘 +
∑𝑖

𝑗=1 𝑥 𝑗 ≥ 𝑖 − 𝑘 + 1

𝑠1,1 ∨ 𝑥1

𝑠2,1 ∨ 𝑠1,1 ∨ 𝑥2

𝑠2,2 ∨ 𝑠1,1

𝑠2,2 ∨ 𝑥2

𝑠3,1 ∨ 𝑠2,1 ∨ 𝑥3

𝑠3,2 ∨ 𝑠2,1

𝑠3,2 ∨ 𝑠2,2 ∨ 𝑥3

𝑠4,1 ∨ 𝑠3,1 ∨ 𝑥4

𝑠4,2 ∨ 𝑠3,1

𝑠4,2 ∨ 𝑠3,2 ∨ 𝑥4

𝑠4,2

How to know translation is correct?

VeriPB can certify pseudo-Boolean-to-CNF rewriting [GMNO22, VDB22]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 38 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for Translations of Pseudo-Boolean Constraints to CNF

CDCL Solvers on Pseudo-Boolean Inputs
Can re-encode to CNF and run CDCL:

MiniSat+ [ES06]

Open-WBO [MML14]

NaPS [SN15]

E.g., encode pseudo-Boolean constraint

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≥ 2

to clauses with extension variables

𝑠𝑖,𝑘 ⇔ ∑𝑖
𝑗=1 𝑥 𝑗 ≥ 𝑘

𝑘 · 𝑠𝑖,𝑘 +
∑𝑖

𝑗=1 𝑥 𝑗 ≥ 𝑘

(𝑖 − 𝑘 + 1) · 𝑠𝑖,𝑘 +
∑𝑖

𝑗=1 𝑥 𝑗 ≥ 𝑖 − 𝑘 + 1

𝑠1,1 ∨ 𝑥1

𝑠2,1 ∨ 𝑠1,1 ∨ 𝑥2

𝑠2,2 ∨ 𝑠1,1

𝑠2,2 ∨ 𝑥2

𝑠3,1 ∨ 𝑠2,1 ∨ 𝑥3

𝑠3,2 ∨ 𝑠2,1

𝑠3,2 ∨ 𝑠2,2 ∨ 𝑥3

𝑠4,1 ∨ 𝑠3,1 ∨ 𝑥4

𝑠4,2 ∨ 𝑠3,1

𝑠4,2 ∨ 𝑠3,2 ∨ 𝑥4

𝑠4,2

How to know translation is correct?

VeriPB can certify pseudo-Boolean-to-CNF rewriting [GMNO22, VDB22]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 38 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for Translations of Pseudo-Boolean Constraints to CNF

CDCL Solvers on Pseudo-Boolean Inputs
Can re-encode to CNF and run CDCL:

MiniSat+ [ES06]

Open-WBO [MML14]

NaPS [SN15]

E.g., encode pseudo-Boolean constraint

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≥ 2

to clauses with extension variables

𝑠𝑖,𝑘 ⇔ ∑𝑖
𝑗=1 𝑥 𝑗 ≥ 𝑘

𝑘 · 𝑠𝑖,𝑘 +
∑𝑖

𝑗=1 𝑥 𝑗 ≥ 𝑘

(𝑖 − 𝑘 + 1) · 𝑠𝑖,𝑘 +
∑𝑖

𝑗=1 𝑥 𝑗 ≥ 𝑖 − 𝑘 + 1

𝑠1,1 ∨ 𝑥1

𝑠2,1 ∨ 𝑠1,1 ∨ 𝑥2

𝑠2,2 ∨ 𝑠1,1

𝑠2,2 ∨ 𝑥2

𝑠3,1 ∨ 𝑠2,1 ∨ 𝑥3

𝑠3,2 ∨ 𝑠2,1

𝑠3,2 ∨ 𝑠2,2 ∨ 𝑥3

𝑠4,1 ∨ 𝑠3,1 ∨ 𝑥4

𝑠4,2 ∨ 𝑠3,1

𝑠4,2 ∨ 𝑠3,2 ∨ 𝑥4

𝑠4,2

How to know translation is correct?

VeriPB can certify pseudo-Boolean-to-CNF rewriting [GMNO22, VDB22]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 38 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for Translations of Pseudo-Boolean Constraints to CNF

CDCL Solvers on Pseudo-Boolean Inputs
Can re-encode to CNF and run CDCL:

MiniSat+ [ES06]

Open-WBO [MML14]

NaPS [SN15]

E.g., encode pseudo-Boolean constraint

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≥ 2

to clauses with extension variables

𝑠𝑖,𝑘 ⇔ ∑𝑖
𝑗=1 𝑥 𝑗 ≥ 𝑘

𝑘 · 𝑠𝑖,𝑘 +
∑𝑖

𝑗=1 𝑥 𝑗 ≥ 𝑘

(𝑖 − 𝑘 + 1) · 𝑠𝑖,𝑘 +
∑𝑖

𝑗=1 𝑥 𝑗 ≥ 𝑖 − 𝑘 + 1

𝑠1,1 ∨ 𝑥1

𝑠2,1 ∨ 𝑠1,1 ∨ 𝑥2

𝑠2,2 ∨ 𝑠1,1

𝑠2,2 ∨ 𝑥2

𝑠3,1 ∨ 𝑠2,1 ∨ 𝑥3

𝑠3,2 ∨ 𝑠2,1

𝑠3,2 ∨ 𝑠2,2 ∨ 𝑥3

𝑠4,1 ∨ 𝑠3,1 ∨ 𝑥4

𝑠4,2 ∨ 𝑠3,1

𝑠4,2 ∨ 𝑠3,2 ∨ 𝑥4

𝑠4,2

How to know translation is correct?

VeriPB can certify pseudo-Boolean-to-CNF rewriting [GMNO22, VDB22]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 38 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for Translations of Pseudo-Boolean Constraints to CNF

CDCL Solvers on Pseudo-Boolean Inputs
Can re-encode to CNF and run CDCL:

MiniSat+ [ES06]

Open-WBO [MML14]

NaPS [SN15]

E.g., encode pseudo-Boolean constraint

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≥ 2

to clauses with extension variables

𝑠𝑖,𝑘 ⇔ ∑𝑖
𝑗=1 𝑥 𝑗 ≥ 𝑘

𝑘 · 𝑠𝑖,𝑘 +
∑𝑖

𝑗=1 𝑥 𝑗 ≥ 𝑘

(𝑖 − 𝑘 + 1) · 𝑠𝑖,𝑘 +
∑𝑖

𝑗=1 𝑥 𝑗 ≥ 𝑖 − 𝑘 + 1

𝑠1,1 ∨ 𝑥1

𝑠2,1 ∨ 𝑠1,1 ∨ 𝑥2

𝑠2,2 ∨ 𝑠1,1

𝑠2,2 ∨ 𝑥2

𝑠3,1 ∨ 𝑠2,1 ∨ 𝑥3

𝑠3,2 ∨ 𝑠2,1

𝑠3,2 ∨ 𝑠2,2 ∨ 𝑥3

𝑠4,1 ∨ 𝑠3,1 ∨ 𝑥4

𝑠4,2 ∨ 𝑠3,1

𝑠4,2 ∨ 𝑠3,2 ∨ 𝑥4

𝑠4,2

How to know translation is correct?

VeriPB can certify pseudo-Boolean-to-CNF rewriting [GMNO22, VDB22]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 38 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for Translations of Pseudo-Boolean Constraints to CNF

CDCL Solvers on Pseudo-Boolean Inputs
Can re-encode to CNF and run CDCL:

MiniSat+ [ES06]

Open-WBO [MML14]

NaPS [SN15]

E.g., encode pseudo-Boolean constraint

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≥ 2

to clauses with extension variables

𝑠𝑖,𝑘 ⇔ ∑𝑖
𝑗=1 𝑥 𝑗 ≥ 𝑘

𝑘 · 𝑠𝑖,𝑘 +
∑𝑖

𝑗=1 𝑥 𝑗 ≥ 𝑘

(𝑖 − 𝑘 + 1) · 𝑠𝑖,𝑘 +
∑𝑖

𝑗=1 𝑥 𝑗 ≥ 𝑖 − 𝑘 + 1

𝑠1,1 ∨ 𝑥1

𝑠2,1 ∨ 𝑠1,1 ∨ 𝑥2

𝑠2,2 ∨ 𝑠1,1

𝑠2,2 ∨ 𝑥2

𝑠3,1 ∨ 𝑠2,1 ∨ 𝑥3

𝑠3,2 ∨ 𝑠2,1

𝑠3,2 ∨ 𝑠2,2 ∨ 𝑥3

𝑠4,1 ∨ 𝑠3,1 ∨ 𝑥4

𝑠4,2 ∨ 𝑠3,1

𝑠4,2 ∨ 𝑠3,2 ∨ 𝑥4

𝑠4,2

How to know translation is correct?

VeriPB can certify pseudo-Boolean-to-CNF rewriting [GMNO22, VDB22]
Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 38 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Maximum Satisfiability (MaxSAT) Solving

Minimize linear objective subject to satisfying formula in conjunctive normal form (CNF)

min 2𝑥1 + 𝑥2

s.t. 𝑥1 ∨ 𝑧

𝑧 ∨ 𝑥2

MaxSAT solver
Result:

optimum 1

Many MaxSAT solvers internally make use of SAT solver.

Idea:
Find optimal solution (checking that it is a solution is easy)

Add clauses claiming a better solution exists

Requires proof logging — can be done with VeriPB

Use one extra SAT call to get proof of optimality (with standard SAT proof logging)

Causes serious overhead

Does not work

Only proves answer correct, not reasoning within solver!

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 39 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Maximum Satisfiability (MaxSAT) Solving

Minimize linear objective subject to satisfying formula in conjunctive normal form (CNF)

min 2𝑥1 + 𝑥2

s.t. 𝑥1 ∨ 𝑧

𝑧 ∨ 𝑥2

MaxSAT solver
Result:

optimum 1

Many MaxSAT solvers internally make use of SAT solver. Idea:
Find optimal solution (checking that it is a solution is easy)

Add clauses claiming a better solution exists

Requires proof logging — can be done with VeriPB

Use one extra SAT call to get proof of optimality (with standard SAT proof logging)

Causes serious overhead

Does not work

Only proves answer correct, not reasoning within solver!

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 39 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Maximum Satisfiability (MaxSAT) Solving

Minimize linear objective subject to satisfying formula in conjunctive normal form (CNF)

min 2𝑥1 + 𝑥2

s.t. 𝑥1 ∨ 𝑧

𝑧 ∨ 𝑥2

MaxSAT solver
Result:

optimum 1

Many MaxSAT solvers internally make use of SAT solver. Idea:
Find optimal solution (checking that it is a solution is easy)

Add clauses claiming a better solution exists

Requires proof logging — can be done with VeriPB

Use one extra SAT call to get proof of optimality (with standard SAT proof logging)

Causes serious overhead

Does not work

Only proves answer correct, not reasoning within solver!

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 39 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Maximum Satisfiability (MaxSAT) Solving

Minimize linear objective subject to satisfying formula in conjunctive normal form (CNF)

min 2𝑥1 + 𝑥2

s.t. 𝑥1 ∨ 𝑧

𝑧 ∨ 𝑥2

MaxSAT solver
Result:

optimum 1

Many MaxSAT solvers internally make use of SAT solver. Idea:
Find optimal solution (checking that it is a solution is easy)

Add clauses claiming a better solution exists
Requires proof logging — can be done with VeriPB

Use one extra SAT call to get proof of optimality (with standard SAT proof logging)
Causes serious overhead

Does not work

Only proves answer correct, not reasoning within solver!

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 39 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Maximum Satisfiability (MaxSAT) Solving

Minimize linear objective subject to satisfying formula in conjunctive normal form (CNF)

min 2𝑥1 + 𝑥2

s.t. 𝑥1 ∨ 𝑧

𝑧 ∨ 𝑥2

MaxSAT solver
Result:

optimum 1

Many MaxSAT solvers internally make use of SAT solver. Idea:
Find optimal solution (checking that it is a solution is easy)

Add clauses claiming a better solution exists
Requires proof logging — can be done with VeriPB

Use one extra SAT call to get proof of optimality (with standard SAT proof logging)
Causes serious overhead

Does not work Only proves answer correct, not reasoning within solver!
Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 39 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

MaxSAT Solvers

Three main categories:
Linear SAT-UNSAT search

1 Call SAT solver to find some solution
2 Add clauses encoding “I want a better solution”
3 Repeat (last found solution is optimal)

VeriPB-based proof logging available [VDB22, Van23]
Core-guided search

1 Call SAT solver to find solution under most optimistic assumptions
2 If impossible, rewrite objective given output of SAT solver
3 Repeat (first solution is optimal)

VeriPB-based proof logging available [BBN+23]
Implicit Hitting Set

1 Call SAT solver to find solution under most optimistic assumptions
2 Use hitting set solver (MIP solver) to recompute what most possible optimistic assumptions are
3 Repeat (first solution is optimal)

No proof logging available yet

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 40 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

MaxSAT Solvers

Three main categories:
Linear SAT-UNSAT search

1 Call SAT solver to find some solution
2 Add clauses encoding “I want a better solution”
3 Repeat (last found solution is optimal)

VeriPB-based proof logging available [VDB22, Van23]

Core-guided search
1 Call SAT solver to find solution under most optimistic assumptions
2 If impossible, rewrite objective given output of SAT solver
3 Repeat (first solution is optimal)

VeriPB-based proof logging available [BBN+23]
Implicit Hitting Set

1 Call SAT solver to find solution under most optimistic assumptions
2 Use hitting set solver (MIP solver) to recompute what most possible optimistic assumptions are
3 Repeat (first solution is optimal)

No proof logging available yet

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 40 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

MaxSAT Solvers

Three main categories:
Linear SAT-UNSAT search

1 Call SAT solver to find some solution
2 Add clauses encoding “I want a better solution”
3 Repeat (last found solution is optimal)

VeriPB-based proof logging available [VDB22, Van23]
Core-guided search

1 Call SAT solver to find solution under most optimistic assumptions
2 If impossible, rewrite objective given output of SAT solver
3 Repeat (first solution is optimal)

VeriPB-based proof logging available [BBN+23]
Implicit Hitting Set

1 Call SAT solver to find solution under most optimistic assumptions
2 Use hitting set solver (MIP solver) to recompute what most possible optimistic assumptions are
3 Repeat (first solution is optimal)

No proof logging available yet

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 40 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

MaxSAT Solvers

Three main categories:
Linear SAT-UNSAT search

1 Call SAT solver to find some solution
2 Add clauses encoding “I want a better solution”
3 Repeat (last found solution is optimal)

VeriPB-based proof logging available [VDB22, Van23]
Core-guided search

1 Call SAT solver to find solution under most optimistic assumptions
2 If impossible, rewrite objective given output of SAT solver
3 Repeat (first solution is optimal)

VeriPB-based proof logging available [BBN+23]

Implicit Hitting Set
1 Call SAT solver to find solution under most optimistic assumptions
2 Use hitting set solver (MIP solver) to recompute what most possible optimistic assumptions are
3 Repeat (first solution is optimal)

No proof logging available yet

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 40 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

MaxSAT Solvers

Three main categories:
Linear SAT-UNSAT search

1 Call SAT solver to find some solution
2 Add clauses encoding “I want a better solution”
3 Repeat (last found solution is optimal)

VeriPB-based proof logging available [VDB22, Van23]
Core-guided search

1 Call SAT solver to find solution under most optimistic assumptions
2 If impossible, rewrite objective given output of SAT solver
3 Repeat (first solution is optimal)

VeriPB-based proof logging available [BBN+23]
Implicit Hitting Set

1 Call SAT solver to find solution under most optimistic assumptions
2 Use hitting set solver (MIP solver) to recompute what most possible optimistic assumptions are
3 Repeat (first solution is optimal)

No proof logging available yet

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 40 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

MaxSAT Solvers

Three main categories:
Linear SAT-UNSAT search

1 Call SAT solver to find some solution
2 Add clauses encoding “I want a better solution”
3 Repeat (last found solution is optimal)

VeriPB-based proof logging available [VDB22, Van23]
Core-guided search

1 Call SAT solver to find solution under most optimistic assumptions
2 If impossible, rewrite objective given output of SAT solver
3 Repeat (first solution is optimal)

VeriPB-based proof logging available [BBN+23]
Implicit Hitting Set

1 Call SAT solver to find solution under most optimistic assumptions
2 Use hitting set solver (MIP solver) to recompute what most possible optimistic assumptions are
3 Repeat (first solution is optimal)

No proof logging available yet
Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 40 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Linear SAT-UNSAT Search

Run SAT solver to
find model

Encode model im-
proving constraints

Last found model is
optimal

SAT UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 41 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification

𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4

𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

SAT UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification

𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

SAT UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation

{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

SAT UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation

{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

𝑥1, 𝑥2, 𝑥3, 𝑥4
𝑟 1, 𝑟2, 𝑟3

UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution

∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

𝑥1, 𝑥2, 𝑥3, 𝑥4
𝑟 1, 𝑟2, 𝑟3

UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

SAT UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

PB(𝑝1 ⇔ (∑𝑖 𝑟𝑖 ≥ 1)) Fresh variable
PB(𝑝2 ⇔ (∑𝑖 𝑟𝑖 ≥ 2))

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

SAT UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

SAT UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation

𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

SAT UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation

𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))

𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

SAT UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation

𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))

𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

SAT UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation

𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2

𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

SAT UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation

𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2

𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

SAT UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation

{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4

𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

SAT UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution

∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4

𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

𝑥1, 𝑥2, 𝑥3, 𝑥4
𝑟 1, 𝑟2, 𝑟 3

UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4

𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

SAT UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation

0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1

⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

SAT UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation

0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1

⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

SAT UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

SAT UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified LSU Search (Example)
Objective: min

∑
𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule

𝑗 · 𝑝 𝑗 +
∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑
𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Incumbent solution∑
𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule

𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model im-
proving constraints

Last found solution
is optimal

SAT UNSAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 42 / 95

LSU Example in VeriPB Syntax

pseudo-Boolean proof version 2.0
f 7
* Clauses derived by solver
rup 1 x1 1 r2 >= 1 ;
* Log incumbent solution
soli ~x1 ~x2 ~x3 ~x4 ~r1 r2 r3
* introduce fresh variables
red 2 ~p2 1 r1 1 r2 1 r3 >= 2 ; p2 -> 0 ;
red 2 p2 1 ~r1 1 ~r2 1 ~r3 >= 2; p2 -> 1 ;
red 1 ~p1 1 r1 1 r2 1 r3 >= 1; p1 -> 0 ;
red 3 p1 1 ~r1 1 ~r2 1 ~r3 >= 3; p1 -> 1 ;
* Derive CNF encoding of totalizer
. . . - coming soon
* Derive counter falsity
pol 9 10 + s
* Clauses derived by solver
rup 1 x4 >= 1 ;

* Log incumbent solution
soli ~x1 ~x2 ~x3 x4 ~r1 r2 ~r3
* Derive counter falsity
pol -1 12 +
* Inconsistency derived by solver
rup >= 1 ;
* Conclusion
output NONE
conclusion BOUNDS 1 1
end pseudo-Boolean proof

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Encoding of the Model-Improving Constraint

How to encode 𝑝 𝑗 ⇔
∑

𝑖 𝑟𝑖 ≥ 𝑗 in CNF?

Different MaxSAT solvers use different PB-to-CNF encodings, e.g.,

Totalizer Encoding [BB03]

Binary Adder [War98]

Modulo-Based Totalizer [OLH+13]
Sorting Networks [ES06, ANOR09]

(Dynamic) Polynomial Watchdog [PRB18]

Totalizer encoding demonstrated here; ideas generalize to other encodings [Van23]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 44 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Encoding of the Model-Improving Constraint

How to encode 𝑝 𝑗 ⇔
∑

𝑖 𝑟𝑖 ≥ 𝑗 in CNF?

Different MaxSAT solvers use different PB-to-CNF encodings, e.g.,

Totalizer Encoding [BB03]

Binary Adder [War98]

Modulo-Based Totalizer [OLH+13]
Sorting Networks [ES06, ANOR09]

(Dynamic) Polynomial Watchdog [PRB18]

Totalizer encoding demonstrated here; ideas generalize to other encodings [Van23]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 44 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Encoding of the Model-Improving Constraint

How to encode 𝑝 𝑗 ⇔
∑

𝑖 𝑟𝑖 ≥ 𝑗 in CNF?

Different MaxSAT solvers use different PB-to-CNF encodings, e.g.,

Totalizer Encoding [BB03]

Binary Adder [War98]

Modulo-Based Totalizer [OLH+13]
Sorting Networks [ES06, ANOR09]

(Dynamic) Polynomial Watchdog [PRB18]

Totalizer encoding demonstrated here; ideas generalize to other encodings [Van23]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 44 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Totalizer Encoding of Cardinality Constraints

How to encode 𝑝𝐼𝑗 ⇔
∑

𝑖∈𝐼 𝑟𝑖 ≥ 𝑗?

Totalizer encoding [BB03]

Create binary tree (leaves are the 𝑟𝑖); and
introduce counter variables in all nodes

Example: 𝐼 = {1, · · · , 8}, 𝐼1 = {1, · · · , 4} and
𝐼2 = {5, · · · , 8}

𝑝𝐼1, 𝑝
𝐼
2, 𝑝

𝐼
3, 𝑝

𝐼
4, 𝑝

𝐼
5, 𝑝

𝐼
6, 𝑝

𝐼
7, 𝑝

𝐼
8

𝑝
𝐼1
1 , 𝑝

𝐼1
2 , 𝑝

𝐼1
3 , 𝑝

𝐼1
4 𝑝

𝐼2
1 , 𝑝

𝐼2
2 , 𝑝

𝐼2
3 , 𝑝

𝐼2
4

Clauses encoding 𝑝𝐼6 ⇐
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝

𝐼2
4 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝

𝐼2
3 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝

𝐼2
2 ∨ 𝑝𝐼6

Clauses encoding 𝑝𝐼6 ⇒
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝

𝐼
6 𝑝

𝐼1
3 ∨ 𝑝

𝐼2
4 ∨ 𝑝

𝐼
6 𝑝

𝐼1
4 ∨ 𝑝

𝐼2
3 ∨ 𝑝

𝐼
6 𝑝

𝐼2
2 ∨ 𝑝

𝐼
6

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 45 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Totalizer Encoding of Cardinality Constraints

How to encode 𝑝𝐼𝑗 ⇔
∑

𝑖∈𝐼 𝑟𝑖 ≥ 𝑗?

Totalizer encoding [BB03]

Create binary tree (leaves are the 𝑟𝑖); and
introduce counter variables in all nodes

Example: 𝐼 = {1, · · · , 8}, 𝐼1 = {1, · · · , 4} and
𝐼2 = {5, · · · , 8}

𝑝𝐼1, 𝑝
𝐼
2, 𝑝

𝐼
3, 𝑝

𝐼
4, 𝑝

𝐼
5, 𝑝

𝐼
6, 𝑝

𝐼
7, 𝑝

𝐼
8

𝑝
𝐼1
1 , 𝑝

𝐼1
2 , 𝑝

𝐼1
3 , 𝑝

𝐼1
4 𝑝

𝐼2
1 , 𝑝

𝐼2
2 , 𝑝

𝐼2
3 , 𝑝

𝐼2
4

Clauses encoding 𝑝𝐼6 ⇐
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝

𝐼2
4 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝

𝐼2
3 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝

𝐼2
2 ∨ 𝑝𝐼6

Clauses encoding 𝑝𝐼6 ⇒
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝

𝐼
6 𝑝

𝐼1
3 ∨ 𝑝

𝐼2
4 ∨ 𝑝

𝐼
6 𝑝

𝐼1
4 ∨ 𝑝

𝐼2
3 ∨ 𝑝

𝐼
6 𝑝

𝐼2
2 ∨ 𝑝

𝐼
6

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 45 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Totalizer Encoding of Cardinality Constraints

How to encode 𝑝𝐼𝑗 ⇔
∑

𝑖∈𝐼 𝑟𝑖 ≥ 𝑗?

Totalizer encoding [BB03]

Create binary tree (leaves are the 𝑟𝑖); and
introduce counter variables in all nodes

Example: 𝐼 = {1, · · · , 8}, 𝐼1 = {1, · · · , 4} and
𝐼2 = {5, · · · , 8}

𝑝𝐼1, 𝑝
𝐼
2, 𝑝

𝐼
3, 𝑝

𝐼
4, 𝑝

𝐼
5, 𝑝

𝐼
6, 𝑝

𝐼
7, 𝑝

𝐼
8

𝑝
𝐼1
1 , 𝑝

𝐼1
2 , 𝑝

𝐼1
3 , 𝑝

𝐼1
4 𝑝

𝐼2
1 , 𝑝

𝐼2
2 , 𝑝

𝐼2
3 , 𝑝

𝐼2
4

Clauses encoding 𝑝𝐼6 ⇐
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝

𝐼2
4 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝

𝐼2
3 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝

𝐼2
2 ∨ 𝑝𝐼6

Clauses encoding 𝑝𝐼6 ⇒
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝

𝐼
6 𝑝

𝐼1
3 ∨ 𝑝

𝐼2
4 ∨ 𝑝

𝐼
6 𝑝

𝐼1
4 ∨ 𝑝

𝐼2
3 ∨ 𝑝

𝐼
6 𝑝

𝐼2
2 ∨ 𝑝

𝐼
6

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 45 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Totalizer Encoding of Cardinality Constraints

How to encode 𝑝𝐼𝑗 ⇔
∑

𝑖∈𝐼 𝑟𝑖 ≥ 𝑗?

Totalizer encoding [BB03]

Create binary tree (leaves are the 𝑟𝑖); and
introduce counter variables in all nodes

Example: 𝐼 = {1, · · · , 8}, 𝐼1 = {1, · · · , 4} and
𝐼2 = {5, · · · , 8}

𝑝𝐼1, 𝑝
𝐼
2, 𝑝

𝐼
3, 𝑝

𝐼
4, 𝑝

𝐼
5, 𝑝

𝐼
6, 𝑝

𝐼
7, 𝑝

𝐼
8

𝑝
𝐼1
1 , 𝑝

𝐼1
2 , 𝑝

𝐼1
3 , 𝑝

𝐼1
4 𝑝

𝐼2
1 , 𝑝

𝐼2
2 , 𝑝

𝐼2
3 , 𝑝

𝐼2
4

Clauses encoding 𝑝𝐼6 ⇐
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:(
𝑝
𝐼1
2 ∧ 𝑝

𝐼2
4

)
⇒ 𝑝𝐼6

(
𝑝
𝐼1
3 ∧ 𝑝

𝐼2
3

)
⇒ 𝑝𝐼6

(
𝑝
𝐼1
4 ∧ 𝑝

𝐼2
2

)
⇒ 𝑝𝐼6

Clauses encoding 𝑝𝐼6 ⇒
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝

𝐼
6 𝑝

𝐼1
3 ∨ 𝑝

𝐼2
4 ∨ 𝑝

𝐼
6 𝑝

𝐼1
4 ∨ 𝑝

𝐼2
3 ∨ 𝑝

𝐼
6 𝑝

𝐼2
2 ∨ 𝑝

𝐼
6

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 45 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Totalizer Encoding of Cardinality Constraints

How to encode 𝑝𝐼𝑗 ⇔
∑

𝑖∈𝐼 𝑟𝑖 ≥ 𝑗?

Totalizer encoding [BB03]

Create binary tree (leaves are the 𝑟𝑖); and
introduce counter variables in all nodes

Example: 𝐼 = {1, · · · , 8}, 𝐼1 = {1, · · · , 4} and
𝐼2 = {5, · · · , 8}

𝑝𝐼1, 𝑝
𝐼
2, 𝑝

𝐼
3, 𝑝

𝐼
4, 𝑝

𝐼
5, 𝑝

𝐼
6, 𝑝

𝐼
7, 𝑝

𝐼
8

𝑝
𝐼1
1 , 𝑝

𝐼1
2 , 𝑝

𝐼1
3 , 𝑝

𝐼1
4 𝑝

𝐼2
1 , 𝑝

𝐼2
2 , 𝑝

𝐼2
3 , 𝑝

𝐼2
4

Clauses encoding 𝑝𝐼6 ⇐
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝

𝐼2
4 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝

𝐼2
3 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝

𝐼2
2 ∨ 𝑝𝐼6

Clauses encoding 𝑝𝐼6 ⇒
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝

𝐼
6 𝑝

𝐼1
3 ∨ 𝑝

𝐼2
4 ∨ 𝑝

𝐼
6 𝑝

𝐼1
4 ∨ 𝑝

𝐼2
3 ∨ 𝑝

𝐼
6 𝑝

𝐼2
2 ∨ 𝑝

𝐼
6

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 45 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Totalizer Encoding of Cardinality Constraints

How to encode 𝑝𝐼𝑗 ⇔
∑

𝑖∈𝐼 𝑟𝑖 ≥ 𝑗?

Totalizer encoding [BB03]

Create binary tree (leaves are the 𝑟𝑖); and
introduce counter variables in all nodes

Example: 𝐼 = {1, · · · , 8}, 𝐼1 = {1, · · · , 4} and
𝐼2 = {5, · · · , 8}

𝑝𝐼1, 𝑝
𝐼
2, 𝑝

𝐼
3, 𝑝

𝐼
4, 𝑝

𝐼
5, 𝑝

𝐼
6, 𝑝

𝐼
7, 𝑝

𝐼
8

𝑝
𝐼1
1 , 𝑝

𝐼1
2 , 𝑝

𝐼1
3 , 𝑝

𝐼1
4 𝑝

𝐼2
1 , 𝑝

𝐼2
2 , 𝑝

𝐼2
3 , 𝑝

𝐼2
4

Clauses encoding 𝑝𝐼6 ⇐
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝

𝐼2
4 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝

𝐼2
3 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝

𝐼2
2 ∨ 𝑝𝐼6

Clauses encoding 𝑝𝐼6 ⇒
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ⇒ 𝑝

𝐼
6

(
𝑝
𝐼1
3 ∧ 𝑝

𝐼2
4

)
⇒ 𝑝

𝐼
6

(
𝑝
𝐼1
4 ∧ 𝑝

𝐼2
3

)
⇒ 𝑝

𝐼
6 𝑝

𝐼2
2 ⇒ 𝑝

𝐼
6

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 45 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Totalizer Encoding of Cardinality Constraints

How to encode 𝑝𝐼𝑗 ⇔
∑

𝑖∈𝐼 𝑟𝑖 ≥ 𝑗?

Totalizer encoding [BB03]

Create binary tree (leaves are the 𝑟𝑖); and
introduce counter variables in all nodes

Example: 𝐼 = {1, · · · , 8}, 𝐼1 = {1, · · · , 4} and
𝐼2 = {5, · · · , 8}

𝑝𝐼1, 𝑝
𝐼
2, 𝑝

𝐼
3, 𝑝

𝐼
4, 𝑝

𝐼
5, 𝑝

𝐼
6, 𝑝

𝐼
7, 𝑝

𝐼
8

𝑝
𝐼1
1 , 𝑝

𝐼1
2 , 𝑝

𝐼1
3 , 𝑝

𝐼1
4 𝑝

𝐼2
1 , 𝑝

𝐼2
2 , 𝑝

𝐼2
3 , 𝑝

𝐼2
4

Clauses encoding 𝑝𝐼6 ⇐
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝

𝐼2
4 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝

𝐼2
3 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝

𝐼2
2 ∨ 𝑝𝐼6

Clauses encoding 𝑝𝐼6 ⇒
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝

𝐼
6 𝑝

𝐼1
3 ∨ 𝑝

𝐼2
4 ∨ 𝑝

𝐼
6 𝑝

𝐼1
4 ∨ 𝑝

𝐼2
3 ∨ 𝑝

𝐼
6 𝑝

𝐼2
2 ∨ 𝑝

𝐼
6

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 45 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certifying the Totalizer encoding using cutting planes

To be derived: 𝑝𝐼14 ∨ 𝑝
𝐼2
2 ∨ 𝑝𝐼6

Counting variables introduced using

4 · 𝑝𝐼14 +
∑︁
𝑖∈𝐼1

𝑟𝑖 ≥ 4

2 · 𝑝𝐼22 +
∑︁
𝑖∈𝐼2

𝑟𝑖 ≥ 2

3 · 𝑝𝐼6 +
∑︁
𝑖∈𝐼

𝑟 𝑖 ≥ 3

Adding these three constraints yields

4 · 𝑝𝐼14 + 2 · 𝑝𝐼22 + 3 · 𝑝𝐼6 + 8 ≥ 9

1

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 46 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certifying the Totalizer encoding using cutting planes

To be derived: 𝑝𝐼14 ∨ 𝑝
𝐼2
2 ∨ 𝑝𝐼6

Counting variables introduced using

4 · 𝑝𝐼14 +
∑︁
𝑖∈𝐼1

𝑟𝑖 ≥ 4

2 · 𝑝𝐼22 +
∑︁
𝑖∈𝐼2

𝑟𝑖 ≥ 2

3 · 𝑝𝐼6 +
∑︁
𝑖∈𝐼

𝑟 𝑖 ≥ 3

Adding these three constraints yields

4 · 𝑝𝐼14 + 2 · 𝑝𝐼22 + 3 · 𝑝𝐼6 + 8 ≥ 9

1

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 46 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certifying the Totalizer encoding using cutting planes

To be derived: 𝑝𝐼14 ∨ 𝑝
𝐼2
2 ∨ 𝑝𝐼6

Counting variables introduced using

4 · 𝑝𝐼14 +
∑︁
𝑖∈𝐼1

𝑟𝑖 ≥ 4

2 · 𝑝𝐼22 +
∑︁
𝑖∈𝐼2

𝑟𝑖 ≥ 2

3 · 𝑝𝐼6 +
∑︁
𝑖∈𝐼

𝑟 𝑖 ≥ 3

Adding these three constraints yields

4 · 𝑝𝐼14 + 2 · 𝑝𝐼22 + 3 · 𝑝𝐼6 + 8 ≥ 9

1

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 46 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certifying the Totalizer encoding using cutting planes

To be derived: 𝑝𝐼14 ∨ 𝑝
𝐼2
2 ∨ 𝑝𝐼6

Counting variables introduced using

4 · 𝑝𝐼14 +
∑︁
𝑖∈𝐼1

𝑟𝑖 ≥ 4

2 · 𝑝𝐼22 +
∑︁
𝑖∈𝐼2

𝑟𝑖 ≥ 2

3 · 𝑝𝐼6 +
∑︁
𝑖∈𝐼

𝑟 𝑖 ≥ 3

Adding these three constraints yields

4 · 𝑝𝐼14 + 2 · 𝑝𝐼22 + 3 · 𝑝𝐼6 + 8 ≥ 9 1

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 46 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certifying the Totalizer encoding using cutting planes

To be derived: 𝑝𝐼14 ∨ 𝑝
𝐼2
2 ∨ 𝑝𝐼6

Counting variables introduced using

4 · 𝑝𝐼14 +
∑︁
𝑖∈𝐼1

𝑟𝑖 ≥ 4

2 · 𝑝𝐼22 +
∑︁
𝑖∈𝐼2

𝑟𝑖 ≥ 2

3 · 𝑝𝐼6 +
∑︁
𝑖∈𝐼

𝑟 𝑖 ≥ 3

Adding these three constraints and saturating yields

4 · 𝑝𝐼14 + 2 · 𝑝𝐼22 + 3 · 𝑝𝐼6 + 8 ≥ 9 1

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 46 / 95

Complete LSU Example in VeriPB Syntax

pseudo-Boolean proof version 2.0
f 7
* Clauses derived by solver
rup 1 x1 1 r2 >= 1 ;
* Log incumbent solution
soli ~x1 ~x2 ~x3 ~x4 ~r1 r2 r3
* introduce fresh variables
red 2 ~p2 1 r1 1 r2 1 r3 >= 2 ; p2 -> 0 ;
red 2 p2 1 ~r1 1 ~r2 1 ~r3 >= 2; p2 -> 1 ;
red 1 ~p1 1 r1 1 r2 1 r3 >= 1; p1 -> 0 ;
red 3 p1 1 ~r1 1 ~r2 1 ~r3 >= 3; p1 -> 1 ;
* Auxiliary variables for CNF encoding
red 2 ~p_1-2_2 1 r1 1 r2 >= 2 ; p_1-2_2 -> 0 ;
red 1 p_1-2_2 1 ~r1 1 ~r2 >= 1; p_1-2_2 -> 1 ;
red 1 ~p_1-2_1 1 r1 1 r2 >= 1; p_1-2_1 -> 0 ;
red 2 p_1-2_1 1 ~r1 1 ~r2 >= 2; p_1-2_1 -> 1 ;
* Cutting planes derivation of totalizer clauses
pol 10 15 + s
pol 10 17 + ~r3 + s

pol 11 14 + r3 + s
pol 11 16 + s
pol 12 17 + s
pol 13 16 + r3 + s
pol 13 r1 + r2 + s
* Derive counter falsity
pol 9 10 + s
* Clauses derived by solver
rup 1 x4 >= 1 ;
* Log incumbent solution
soli ~x1 ~x2 ~x3 x4 ~r1 r2 ~r3
* Derive counter falsity
pol -1 12 +
* Inconsistency derived by solver
rup >= 1 ;
* Conclusion
output NONE
conclusion BOUNDS 1 1
end pseudo-Boolean proof

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Core-Guided Search

Run SAT solver
under optimistic
assumptions

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 48 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Core-Guided Search (Example)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3

= 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification

𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟1 + 𝑟2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Solution
𝑟1 + 𝑟2 + 𝑟3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4

𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions
𝑟1 = 𝑟2 = 𝑟3 = 0

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 49 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Core-Guided Search (Example)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3

= 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation

2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟1 + 𝑟2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Solution
𝑟1 + 𝑟2 + 𝑟3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2

CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions
𝑟1 = 𝑟2 = 𝑟3 = 0

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 49 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Core-Guided Search (Example)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3

= 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2) Fresh variable

𝑝2 + 𝑟1 + 𝑟2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Solution
𝑟1 + 𝑟2 + 𝑟3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2

CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 49 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Core-Guided Search (Example)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3

= 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟1 + 𝑟2 ≥ 1

CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Solution
𝑟1 + 𝑟2 + 𝑟3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2

CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 49 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Core-Guided Search (Example)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3

= 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟1 + 𝑟2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation

𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Solution
𝑟1 + 𝑟2 + 𝑟3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 49 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Core-Guided Search (Example)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟1 + 𝑟2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation

{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Solution
𝑟1 + 𝑟2 + 𝑟3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 49 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Core-Guided Search (Example)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟1 + 𝑟2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation

{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Solution
𝑟1 + 𝑟2 + 𝑟3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions
𝑝2 = 𝑟3 = 0

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 49 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Core-Guided Search (Example)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟1 + 𝑟2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Solution

𝑟1 + 𝑟2 + 𝑟3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 49 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Core-Guided Search (Example)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟1 + 𝑟2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Solution
𝑟1 + 𝑟2 + 𝑟3 ≥ 3 Objective Improvement

0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 49 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Core-Guided Search (Example)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟1 + 𝑟2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Solution
𝑟1 + 𝑟2 + 𝑟3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 49 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Core-Guided Search (Example)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟1 + 𝑟2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Solution
𝑟1 + 𝑟2 + 𝑟3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

Explicit CP derivations:

CNF encoding (totalizer): see part on
LSU

Adding up definition of 𝑝2 and core
constraint yields

2 · 𝑝2 + 2 · 𝑟1 + 2 · 𝑟2 ≥ 3

2

.

which is the same as 𝑟1 + 𝑟2 ≥ 1 + 𝑝2.
Other direction already given

Previously derived cores guarantee
that objective is at least 1:
𝑟1 + 𝑟2 (+ 𝑟3) ≥ 1
Adding this to objective improvement
constraint gives contradiction

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 50 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Core-Guided Search (Example)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟1 + 𝑟2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Solution
𝑟1 + 𝑟2 + 𝑟3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

Explicit CP derivations:

CNF encoding (totalizer): see part on
LSU

Adding up definition of 𝑝2 and core
constraint yields

2 · 𝑝2 + 2 · 𝑟1 + 2 · 𝑟2 ≥ 3

2

.

which is the same as 𝑟1 + 𝑟2 ≥ 1 + 𝑝2.
Other direction already given

Previously derived cores guarantee
that objective is at least 1:
𝑟1 + 𝑟2 (+ 𝑟3) ≥ 1
Adding this to objective improvement
constraint gives contradiction

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 50 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Core-Guided Search (Example)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟1 + 𝑟2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Solution
𝑟1 + 𝑟2 + 𝑟3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

Explicit CP derivations:

CNF encoding (totalizer): see part on
LSU

Adding up definition of 𝑝2 and core
constraint and dividing by 2 yields

2 · 𝑝2 + 2 · 𝑟1 + 2 · 𝑟2 ≥ 32.

which is the same as 𝑟1 + 𝑟2 ≥ 1 + 𝑝2.
Other direction already given

Previously derived cores guarantee
that objective is at least 1:
𝑟1 + 𝑟2 (+ 𝑟3) ≥ 1
Adding this to objective improvement
constraint gives contradiction

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 50 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Core-Guided Search (Example)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟1 + 𝑟2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Solution
𝑟1 + 𝑟2 + 𝑟3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

Explicit CP derivations:

CNF encoding (totalizer): see part on
LSU

Adding up definition of 𝑝2 and core
constraint and dividing by 2 yields

2 · 𝑝2 + 2 · 𝑟1 + 2 · 𝑟2 ≥ 32.

which is the same as 𝑟1 + 𝑟2 ≥ 1 + 𝑝2.
Other direction already given

Previously derived cores guarantee
that objective is at least 1:
𝑟1 + 𝑟2 (+ 𝑟3) ≥ 1
Adding this to objective improvement
constraint gives contradiction

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 50 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Core-Guided Search (Example)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟1 + 𝑟2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Solution
𝑟1 + 𝑟2 + 𝑟3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

Explicit CP derivations:

CNF encoding (totalizer): see part on
LSU

Adding up definition of 𝑝2 and core
constraint and dividing by 2 yields

2 · 𝑝2 + 2 · 𝑟1 + 2 · 𝑟2 ≥ 32.

which is the same as 𝑟1 + 𝑟2 ≥ 1 + 𝑝2.
Other direction already given

Previously derived cores guarantee
that objective is at least 1:
𝑟1 + 𝑟2 (+ 𝑟3) ≥ 1

Adding this to objective improvement
constraint gives contradiction

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 50 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Certified Core-Guided Search (Example)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟1 + 𝑟2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟2, 𝑟3} Solution
𝑟1 + 𝑟2 + 𝑟3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

Explicit CP derivations:

CNF encoding (totalizer): see part on
LSU

Adding up definition of 𝑝2 and core
constraint and dividing by 2 yields

2 · 𝑝2 + 2 · 𝑟1 + 2 · 𝑟2 ≥ 32.

which is the same as 𝑟1 + 𝑟2 ≥ 1 + 𝑝2.
Other direction already given

Previously derived cores guarantee
that objective is at least 1:
𝑟1 + 𝑟2 (+ 𝑟3) ≥ 1
Adding this to objective improvement
constraint gives contradiction

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 50 / 95

Complete CG Example in VeriPB Syntax

pseudo-Boolean proof version 2.0
f 7
* Clauses derived by solver (inc core)
rup 1 x1 1 r2 >= 1 ;
rup 1 r1 1 r2 >= 1 ;
* Introduce fresh variable
red 2 ~p2 1 r1 1 r2 >= 2 ; p2 -> 0 ;
red 1 p2 1 ~r1 1 ~r2 >= 1; p2 -> 1 ;
* Encode this in CNF
pol 10 ~r1 +
pol 10 ~r2 +
* Rewriting the objective
pol 9 10 + 2 d
* Check that we have indeed
* derived that r1 + r2 = 1 + p2
e 14 : 1 r1 1 r2 -1 p2 >= 1 ;
e 11 : -1 r1 -1 r2 1 p2 >= -1 ;

* Solution found
soli x1 x2 x3 x4 r1 ~r2 ~r3
* Prove optimality of solution:
pol -1 9 +
ia -1 : >= 1 ;
* Conclusion
output NONE
conclusion BOUNDS 1 1
end pseudo-Boolean proof

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Advanced Techniques for Core-Guided MaxSAT

Important to deal with all state-of-the-art solver techniques

Additional techniques that are skipped in this example

Intrinsic at-most-one constraints [IMM19]
Hardening [ABGL12]
Lazy counter variables [MJML14]

VeriPB Proof logging also convenient for these techniques [BBN+23]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 52 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Advanced Techniques for Core-Guided MaxSAT

Important to deal with all state-of-the-art solver techniques
Additional techniques that are skipped in this example

Intrinsic at-most-one constraints [IMM19]

Hardening [ABGL12]
Lazy counter variables [MJML14]

VeriPB Proof logging also convenient for these techniques [BBN+23]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 52 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Advanced Techniques for Core-Guided MaxSAT

Important to deal with all state-of-the-art solver techniques
Additional techniques that are skipped in this example

Intrinsic at-most-one constraints [IMM19]
Hardening [ABGL12]

Lazy counter variables [MJML14]

VeriPB Proof logging also convenient for these techniques [BBN+23]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 52 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Advanced Techniques for Core-Guided MaxSAT

Important to deal with all state-of-the-art solver techniques
Additional techniques that are skipped in this example

Intrinsic at-most-one constraints [IMM19]
Hardening [ABGL12]
Lazy counter variables [MJML14]

VeriPB Proof logging also convenient for these techniques [BBN+23]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 52 / 95

Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Advanced SAT Techniques and Optimisation

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

Advanced Techniques for Core-Guided MaxSAT

Important to deal with all state-of-the-art solver techniques
Additional techniques that are skipped in this example

Intrinsic at-most-one constraints [IMM19]
Hardening [ABGL12]
Lazy counter variables [MJML14]

VeriPB Proof logging also convenient for these techniques [BBN+23]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 52 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Recap (1/2)

Proof

Input Answer
Solver

Checker

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed answer + proof to proof checker together with input

4 Verify that proof checker says answer is correct

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 53 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Recap (1/2)

Proof

Input Answer
Solver

Checker
✓ / ✗

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed answer + proof to proof checker together with input

4 Verify that proof checker says answer is correct

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 53 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Recap (2/2)

Proof logging implementation

Don’t change solver

Just add proof logging statements (plus some book-keeping)

Performance goals

Want linear(ish) scaling in terms of solver running time for

proof size

proof checking time

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 54 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Progress So Far

We’ve seen proof logging, and how it works for SAT

We’ve learned about

pseudo-Boolean constraints (0–1 linear inequalities)
cutting planes reasoning

VeriPB

Coming next, some worked examples from dedicated graph solvers

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 55 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

The Maximum Clique Problem

3

4

6
7

9

10

11
12

1

2

5

8

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 56 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

The Maximum Clique Problem

3

4

6
7

9

10

11
12

1

2

5

8

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 56 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

Maximum Clique Solvers

There are a lot of dedicated solvers for clique problems

But there are issues:

“State-of-the-art” solvers have been buggy.

Often undetected: error rate of around 0.1 [MPP19]

Often used inside other solvers

An off-by-one result can cause much larger errors

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 57 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

A Brief and Incomplete Guide to Clique Solving (1/4)

Recursive maximum clique algorithm:

Pick a vertex 𝑣
Either 𝑣 is in the clique. . .

Throw away every vertex not adjacent to 𝑣
If vertices remain, recurse

. . . or 𝑣 is not in the clique
Throw 𝑣 away and pick another vertex

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 58 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

A Brief and Incomplete Guide to Clique Solving (2/4)

Key data structures:

Growing clique 𝐶
Set of potential vertices 𝑃

All the vertices we haven’t thrown away yet
Every 𝑣 ∈ 𝑃 is adjacent to every𝑤 ∈ 𝐶

Branch and bound:

Remember the biggest clique 𝐶★ found so far

If |𝐶 | + |𝑃 | ≤
��𝐶★

��, no need to keep going

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 59 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

A Brief and Incomplete Guide to Clique Solving (2/4)

Key data structures:

Growing clique 𝐶
Set of potential vertices 𝑃

All the vertices we haven’t thrown away yet
Every 𝑣 ∈ 𝑃 is adjacent to every𝑤 ∈ 𝐶

Branch and bound:

Remember the biggest clique 𝐶★ found so far

If |𝐶 | + |𝑃 | ≤
��𝐶★

��, no need to keep going

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 59 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

A Brief and Incomplete Guide to Clique Solving (3/4)

1

39

2

4

7 5
6

10

8

11
12

Given a 𝑘-colouring of a subgraph, that subgraph cannot have a clique of more than 𝑘 vertices

We can use |𝐶 | + #colours(𝑃) as a bound, for any colouring

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 60 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

A Brief and Incomplete Guide to Clique Solving (4/4)

This brings us to 1997

Many improvements since then
better bound functions
clever vertex selection heuristics
efficient data structures
local search
. . .

But key ideas for proof logging can be explained without worrying about such things

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 61 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

Making a Proof Logging Clique Solver

1 Output a pseudo-Boolean encoding of the problem
Clique problems have several standard file formats

2 Make the solver log its search tree
Output a small header
Output something on every backtrack
Output something every time a solution is found
Output a small footer

3 Figure out how to log the bound function

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 62 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

A Slightly Different Proof Logging Workflow

Checker

Input Answer
Solver

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed answer + proof to proof checker together with

4 Verify that proof checker says answer is correct

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 63 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

A Slightly Different Proof Logging Workflow

CheckerProof

Input Answer
Solver

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed answer + proof to proof checker together with

4 Verify that proof checker says answer is correct

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 63 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

A Slightly Different Proof Logging Workflow

Proof

Input Answer
Solver

Checker

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed answer + proof to proof checker together with input

4 Verify that proof checker says answer is correct

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 63 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

A Slightly Different Proof Logging Workflow

Proof

Encoded input

Input Answer
Solver

Checker

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed answer + proof to proof checker together with 0–1 ILP encoding of input

4 Verify that proof checker says answer is correct

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 63 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

A Slightly Different Proof Logging Workflow

Proof

Encoded input

Input Answer
Solver

Checker
✓ / ✗

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed answer + proof to proof checker together with 0–1 ILP encoding of input

4 Verify that proof checker says answer is correct

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 63 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

A Pseudo-Boolean Encoding for Clique (in OPB Format)

3

4

6
7

9

10

11
12

1

2

5

8

* #variable= 12 #constraint= 41
min: -1 x1 -1 x2 -1 x3 -1 x4 . . . and so on. . . -1 x11 -1 x12 ;
1 ~x3 1 ~x1 >= 1 ;
1 ~x3 1 ~x2 >= 1 ;
1 ~x4 1 ~x1 >= 1 ;
* . . . and a further 38 similar lines for the remaining non-edges

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 64 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12pseudo-Boolean proof version 2.0

f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 65 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12

Start with a header
Load the 41 problem axioms

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 65 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12

Branch accepting 12
Throw away non-adjacent vertices

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 65 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12

Branch also accepting 7
Throw away non-adjacent vertices

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 65 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12

Branch also accepting 9
Throw away non-adjacent vertices

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 65 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12

We branched on 12, 7, 9
Found a new incumbent
Now looking for a ≥ 4 vertex clique

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 65 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12

Backtrack from 12, 7
9 explored already, only 6 feasible
No ≥ 4 vertex clique possible
Effectively this deletes the 7–12 edge

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 65 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12

Backtrack from 12
Only 1, 6 and 9 feasible (1-colourable)
No ≥ 4 vertex clique possible
Effectively this deletes vertex 12

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 65 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11

Branch on 11 then 10
Only 1, 3 and 9 feasible (1-colourable)
No ≥ 4 vertex clique possible
Backtrack, deleting the edge

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 65 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11

Backtrack from 11
2-colourable, so no ≥ 4 clique
Delete the vertex

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 65 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

Branch on 8, 5, 1, 2
Find a new incumbent
Now looking for a ≥ 5 vertex clique

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 65 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

Backtrack from 8, 5
Only 4 vertices; can’t have a ≥ 5 clique
Delete the edge

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 65 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

Backtrack from 8
Still not enough vertices
Delete the vertex

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 65 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

First Attempt at a Proof

1

2

3

4

5
6

7

9

10

Remaining graph is 3-colourable
Backtrack from root node

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 65 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

First Attempt at a Proof

1

2

3

4

5
6

7

9

10

Finish with what we’ve concluded
We specify a lower and an upper bound
Remember we’re minimising

∑
𝑣 −1 × 𝑣 , so a 4-clique

has an objective value of −4

pseudo-Boolean proof version 2.0
f 41
soli x7 x9 x12
rup 1 ~x12 1 ~x7 >= 1 ;
rup 1 ~x12 >= 1 ;
rup 1 ~x11 1 ~x10 >= 1 ;
rup 1 ~x11 >= 1 ;
soli x1 x2 x5 x8
rup 1 ~x8 1 ~x5 >= 1 ;
rup 1 ~x8 >= 1 ;
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 65 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

Verifying This Proof (Or Not. . .)

$ veripb clique.opb clique-attempt-one.veripb
Verification failed.
Failed in proof file line 6.
Hint: Failed to show '1 ~x10 1 ~x11 >= 1' by reverse unit propagation.

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 66 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

Verifying This Proof (Or Not. . .)

$ veripb clique.opb clique-attempt-one.veripb
Verification failed.
Failed in proof file line 6.
Hint: Failed to show '1 ~x10 1 ~x11 >= 1' by reverse unit propagation.

1

2

3

4

5
6

7

8

9

10

11

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 66 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

Verifying This Proof (Or Not. . .)

$ veripb --trace clique.opb clique-attempt-one.veripb
line 002: f 41

ConstraintId 001: 1 ~x1 1 ~x3 >= 1
ConstraintId 002: 1 ~x2 1 ~x3 >= 1

...
ConstraintId 041: 1 ~x11 1 ~x12 >= 1

line 003: soli x7 x9 x12 ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x8 ~x10 ~x11
ConstraintId 042: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 >= 4

line 004: rup 1 ~x12 1 ~x7 >= 1 ;
ConstraintId 043: 1 ~x7 1 ~x12 >= 1

line 005: rup 1 ~x12 >= 1 ;
ConstraintId 044: 1 ~x12 >= 1

line 006: rup 1 ~x11 1 ~x10 >= 1 ;
Verification failed.
Failed in proof file line 6.
Hint: Failed to show '1 ~x10 1 ~x11 >= 1' by reverse unit propagation.

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 66 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

Dealing With Colourings

The colour bound doesn’t follow by RUP. . .

But we can lazily recover at-most-one constraints for each colour class!

(𝑥1 + 𝑥6 ≥ 1)
+ (𝑥1 + 𝑥9 ≥ 1) = 2𝑥1 + 𝑥6 + 𝑥9 ≥ 2
+ (𝑥6 + 𝑥9 ≥ 1) = 2𝑥1 + 2𝑥6 + 2𝑥9 ≥ 3

/ 2 = 𝑥1 + 𝑥6 + 𝑥9 ≥ 2
i.e. 𝑥1 + 𝑥6 + 𝑥9 ≤ 1

This generalises to colour classes of any size 𝑣

Each non-edge is used exactly once, 𝑣 (𝑣 − 1) additions
𝑣 − 3 multiplications and 𝑣 − 2 divisions

Solvers don’t need to “understand” cutting planes to write this derivation to proof log

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 67 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

Dealing With Colourings

The colour bound doesn’t follow by RUP. . .

But we can lazily recover at-most-one constraints for each colour class!

(𝑥1 + 𝑥6 ≥ 1)
+ (𝑥1 + 𝑥9 ≥ 1) = 2𝑥1 + 𝑥6 + 𝑥9 ≥ 2
+ (𝑥6 + 𝑥9 ≥ 1) = 2𝑥1 + 2𝑥6 + 2𝑥9 ≥ 3

/ 2 = 𝑥1 + 𝑥6 + 𝑥9 ≥ 2
i.e. 𝑥1 + 𝑥6 + 𝑥9 ≤ 1

This generalises to colour classes of any size 𝑣

Each non-edge is used exactly once, 𝑣 (𝑣 − 1) additions
𝑣 − 3 multiplications and 𝑣 − 2 divisions

Solvers don’t need to “understand” cutting planes to write this derivation to proof log

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 67 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

Dealing With Colourings

The colour bound doesn’t follow by RUP. . .

But we can lazily recover at-most-one constraints for each colour class!

(𝑥1 + 𝑥6 ≥ 1)
+ (𝑥1 + 𝑥9 ≥ 1) = 2𝑥1 + 𝑥6 + 𝑥9 ≥ 2
+ (𝑥6 + 𝑥9 ≥ 1) = 2𝑥1 + 2𝑥6 + 2𝑥9 ≥ 3

/ 2 = 𝑥1 + 𝑥6 + 𝑥9 ≥ 2
i.e. 𝑥1 + 𝑥6 + 𝑥9 ≤ 1

This generalises to colour classes of any size 𝑣

Each non-edge is used exactly once, 𝑣 (𝑣 − 1) additions
𝑣 − 3 multiplications and 𝑣 − 2 divisions

Solvers don’t need to “understand” cutting planes to write this derivation to proof log

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 67 / 95

What This Looks Like in the Proof Log

pseudo-Boolean proof version 2.0
f 41
soli x12 x7 x9
rup 1 ~x12 1 ~x7 >= 1 ;
* bound, colour classes [x1 x6 x9]
pol 71≁6 191≁9 + 246≁9 + 2 d
pol 42obj -1 +
rup 1 ~x12 >= 1 ;
* bound, colour classes [x1 x3 x9]
pol 11≁3 191≁9 + 213≁9 + 2 d
pol 42obj -1 +
rup 1 ~x11 1 ~x10 >= 1 ;
* bound, colour classes [x1 x3 x7]
* [x9]
pol 11≁3 101≁7 + 123≁7 + 2 d
pol 42obj -1 +
rup 1 ~x11 >= 1 ;

soli x8 x5 x2 x1
rup 1 ~x8 1 ~x5 >= 1 ;
* bound, colour classes [x1 x9] [x2]
pol 53obj 191≁9 +
rup 1 ~x8 >= 1 ;
* bound, colour classes [x1 x3 x7]
* [x2 x4 x9] [x5 x6 x10]
pol 11≁3 101≁7 + 123≁7 + 2 d
pol 53obj -1 +
pol 42≁4 202≁9 + 224≁9 + 2 d
pol 53obj -3 + -1 +
pol 95≁6 265≁10 + 276≁10 + 2 d
pol 53obj -5 + -3 + -1 +
rup >= 1 ;
output NONE
conclusion BOUNDS -4 -4
end pseudo-Boolean proof

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

Verifying This Proof (For Real, This Time)

$ veripb --trace clique.opb clique-attempt-two.veripb
=== begin trace ===
line 002: f 41

ConstraintId 001: 1 ~x1 1 ~x3 >= 1
ConstraintId 002: 1 ~x2 1 ~x3 >= 1

...
ConstraintId 041: 1 ~x11 1 ~x12 >= 1

line 003: soli x7 x9 x12 ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x8 ~x10 ~x11
ConstraintId 042: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 >= 4

line 004: rup 1 ~x12 1 ~x7 >= 1 ;
ConstraintId 043: 1 ~x7 1 ~x12 >= 1

line 005: * bound, colour classes [x1 x6 x9]
line 006: pol 7 19 + 24 + 2 d

ConstraintId 044: 1 ~x1 1 ~x6 1 ~x9 >= 2
line 007: pol 42 43 +

ConstraintId 045: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x8 1 x9 1 x10 1 x11 >= 3
...

ConstraintId 061: 1 ~x5 1 ~x6 1 ~x10 >= 2
line 028: pol 53 57 + 59 + 61 +

ConstraintId 062: 1 x8 1 x11 1 x12 >= 2
line 029: rup >= 1 ;

ConstraintId 063: >= 1
line 030: output NONE
line 031: conclusion BOUNDS -4 -4
line 032: end pseudo-Boolean proof
=== end trace ===

Verification succeeded.

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 69 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Maximum Clique Solvers

Different Clique Algorithms

Different search orders?

✓ Irrelevant for proof logging

Using local search to initialise?

✓ Just log the incumbent

Different bound functions?

Is cutting planes strong enough to justify every useful bound function ever invented?

So far, seems like it. . .

Weighted cliques?

✓ Multiply a colour class by its largest weight

✓ Also works for vertices “split between colour classes”

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 70 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Subgraph Isomorphism

Find the pattern inside the target

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 71 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Subgraph Isomorphism

Find the pattern inside the target

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 71 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Subgraph Isomorphism

Find the pattern inside the target

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 71 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Subgraph Isomorphism

Find the pattern inside the target

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 71 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Subgraph Isomorphism

Find the pattern inside the target

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 71 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Subgraph Isomorphism

Find the pattern inside the target

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 71 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Subgraph Isomorphism

Find the pattern inside the target

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 71 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Subgraph Isomorphism

Find the pattern inside the target

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 71 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Subgraph Isomorphism in Pseudo-Boolean Form

Each pattern vertex gets a target vertex:∑︁
𝑡 ∈V(𝑇)

𝑥𝑝,𝑡 = 1 𝑝 ∈ V(𝑃)

Each target vertex may be used at most once:∑︁
𝑝∈V(𝑃)

−𝑥𝑝,𝑡 ≥ −1 𝑡 ∈ V(𝑇)

Adjacency constraints, if 𝑝 is mapped to 𝑡 , then 𝑝’s neighbours must be mapped to 𝑡 ’s neighbours:

𝑥𝑝,𝑡 +
∑︁

𝑢∈N(𝑡)
𝑥𝑞,𝑢 ≥ 1 𝑝 ∈ V(𝑃), 𝑞 ∈ N(𝑝), 𝑡 ∈ V(𝑇)

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 72 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Subgraph Isomorphism in Pseudo-Boolean Form

Each pattern vertex gets a target vertex:∑︁
𝑡 ∈V(𝑇)

𝑥𝑝,𝑡 = 1 𝑝 ∈ V(𝑃)

Each target vertex may be used at most once:∑︁
𝑝∈V(𝑃)

−𝑥𝑝,𝑡 ≥ −1 𝑡 ∈ V(𝑇)

Adjacency constraints, if 𝑝 is mapped to 𝑡 , then 𝑝’s neighbours must be mapped to 𝑡 ’s neighbours:

𝑥𝑝,𝑡 +
∑︁

𝑢∈N(𝑡)
𝑥𝑞,𝑢 ≥ 1 𝑝 ∈ V(𝑃), 𝑞 ∈ N(𝑝), 𝑡 ∈ V(𝑇)

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 72 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Subgraph Isomorphism in Pseudo-Boolean Form

Each pattern vertex gets a target vertex:∑︁
𝑡 ∈V(𝑇)

𝑥𝑝,𝑡 = 1 𝑝 ∈ V(𝑃)

Each target vertex may be used at most once:∑︁
𝑝∈V(𝑃)

−𝑥𝑝,𝑡 ≥ −1 𝑡 ∈ V(𝑇)

Adjacency constraints, if 𝑝 is mapped to 𝑡 , then 𝑝’s neighbours must be mapped to 𝑡 ’s neighbours:

𝑥𝑝,𝑡 +
∑︁

𝑢∈N(𝑡)
𝑥𝑞,𝑢 ≥ 1 𝑝 ∈ V(𝑃), 𝑞 ∈ N(𝑝), 𝑡 ∈ V(𝑇)

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 72 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Degree Reasoning in Cutting Planes

Pattern vertex 𝑝 of degree deg(𝑝) can never be mapped to target vertex 𝑡 of degree < deg(𝑝) in
any subgraph isomorphism

Observe N(𝑝) = {𝑞, 𝑟, 𝑠} and N(𝑡) = {𝑢, 𝑣}
We wish to derive 𝑥𝑝,𝑡 ≥ 1

o

p

q

r

s

t

u

v

x

y

z

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 73 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Degree Reasoning in Cutting Planes

Adjacency: 𝑥𝑝,𝑡 + 𝑥𝑞,𝑢 + 𝑥𝑞,𝑣 ≥ 1
𝑥𝑝,𝑡 + 𝑥𝑟,𝑢 + 𝑥𝑟,𝑣 ≥ 1
𝑥𝑝,𝑡 + 𝑥𝑠,𝑢 + 𝑥𝑠,𝑣 ≥ 1

Injectivity: −𝑥𝑜,𝑢 + −𝑥𝑝,𝑢 + −𝑥𝑞,𝑢 + −𝑥𝑟,𝑢 + −𝑥𝑠,𝑢 ≥ −1
−𝑥𝑜,𝑣 + −𝑥𝑝,𝑣 + −𝑥𝑞,𝑣 + −𝑥𝑟,𝑣 + −𝑥𝑠,𝑣 ≥ −1

Literal axioms: 𝑥𝑜,𝑢 ≥ 0
𝑥𝑜,𝑣 ≥ 0
𝑥𝑝,𝑢 ≥ 0
𝑥𝑝,𝑣 ≥ 0

Add these together . . .

3 · 𝑥𝑝,𝑡 ≥ 1

o

p

q

r

s

t

u

v

x

y

z

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 74 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Degree Reasoning in Cutting Planes

Adjacency: 𝑥𝑝,𝑡 + 𝑥𝑞,𝑢 + 𝑥𝑞,𝑣 ≥ 1
𝑥𝑝,𝑡 + 𝑥𝑟,𝑢 + 𝑥𝑟,𝑣 ≥ 1
𝑥𝑝,𝑡 + 𝑥𝑠,𝑢 + 𝑥𝑠,𝑣 ≥ 1

Injectivity: −𝑥𝑜,𝑢 + −𝑥𝑝,𝑢 + −𝑥𝑞,𝑢 + −𝑥𝑟,𝑢 + −𝑥𝑠,𝑢 ≥ −1
−𝑥𝑜,𝑣 + −𝑥𝑝,𝑣 + −𝑥𝑞,𝑣 + −𝑥𝑟,𝑣 + −𝑥𝑠,𝑣 ≥ −1

Literal axioms: 𝑥𝑜,𝑢 ≥ 0
𝑥𝑜,𝑣 ≥ 0
𝑥𝑝,𝑢 ≥ 0
𝑥𝑝,𝑣 ≥ 0

Add these together and divide by 3 to get

𝑥𝑝,𝑡 ≥ 1

o

p

q

r

s

t

u

v

x

y

z

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 74 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Degree Reasoning in VeriPB

pol 18𝑝∼𝑡 :𝑞 19𝑝∼𝑡 :𝑟 + 20 𝑝∼𝑡 :𝑠 + * sum adjacency constraints
12𝑖𝑛 𝑗 (𝑢) + 13𝑖𝑛 𝑗 (𝑣) + * sum injectivity constraints
xo_u + xo_v + * cancel stray xo_*
xp_u + xp_v + * cancel stray xp_*
3 d * divide, and we're done

Or we can ask VeriPB to do the last bit of simplification automatically:

pol 18𝑝∼𝑡 :𝑞 19𝑝∼𝑡 :𝑟 + 20 𝑝∼𝑡 :𝑠 + * sum adjacency constraints
12𝑖𝑛 𝑗 (𝑢) + 13𝑖𝑛 𝑗 (𝑣) + * sum injectivity constraints

ia -1 : 1 ~xp_t >= 1 ; * desired conclusion is implied

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 75 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Other Forms of Reasoning

We can also log all of the other things state of the art subgraph solvers do:

Injectivity reasoning and filtering

Distance filtering

Neighbourhood degree sequences

Path filtering

Supplemental graphs

Proof steps are “efficient” using cutting planes

Length of proof ≈ time complexity of the reasoning algorithms

Most proof steps require only trivial additional computations

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 76 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Other Forms of Reasoning

We can also log all of the other things state of the art subgraph solvers do:

Injectivity reasoning and filtering

Distance filtering

Neighbourhood degree sequences

Path filtering

Supplemental graphs

Proof steps are “efficient” using cutting planes

Length of proof ≈ time complexity of the reasoning algorithms

Most proof steps require only trivial additional computations

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 76 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Limitations

Why trust the encoding?

Correctness of encoding can be formally verified! Work in progress. . .

Proof logging can introduce large slowdowns

Writing to disk is much slower than bit-parallel algorithms

Verification can be even slower

Unit propagation is much slower than bit-parallel algorithms

Works up to moderately-sized hard instances

Even an 𝑂 (𝑛3) encoding is painful
Particularly bad when the pseudo-Boolean encoding talks about “non-edges” but large sparse
graphs are “easy”

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 77 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Limitations

Why trust the encoding?

Correctness of encoding can be formally verified! Work in progress. . .

Proof logging can introduce large slowdowns

Writing to disk is much slower than bit-parallel algorithms

Verification can be even slower

Unit propagation is much slower than bit-parallel algorithms

Works up to moderately-sized hard instances

Even an 𝑂 (𝑛3) encoding is painful
Particularly bad when the pseudo-Boolean encoding talks about “non-edges” but large sparse
graphs are “easy”

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 77 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Limitations

Why trust the encoding?

Correctness of encoding can be formally verified! Work in progress. . .

Proof logging can introduce large slowdowns

Writing to disk is much slower than bit-parallel algorithms

Verification can be even slower

Unit propagation is much slower than bit-parallel algorithms

Works up to moderately-sized hard instances

Even an 𝑂 (𝑛3) encoding is painful
Particularly bad when the pseudo-Boolean encoding talks about “non-edges” but large sparse
graphs are “easy”

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 77 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Limitations

Why trust the encoding?

Correctness of encoding can be formally verified! Work in progress. . .

Proof logging can introduce large slowdowns

Writing to disk is much slower than bit-parallel algorithms

Verification can be even slower

Unit propagation is much slower than bit-parallel algorithms

Works up to moderately-sized hard instances

Even an 𝑂 (𝑛3) encoding is painful
Particularly bad when the pseudo-Boolean encoding talks about “non-edges” but large sparse
graphs are “easy”

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 77 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for Subgraph Isomorphism Solvers

Code for Proof Logging Subgraph Solver

https://github.com/ciaranm/glasgow-subgraph-solver

Released under MIT Licence

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 78 / 95

https://github.com/ciaranm/glasgow-subgraph-solver

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

What About Constraint Programming?

Non-Boolean variables?

Constraints?

Encoding constraints in pseudo-Boolean form?

Justifying inferences?

Reformulations?

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 79 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Non-Boolean Variables

Compiling CP Variables (1/2)

Given 𝐴 ∈ {−3 . . . 9}, the direct encoding is:
𝑎=−3 + 𝑎=−2 + 𝑎=−1 + 𝑎=0 + 𝑎=1 + 𝑎=2 + 𝑎=3

+ 𝑎=4 + 𝑎=5 + 𝑎=6 + 𝑎=7 + 𝑎=8 + 𝑎=9 = 1

This doesn’t work for large domains. . .

We could use a binary encoding:

−16𝑎neg + 1𝑎b0 + 2𝑎b1 + 4𝑎b2 + 8𝑎b3 ≥ −3 and

16𝑎neg + −1𝑎b0 + −2𝑎b1 + −4𝑎b2 + −8𝑎b3 ≥ −9
This doesn’t propagate much, but that isn’t a problem for proof logging

Convention in what follows:
Upper-case 𝐴, 𝐵,𝐶 are CP variables;
Lower-case 𝑎, 𝑏, 𝑐 are corresponding Boolean variables in PB encoding

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 80 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Non-Boolean Variables

Compiling CP Variables (1/2)

Given 𝐴 ∈ {−3 . . . 9}, the direct encoding is:
𝑎=−3 + 𝑎=−2 + 𝑎=−1 + 𝑎=0 + 𝑎=1 + 𝑎=2 + 𝑎=3

+ 𝑎=4 + 𝑎=5 + 𝑎=6 + 𝑎=7 + 𝑎=8 + 𝑎=9 = 1

This doesn’t work for large domains. . .

We could use a binary encoding:

−16𝑎neg + 1𝑎b0 + 2𝑎b1 + 4𝑎b2 + 8𝑎b3 ≥ −3 and

16𝑎neg + −1𝑎b0 + −2𝑎b1 + −4𝑎b2 + −8𝑎b3 ≥ −9
This doesn’t propagate much, but that isn’t a problem for proof logging

Convention in what follows:
Upper-case 𝐴, 𝐵,𝐶 are CP variables;
Lower-case 𝑎, 𝑏, 𝑐 are corresponding Boolean variables in PB encoding

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 80 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Non-Boolean Variables

Compiling CP Variables (1/2)

Given 𝐴 ∈ {−3 . . . 9}, the direct encoding is:
𝑎=−3 + 𝑎=−2 + 𝑎=−1 + 𝑎=0 + 𝑎=1 + 𝑎=2 + 𝑎=3

+ 𝑎=4 + 𝑎=5 + 𝑎=6 + 𝑎=7 + 𝑎=8 + 𝑎=9 = 1

This doesn’t work for large domains. . .

We could use a binary encoding:

−16𝑎neg + 1𝑎b0 + 2𝑎b1 + 4𝑎b2 + 8𝑎b3 ≥ −3 and

16𝑎neg + −1𝑎b0 + −2𝑎b1 + −4𝑎b2 + −8𝑎b3 ≥ −9
This doesn’t propagate much, but that isn’t a problem for proof logging

Convention in what follows:
Upper-case 𝐴, 𝐵,𝐶 are CP variables;
Lower-case 𝑎, 𝑏, 𝑐 are corresponding Boolean variables in PB encoding

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 80 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Non-Boolean Variables

Compiling CP Variables (1/2)

Given 𝐴 ∈ {−3 . . . 9}, the direct encoding is:
𝑎=−3 + 𝑎=−2 + 𝑎=−1 + 𝑎=0 + 𝑎=1 + 𝑎=2 + 𝑎=3

+ 𝑎=4 + 𝑎=5 + 𝑎=6 + 𝑎=7 + 𝑎=8 + 𝑎=9 = 1

This doesn’t work for large domains. . .

We could use a binary encoding:

−16𝑎neg + 1𝑎b0 + 2𝑎b1 + 4𝑎b2 + 8𝑎b3 ≥ −3 and

16𝑎neg + −1𝑎b0 + −2𝑎b1 + −4𝑎b2 + −8𝑎b3 ≥ −9
This doesn’t propagate much, but that isn’t a problem for proof logging

Convention in what follows:
Upper-case 𝐴, 𝐵,𝐶 are CP variables;
Lower-case 𝑎, 𝑏, 𝑐 are corresponding Boolean variables in PB encoding

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 80 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Non-Boolean Variables

Compiling CP Variables (2/2)

We can mix binary and an order encoding! Where needed, define:

𝑎≥4 ⇔ −16𝑎neg + 1𝑎b0 + 2𝑎b1 + 4𝑎b2 + 8𝑎b3 ≥ 4
𝑎≥5 ⇔ −16𝑎neg + 1𝑎b0 + 2𝑎b1 + 4𝑎b2 + 8𝑎b3 ≥ 5
𝑎=4 ⇔ 𝑎≥4 ∧ 𝑎≥5

When creating 𝑎≥𝑖 , also introduce pseudo-Boolean constraints encoding

𝑎≥𝑖 ⇒ 𝑎≥ 𝑗 and 𝑎≥ℎ ⇒ 𝑎≥𝑖

for the closest values 𝑗 < 𝑖 < ℎ that already exist

We can do this:

Inside the pseudo-Boolean model, where needed

Otherwise lazily during proof logging

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 81 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Non-Boolean Variables

Compiling CP Variables (2/2)

We can mix binary and an order encoding! Where needed, define:

𝑎≥4 ⇔ −16𝑎neg + 1𝑎b0 + 2𝑎b1 + 4𝑎b2 + 8𝑎b3 ≥ 4
𝑎≥5 ⇔ −16𝑎neg + 1𝑎b0 + 2𝑎b1 + 4𝑎b2 + 8𝑎b3 ≥ 5
𝑎=4 ⇔ 𝑎≥4 ∧ 𝑎≥5

When creating 𝑎≥𝑖 , also introduce pseudo-Boolean constraints encoding

𝑎≥𝑖 ⇒ 𝑎≥ 𝑗 and 𝑎≥ℎ ⇒ 𝑎≥𝑖

for the closest values 𝑗 < 𝑖 < ℎ that already exist

We can do this:

Inside the pseudo-Boolean model, where needed

Otherwise lazily during proof logging

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 81 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Non-Boolean Variables

Compiling CP Variables (2/2)

We can mix binary and an order encoding! Where needed, define:

𝑎≥4 ⇔ −16𝑎neg + 1𝑎b0 + 2𝑎b1 + 4𝑎b2 + 8𝑎b3 ≥ 4
𝑎≥5 ⇔ −16𝑎neg + 1𝑎b0 + 2𝑎b1 + 4𝑎b2 + 8𝑎b3 ≥ 5
𝑎=4 ⇔ 𝑎≥4 ∧ 𝑎≥5

When creating 𝑎≥𝑖 , also introduce pseudo-Boolean constraints encoding

𝑎≥𝑖 ⇒ 𝑎≥ 𝑗 and 𝑎≥ℎ ⇒ 𝑎≥𝑖

for the closest values 𝑗 < 𝑖 < ℎ that already exist

We can do this:

Inside the pseudo-Boolean model, where needed

Otherwise lazily during proof logging

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 81 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Constraints

Compiling Constraints

Also need to compile every constraint to pseudo-Boolean form

Doesn’t need to be a propagating encoding

Can use additional variables

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 82 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Constraints

Compiling Linear Inequalities

Given inequality
2𝐴 + 3𝐵 + 4𝐶 ≥ 42

where 𝐴, 𝐵,𝐶 ∈ {−3 . . . 9}

Encode in pseudo-Boolean form as

−32𝑎neg + 2𝑎b0 + 4𝑎b1 + 8𝑎b2 + 16𝑎b3
+ − 48𝑏neg + 3𝑏b0 + 6𝑏b1 + 12𝑏b2 + 24𝑏b3
+ − 64𝑐neg + 4𝑐b0 + 8𝑐b1 + 16𝑐b2 + 32𝑐b3 ≥ 42

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 83 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Constraints

Compiling Linear Inequalities

Given inequality
2𝐴 + 3𝐵 + 4𝐶 ≥ 42

where 𝐴, 𝐵,𝐶 ∈ {−3 . . . 9}
Encode in pseudo-Boolean form as

−32𝑎neg + 2𝑎b0 + 4𝑎b1 + 8𝑎b2 + 16𝑎b3
+ − 48𝑏neg + 3𝑏b0 + 6𝑏b1 + 12𝑏b2 + 24𝑏b3
+ − 64𝑐neg + 4𝑐b0 + 8𝑐b1 + 16𝑐b2 + 32𝑐b3 ≥ 42

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 83 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Constraints

Compiling Table Constraints

Constraints can be specified extensionally as list of feasible tuples, called a table
Variable assignments must match some row in table

Given table constraint
(𝐴, 𝐵,𝐶) ∈ [(1, 2, 3), (1, 3, 4), (2, 2, 5)]

define

3𝑡1 + 𝑎=1 + 𝑏=2 + 𝑐=3 ≥ 3 i.e., 𝑡1 ⇒ (𝑎=1 ∧ 𝑏=2 ∧ 𝑐=3)
3𝑡2 + 𝑎=1 + 𝑏=4 + 𝑐=4 ≥ 3 i.e., 𝑡2 ⇒ (𝑎=1 ∧ 𝑏=4 ∧ 𝑐=4)
3𝑡3 + 𝑎=2 + 𝑏=2 + 𝑐=5 ≥ 3 i.e., 𝑡3 ⇒ (𝑎=2 ∧ 𝑏=2 ∧ 𝑐=5)

using tuple selector variables

𝑡1 + 𝑡2 + 𝑡3 = 1

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 84 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Constraints

Compiling Table Constraints

Constraints can be specified extensionally as list of feasible tuples, called a table
Variable assignments must match some row in table

Given table constraint
(𝐴, 𝐵,𝐶) ∈ [(1, 2, 3), (1, 3, 4), (2, 2, 5)]

define

3𝑡1 + 𝑎=1 + 𝑏=2 + 𝑐=3 ≥ 3 i.e., 𝑡1 ⇒ (𝑎=1 ∧ 𝑏=2 ∧ 𝑐=3)
3𝑡2 + 𝑎=1 + 𝑏=4 + 𝑐=4 ≥ 3 i.e., 𝑡2 ⇒ (𝑎=1 ∧ 𝑏=4 ∧ 𝑐=4)
3𝑡3 + 𝑎=2 + 𝑏=2 + 𝑐=5 ≥ 3 i.e., 𝑡3 ⇒ (𝑎=2 ∧ 𝑏=2 ∧ 𝑐=5)

using tuple selector variables

𝑡1 + 𝑡2 + 𝑡3 = 1

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 84 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Constraints

Encoding Constraint Definitions

Already know how to do it for any constraint with a sane encoding using some combination of

CNF

Integer linear inequalities

Table constraints

Auxiliary variables

Simplicity is important, propagation strength isn’t

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 85 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for the CP Solver

Justifying Search

Mostly this works as in earlier examples

Restarts are easy

No need to justify guesses or decisions — only justify backtracking

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 86 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for the CP Solver

Justifying Inference

Key idea

Anything the constraint programming solver knows must follow from unit propagation of guessed
assignments on constraints in proof log

If it follows from unit propagation on the encoding, nothing needed

Some propagators and encodings need RUP steps for inferences

A lot of propagators are effectively “doing a little bit of lookahead” but in an efficient way

A few need explicit cutting planes justifications written to the proof log

Linear inequalities just need to multiply and add

All-different needs a bit more

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 87 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for the CP Solver

Justifying Inference

Key idea

Anything the constraint programming solver knows must follow from unit propagation of guessed
assignments on constraints in proof log

If it follows from unit propagation on the encoding, nothing needed

Some propagators and encodings need RUP steps for inferences

A lot of propagators are effectively “doing a little bit of lookahead” but in an efficient way

A few need explicit cutting planes justifications written to the proof log

Linear inequalities just need to multiply and add

All-different needs a bit more

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 87 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for the CP Solver

Justifying Inference

Key idea

Anything the constraint programming solver knows must follow from unit propagation of guessed
assignments on constraints in proof log

If it follows from unit propagation on the encoding, nothing needed

Some propagators and encodings need RUP steps for inferences

A lot of propagators are effectively “doing a little bit of lookahead” but in an efficient way

A few need explicit cutting planes justifications written to the proof log

Linear inequalities just need to multiply and add

All-different needs a bit more

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 87 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for the CP Solver

Justifying All-Different Failures

𝑉 ∈ { 1 4 5 }
𝑊 ∈ { 1 2 3 }

[𝑊 takes some value]

𝑋 ∈ { 2 3 }

[𝑋 takes some value]

𝑌 ∈ { 1 3 }

[𝑌 takes some value]

𝑍 ∈ { 1 3 }

[𝑍 takes some value]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 88 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for the CP Solver

Justifying All-Different Failures

𝑉 ∈ { 1 4 5 }
𝑊 ∈ { 1 2 3 }

[𝑊 takes some value]

𝑋 ∈ { 2 3 }

[𝑋 takes some value]

𝑌 ∈ { 1 3 }

[𝑌 takes some value]

𝑍 ∈ { 1 3 }

[𝑍 takes some value]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 88 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for the CP Solver

Justifying All-Different Failures

𝑉 ∈ { 1 4 5 }
𝑊 ∈ { 1 2 3 } 𝑤=1 + 𝑤=2 + 𝑤=3 ≥ 1 [𝑊 takes some value]
𝑋 ∈ { 2 3 }

[𝑋 takes some value]

𝑌 ∈ { 1 3 }

[𝑌 takes some value]

𝑍 ∈ { 1 3 }

[𝑍 takes some value]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 88 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for the CP Solver

Justifying All-Different Failures

𝑉 ∈ { 1 4 5 }
𝑊 ∈ { 1 2 3 } 𝑤=1 + 𝑤=2 + 𝑤=3 ≥ 1 [𝑊 takes some value]
𝑋 ∈ { 2 3 } 𝑥=2 + 𝑥=3 ≥ 1 [𝑋 takes some value]
𝑌 ∈ { 1 3 } 𝑦=1 + 𝑦=3 ≥ 1 [𝑌 takes some value]
𝑍 ∈ { 1 3 } 𝑧=1 + 𝑧=3 ≥ 1 [𝑍 takes some value]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 88 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for the CP Solver

Justifying All-Different Failures

𝑉 ∈ { 1 4 5 }
𝑊 ∈ { 1 2 3 } 𝑤=1 + 𝑤=2 + 𝑤=3 ≥ 1 [𝑊 takes some value]
𝑋 ∈ { 2 3 } 𝑥=2 + 𝑥=3 ≥ 1 [𝑋 takes some value]
𝑌 ∈ { 1 3 } 𝑦=1 + 𝑦=3 ≥ 1 [𝑌 takes some value]
𝑍 ∈ { 1 3 } 𝑧=1 + 𝑧=3 ≥ 1 [𝑍 takes some value]

→ −𝑣=1 + −𝑤=1 + −𝑦=1 + −𝑧=1 ≥ −1 [At most one variable = 1]
→ −𝑤=2 + −𝑥=2 ≥ −1 [At most one variable = 2]

→ −𝑤=3 + −𝑥=3 + −𝑦=3 + −𝑧=3 ≥ −1 [At most one variable = 3]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 88 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for the CP Solver

Justifying All-Different Failures

𝑉 ∈ { 1 4 5 }
𝑊 ∈ { 1 2 3 } 𝑤=1 + 𝑤=2 + 𝑤=3 ≥ 1 [𝑊 takes some value]
𝑋 ∈ { 2 3 } 𝑥=2 + 𝑥=3 ≥ 1 [𝑋 takes some value]
𝑌 ∈ { 1 3 } 𝑦=1 + 𝑦=3 ≥ 1 [𝑌 takes some value]
𝑍 ∈ { 1 3 } 𝑧=1 + 𝑧=3 ≥ 1 [𝑍 takes some value]

→ −𝑣=1 + −𝑤=1 + −𝑦=1 + −𝑧=1 ≥ −1 [At most one variable = 1]
→ −𝑤=2 + −𝑥=2 ≥ −1 [At most one variable = 2]

→ −𝑤=3 + −𝑥=3 + −𝑦=3 + −𝑧=3 ≥ −1 [At most one variable = 3]

−𝑣=1 ≥ 1 [Sum all constraints so far]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 88 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for the CP Solver

Justifying All-Different Failures

𝑉 ∈ { 1 4 5 }
𝑊 ∈ { 1 2 3 } 𝑤=1 + 𝑤=2 + 𝑤=3 ≥ 1 [𝑊 takes some value]
𝑋 ∈ { 2 3 } 𝑥=2 + 𝑥=3 ≥ 1 [𝑋 takes some value]
𝑌 ∈ { 1 3 } 𝑦=1 + 𝑦=3 ≥ 1 [𝑌 takes some value]
𝑍 ∈ { 1 3 } 𝑧=1 + 𝑧=3 ≥ 1 [𝑍 takes some value]

→ −𝑣=1 + −𝑤=1 + −𝑦=1 + −𝑧=1 ≥ −1 [At most one variable = 1]
→ −𝑤=2 + −𝑥=2 ≥ −1 [At most one variable = 2]

→ −𝑤=3 + −𝑥=3 + −𝑦=3 + −𝑧=3 ≥ −1 [At most one variable = 3]

−𝑣=1 ≥ 1 [Sum all constraints so far]
𝑣=1 ≥ 0 [Variable 𝑣=1 non-negative]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 88 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Proof Logging for the CP Solver

Justifying All-Different Failures

𝑉 ∈ { 1 4 5 }
𝑊 ∈ { 1 2 3 } 𝑤=1 + 𝑤=2 + 𝑤=3 ≥ 1 [𝑊 takes some value]
𝑋 ∈ { 2 3 } 𝑥=2 + 𝑥=3 ≥ 1 [𝑋 takes some value]
𝑌 ∈ { 1 3 } 𝑦=1 + 𝑦=3 ≥ 1 [𝑌 takes some value]
𝑍 ∈ { 1 3 } 𝑧=1 + 𝑧=3 ≥ 1 [𝑍 takes some value]

→ −𝑣=1 + −𝑤=1 + −𝑦=1 + −𝑧=1 ≥ −1 [At most one variable = 1]
→ −𝑤=2 + −𝑥=2 ≥ −1 [At most one variable = 2]

→ −𝑤=3 + −𝑥=3 + −𝑦=3 + −𝑧=3 ≥ −1 [At most one variable = 3]

−𝑣=1 ≥ 1 [Sum all constraints so far]
𝑣=1 ≥ 0 [Variable 𝑣=1 non-negative]

0 ≥ 1 [Sum above two constraints]

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 88 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

More About Proof Logging for Constraint Programming

Reformulation

Auto-tabulation is possible
Heavy use of extension variables

Can re-encode maximum common subgraph as a clique problem, without changing
pseudo-Boolean encoding

a

b c d

1 2

3 4

1 2 3 4𝑎 ↦→ { }

1

2

3

4

𝑏 ↦→

1 2 3 4𝑐 ↦→ { }

1

2

3

4

↦→𝑑

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 89 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

More About Proof Logging for Constraint Programming

High Level Modelling Languages?

High level modelling languages like MiniZinc and Essence have complicated compilers

How do we know we’re giving a proof for the problem the user actually specified?

This would need a modelling language with formally specified semantics. . .

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 90 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

More About Proof Logging for Constraint Programming

Code

https://github.com/ciaranm/glasgow-constraint-solver

Released under MIT Licence

Supports proof logging for global constraints including:

All-different

Integer linear inequality (including for very large domains)

Smart table and regular

Minimum / maximum of an array

Element

Absolute value

(Hamiltonian) Circuit

Details in [EGMN20, GMN22, MM23]
Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 91 / 95

https://github.com/ciaranm/glasgow-constraint-solver

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Strengthening Rules (And Truth About Extension Variables)

When is it allowed to derive a new constraint? If it is (clear that it is) implied?

Sometimes weaker criterion needed — recall that to get variable 𝑎 encoding

𝑎 ⇔ (3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3)

we introduced pseudo-Boolean constraints

3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5

Cutting planes method inherently cannot certify such constraints — they are not implied!

Wish to allow without-loss-of-generality arguments that can derive non-implied constraints

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 92 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Strengthening Rules (And Truth About Extension Variables)

When is it allowed to derive a new constraint? If it is (clear that it is) implied?

Sometimes weaker criterion needed — recall that to get variable 𝑎 encoding

𝑎 ⇔ (3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3)

we introduced pseudo-Boolean constraints

3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5

Cutting planes method inherently cannot certify such constraints — they are not implied!

Wish to allow without-loss-of-generality arguments that can derive non-implied constraints

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 92 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Strengthening Rules (And Truth About Extension Variables)

When is it allowed to derive a new constraint? If it is (clear that it is) implied?

Sometimes weaker criterion needed — recall that to get variable 𝑎 encoding

𝑎 ⇔ (3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3)

we introduced pseudo-Boolean constraints

3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5

Cutting planes method inherently cannot certify such constraints — they are not implied!

Wish to allow without-loss-of-generality arguments that can derive non-implied constraints

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 92 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Strengthening Rules (and Symmetry)

VeriPB supports different forms of strengthening rules that enable such w.l.o.g. arguments

Care is needed in combination with deletion

Can be very powerful: VeriPB can certify automatic symmetry breaking for SAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 93 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Strengthening Rules (and Symmetry)

VeriPB supports different forms of strengthening rules that enable such w.l.o.g. arguments

Care is needed in combination with deletion

Can be very powerful: VeriPB can certify automatic symmetry breaking for SAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 93 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Strengthening Rules (and Symmetry)

VeriPB supports different forms of strengthening rules that enable such w.l.o.g. arguments

Care is needed in combination with deletion

Can be very powerful: VeriPB can certify automatic symmetry breaking for SAT

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 93 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Future Work

Future Research Directions

Performance and reliability of pseudo-Boolean proof logging
Trim proof while verifying (as in DRAT-Trim [HHW13a])
Compress proof file using binary format
Design formally verified proof checker (work in progress [BMM+23])

Proof logging for other combinatorial problems and techniques
Symmetric learning and recycling (substitution) of subproofs
Mixed integer linear programming (some work on SCIP in [CGS17, EG21])
Satisfiability modulo theories (SMT) solving (some work by Bjørner and others)
High-level modelling languages

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
Talk to us if you want to join the proof logging revolution! ,
We’re happy to collaborate, and we’re hiring

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 94 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Future Work

Future Research Directions

Performance and reliability of pseudo-Boolean proof logging
Trim proof while verifying (as in DRAT-Trim [HHW13a])
Compress proof file using binary format
Design formally verified proof checker (work in progress [BMM+23])

Proof logging for other combinatorial problems and techniques
Symmetric learning and recycling (substitution) of subproofs
Mixed integer linear programming (some work on SCIP in [CGS17, EG21])
Satisfiability modulo theories (SMT) solving (some work by Bjørner and others)
High-level modelling languages

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
Talk to us if you want to join the proof logging revolution! ,
We’re happy to collaborate, and we’re hiring

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 94 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Future Work

Future Research Directions

Performance and reliability of pseudo-Boolean proof logging
Trim proof while verifying (as in DRAT-Trim [HHW13a])
Compress proof file using binary format
Design formally verified proof checker (work in progress [BMM+23])

Proof logging for other combinatorial problems and techniques
Symmetric learning and recycling (substitution) of subproofs
Mixed integer linear programming (some work on SCIP in [CGS17, EG21])
Satisfiability modulo theories (SMT) solving (some work by Bjørner and others)
High-level modelling languages

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas

Talk to us if you want to join the proof logging revolution! ,
We’re happy to collaborate, and we’re hiring

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 94 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Future Work

Future Research Directions

Performance and reliability of pseudo-Boolean proof logging
Trim proof while verifying (as in DRAT-Trim [HHW13a])
Compress proof file using binary format
Design formally verified proof checker (work in progress [BMM+23])

Proof logging for other combinatorial problems and techniques
Symmetric learning and recycling (substitution) of subproofs
Mixed integer linear programming (some work on SCIP in [CGS17, EG21])
Satisfiability modulo theories (SMT) solving (some work by Bjørner and others)
High-level modelling languages

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
Talk to us if you want to join the proof logging revolution! ,
We’re happy to collaborate, and we’re hiring

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 94 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Concluding Remarks

Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like most
promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet spot between
simplicity and expressivity

Action point: What problems can VeriPB solve for you?

Come talk to us. We’re hiring and open to collaboration!

The end. Or rather, the beginning!

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 95 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Concluding Remarks

Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like most
promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet spot between
simplicity and expressivity

Action point: What problems can VeriPB solve for you?

Come talk to us. We’re hiring and open to collaboration!

The end. Or rather, the beginning!

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 95 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Concluding Remarks

Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like most
promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet spot between
simplicity and expressivity

Action point: What problems can VeriPB solve for you?

Come talk to us. We’re hiring and open to collaboration!

The end.

Or rather, the beginning!

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 95 / 95

Quick Recap Subgraph Algorithms Constraint Programming Strengthening & Symmetry Conclusions

Concluding Remarks

Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like most
promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet spot between
simplicity and expressivity

Action point: What problems can VeriPB solve for you?

Come talk to us. We’re hiring and open to collaboration!

The end. Or rather, the beginning!

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 95 / 95

References for Getting Started with VeriPB

https://gitlab.com/MIAOresearch/software/VeriPB

Released under MIT Licence

Various features to help development:

Extended variable name syntax allowing human-readable names

Proof tracing

“Trust me” assertions for incremental proof logging

Documentation:

Description of VeriPB checker [BMM+23] used in SAT 2023 competition
(https://satcompetition.github.io/2023/checkers.html)

Specific details on different proof logging techniques covered in research papers
[EGMN20, GMN20, GMM+20, GN21, GMN22, GMNO22, VDB22, BBN+23, BGMN23, MM23]

Lots of concrete example files at https://gitlab.com/MIAOresearch/software/VeriPB

https://gitlab.com/MIAOresearch/software/VeriPB
https://satcompetition.github.io/2023/checkers.html
https://gitlab.com/MIAOresearch/software/VeriPB

References I

[ABGL12] Carlos Ansótegui, María Luisa Bonet, Joel Gabàs, and Jordi Levy. Improving SAT-based weighted MaxSAT solvers. In
Proceedings of the 18th International Conference on Principles and Practice of Constraint Programming (CP ’12), volume 7514 of
Lecture Notes in Computer Science, pages 86–101. Springer, October 2012.

[ABM+11] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, Christine Rizkallah, and Pascal Schweitzer. An introduction to certifying
algorithms. it - Information Technology Methoden und innovative Anwendungen der Informatik und Informationstechnik,
53(6):287–293, December 2011.

[AGJ+18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Metamorphic testing of constraint solvers.
In Proceedings of the 24th International Conference on Principles and Practice of Constraint Programming (CP ’18), volume 11008
of Lecture Notes in Computer Science, pages 727–736. Springer, August 2018.

[ANOR09] Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell. Cardinality networks and their
applications. In Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing - SAT 2009, 12th International
Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture Notes in Computer Science, pages
167–180. Springer, 2009.

[AW13] Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing 12 years of progress. In Michael Jünger
and Gerhard Reinelt, editors, Facets of Combinatorial Optimization, pages 449–481. Springer, 2013.

[Bar95] Peter Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean optimization. Technical Report
MPI-I-95-2-003, Max-Planck-Institut für Informatik, January 1995.

[BB03] Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of Boolean cardinality constraints. In Proceedings of the 9th
International Conference on Principles and Practice of Constraint Programming (CP ’03), volume 2833 of Lecture Notes in
Computer Science, pages 108–122. Springer, September 2003.

References II

[BBN+23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande. Certified core-guided MaxSAT solving.
In Proceedings of the 29th International Conference on Automated Deduction (CADE-29), volume 14132 of Lecture Notes in
Computer Science, pages 1–22. Springer, July 2023.

[BGMN23] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified symmetry and dominance breaking for
combinatorial optimisation. Journal of Artificial Intelligence Research, 77:1539–1589, August 2023. Preliminary version in
AAAI ’22.

[BHvMW21] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satisfiability, volume 336 of Frontiers
in Artificial Intelligence and Applications. IOS Press, 2nd edition, February 2021.

[Bla37] Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis, University of Chicago, 1937.

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of SAT and QBF solvers. In
Proceedings of the 13th International Conference on Theory and Applications of Satisfiability Testing (SAT ’10), volume 6175 of
Lecture Notes in Computer Science, pages 44–57. Springer, July 2010.

[BMM+23] Bart Bogaerts, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and Yong Kiam Tan. Documentation of
VeriPB and CakePB for the SAT competition 2023. Available at https://satcompetition.github.io/2023/checkers.html,
March 2023.

[BMN22] Bart Bogaerts, Ciaran McCreesh, and Jakob Nordström. Solving with provably correct results: Beyond satisfiability, and
towards constraint programming. Tutorial at the 28th International Conference on Principles and Practice of Constraint
Programming. Slides available at http://www.jakobnordstrom.se/presentations/, August 2022.

[BN21] Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Biere et al. [BHvMW21], chapter 7, pages 233–350.

https://satcompetition.github.io/2023/checkers.html
http://www.jakobnordstrom.se/presentations/

References III

[BR07] Robert Bixby and Edward Rothberg. Progress in computational mixed integer programming—A look back from the other side
of the tipping point. Annals of Operations Research, 149(1):37–41, February 2007.

[Bre] BreakID. https://bitbucket.org/krr/breakid.

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve real-world SAT instances. In Proceedings of
the 14th National Conference on Artificial Intelligence (AAAI ’97), pages 203–208, July 1997.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane proofs. Discrete Applied
Mathematics, 18(1):25–38, November 1987.

[CGS17] Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy. Verifying integer programming results. In Proceedings of the
19th International Conference on Integer Programming and Combinatorial Optimization (IPCO ’17), volume 10328 of Lecture
Notes in Computer Science, pages 148–160. Springer, June 2017.

[CHH+17] Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter Schneider-Kamp. Efficient certified RAT
verification. In Proceedings of the 26th International Conference on Automated Deduction (CADE-26), volume 10395 of Lecture
Notes in Computer Science, pages 220–236. Springer, August 2017.

[CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A hybrid branch-and-bound approach for exact rational
mixed-integer programming. Mathematical Programming Computation, 5(3):305–344, September 2013.

[CMS17] Luís Cruz-Filipe, João P. Marques-Silva, and Peter Schneider-Kamp. Efficient certified resolution proof checking. In Proceedings
of the 23rd International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’17), volume
10205 of Lecture Notes in Computer Science, pages 118–135. Springer, April 2017.

[Cry] CryptoMiniSat SAT solver. https://github.com/msoos/cryptominisat/.

https://bitbucket.org/krr/breakid
https://github.com/msoos/cryptominisat/

References IV

[DBBD16] Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Improved static symmetry breaking for SAT. In
Proceedings of the 19th International Conference on Theory and Applications of Satisfiability Testing (SAT ’16), volume 9710 of
Lecture Notes in Computer Science, pages 104–122. Springer, July 2016.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem proving. Communications of the ACM,
5(7):394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the ACM, 7(3):201–215, 1960.

[EG21] Leon Eifler and Ambros Gleixner. A computational status update for exact rational mixed integer programming. In Proceedings
of the 22nd International Conference on Integer Programming and Combinatorial Optimization (IPCO ’21), volume 12707 of
Lecture Notes in Computer Science, pages 163–177. Springer, May 2021.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences using pseudo-Boolean reasoning.
In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20), pages 1486–1494, February 2020.

[ES06] Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling
and Computation, 2(1-4):1–26, March 2006.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James Trimble. Certifying solvers for
clique and maximum common (connected) subgraph problems. In Proceedings of the 26th International Conference on Principles
and Practice of Constraint Programming (CP ’20), volume 12333 of Lecture Notes in Computer Science, pages 338–357. Springer,
September 2020.

References V

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets cutting planes: Solving with certified
solutions. In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI ’20), pages 1134–1140, July
2020.

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming solver. In Proceedings of the
28th International Conference on Principles and Practice of Constraint Programming (CP ’22), volume 235 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 25:1–25:18, August 2022.

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel. Certified CNF translations for pseudo-Boolean solving. In
Proceedings of the 25th International Conference on Theory and Applications of Satisfiability Testing (SAT ’22), volume 236 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1–16:25, August 2022.

[GN03] Evgueni Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF formulas. In Proceedings of the
Conference on Design, Automation and Test in Europe (DATE ’03), pages 886–891, March 2003.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-Boolean proofs. In Proceedings of
the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777, February 2021.

[Goc22] Stephan Gocht. Certifying Correctness for Combinatorial Algorithms by Using Pseudo-Boolean Reasoning. PhD thesis, Lund
University, June 2022. Available at https://portal.research.lu.se/en/publications/
certifying-correctness-for-combinatorial-algorithms-by-using-pseu.

[GS19] Graeme Gange and Peter Stuckey. Certifying optimality in constraint programming. Presentation at KTH Royal Institute of
Technology. Slides available at https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf, February
2019.

https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf

References VI

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of constraints. In Proceedings of the 25th
International Conference on Principles and Practice of Constraint Programming (CP ’19), volume 11802 of Lecture Notes in
Computer Science, pages 565–582. Springer, October 2019.

[HHW13a] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal proofs. In Proceedings of the 13th
International Conference on Formal Methods in Computer-Aided Design (FMCAD ’13), pages 181–188, October 2013.

[HHW13b] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with extended resolution. In Proceedings of
the 24th International Conference on Automated Deduction (CADE-24), volume 7898 of Lecture Notes in Computer Science, pages
345–359. Springer, June 2013.

[IMM19] Alexey Ignatiev, António Morgado, and João Marques-Silva. RC2: an efficient maxsat solver. J. Satisf. Boolean Model. Comput.,
11(1):53–64, 2019.

[JMM15] Saurabh Joshi, Ruben Martins, and Vasco M. Manquinho. Generalized totalizer encoding for pseudo-Boolean constraints. In
Proceedings of the 21st International Conference on Principles and Practice of Constraint Programming (CP ’15), volume 9255 of
Lecture Notes in Computer Science, pages 200–209. Springer, August-September 2015.

[KM21] Sonja Kraiczy and Ciaran McCreesh. Solving graph homomorphism and subgraph isomorphism problems faster through
clique neighbourhood constraints. In Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI ’21),
pages 1396–1402, August 2021.

[MJML14] Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, and Inês Lynce. Incremental cardinality constraints for MaxSAT. In
Proceedings of the 20th International Conference on Principles and Practice of Constraint Programming (CP ’14), volume 8656 of
Lecture Notes in Computer Science, pages 531–548. Springer, September 2014.

References VII

[MM23] Matthew McIlree and Ciaran McCreesh. Proof logging for smart extensional constraints. In Proceedings of the 29th
International Conference on Principles and Practice of Constraint Programming (CP ’23), volume 280 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 26:1–26:17, August 2023.

[MML14] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO: A modular MaxSAT solver. In Proceedings of the 17th
International Conference on Theory and Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in Computer
Science, pages 438–445. Springer, July 2014.

[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying algorithms. Computer Science Review,
5(2):119–161, May 2011.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff: Engineering an efficient SAT
solver. In Proceedings of the 38th Design Automation Conference (DAC ’01), pages 530–535, June 2001.

[MPP19] Ciaran McCreesh, William Pettersson, and Patrick Prosser. Understanding the empirical hardness of random optimisation
problems. In Proceedings of the 25th International Conference on Principles and Practice of Constraint Programming (CP ’19),
volume 11802 of Lecture Notes in Computer Science, pages 333–349. Springer, September 2019.

[MS99] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional satisfiability. IEEE Transactions on
Computers, 48(5):506–521, May 1999. Preliminary version in ICCAD ’96.

[MSH21] Laurent D. Michel, Pierre Schaus, and Pascal Van Hentenryck. MiniCP: a lightweight solver for constraint programming.
Mathematical Programming Computation, 13(1):133–184, February 2021.

References VIII

[OLH+13] Toru Ogawa, Yangyang Liu, Ryuzo Hasegawa, Miyuki Koshimura, and Hiroshi Fujita. Modulo based CNF encoding of
cardinality constraints and its application to maxsat solvers. In 25th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2013, Herndon, VA, USA, November 4-6, 2013, pages 9–17. IEEE Computer Society, 2013.

[PR16] Tobias Philipp and Adrián Rebola-Pardo. DRAT proofs for XOR reasoning. In Proceedings of the 15th European Conference on
Logics in Artificial Intelligence (JELIA ’16), volume 10021 of Lecture Notes in Computer Science, pages 415–429. Springer,
November 2016.

[PRB18] Tobias Paxian, Sven Reimer, and Bernd Becker. Dynamic polynomial watchdog encoding for solving weighted MaxSAT. In
Proceedings of the 21st International Conference on Theory and Applications of Satisfiability Testing (SAT ’18), volume 10929 of
Lecture Notes in Computer Science, pages 37–53. Springer, July 2018.

[RM16] Olivier Roussel and Vasco M. Manquinho. Input/output format and solver requirements for the competitions of
pseudo-Boolean solvers. Revision 2324. Available at http://www.cril.univ-artois.fr/PB16/format.pdf, January 2016.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM, 12(1):23–41, January 1965.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Programming, volume 2 of Foundations of
Artificial Intelligence. Elsevier, 2006.

[Sin05] Carsten Sinz. Towards an optimal CNF encoding of Boolean cardinality constraints. In Proceedings of the 11th International
Conference on Principles and Practice of Constraint Programming (CP ’05), volume 3709 of Lecture Notes in Computer Science,
pages 827–831. Springer, October 2005.

[SN15] Masahiko Sakai and Hidetomo Nabeshima. Construction of an ROBDD for a PB-constraint in band form and related
techniques for PB-solvers. IEICE Transactions on Information and Systems, 98-D(6):1121–1127, June 2015.

http://www.cril.univ-artois.fr/PB16/format.pdf

References IX

[Tse68] Grigori Tseitin. On the complexity of derivation in propositional calculus. In A. O. Silenko, editor, Structures in Constructive
Mathematics and Mathematical Logic, Part II, pages 115–125. Consultants Bureau, New York-London, 1968.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209–219, January 1987.

[Van08] Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In 10th International Symposium on Artificial
Intelligence and Mathematics (ISAIM ’08), 2008. Available at http://isaim2008.unl.edu/index.php?page=proceedings.

[Van23] Dieter Vandesande. Towards certified MaxSAT solving — certified MaxSAT solving with SAT oracles and encodings of
pseudo-Boolean constraints. Master’s thesis, Vrije Universiteit Brussel, 2023. To appear.

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT solver. In Proceedings of the 16th
International Conference on Logic Programming and Non-monotonic Reasoning (LPNMR ’22), volume 13416 of Lecture Notes in
Computer Science, pages 429–442. Springer, September 2022.

[War98] Joost P. Warners. A linear-time transformation of linear inequalities into conjunctive normal form. Information Processing
Letters, 68(2):63–69, October 1998.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and trimming using expressive
clausal proofs. In Proceedings of the 17th International Conference on Theory and Applications of Satisfiability Testing (SAT ’14),
volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer, July 2014.

http://isaim2008.unl.edu/index.php?page=proceedings

References Experimental Evaluation

Experiments: Parity Reasoning

Parity Reasoning: Experimental Evaluation

Implemented parity reasoning and PB proof logging engine2

Also DRAT proof logging for XOR constraints as described in [PR16]

Experiments with MiniSat3

Set-up:4

Intel Core i5-1145G7 @2.60GHz × 4

Memory limit 8GiB

Disk write speed roughly 200 MiB/s

Read speed of 2 GiB/s

2https://gitlab.com/MIAOresearch/tools-and-utlities/xorengine
3http://minisat.se/
4Tools, benchmarks, data and evaluation scripts available at https://doi.org/10.5281/zenodo.7083485

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 106 / 95

https://gitlab.com/MIAOresearch/tools-and-utlities/xorengine
http://minisat.se/
https://doi.org/10.5281/zenodo.7083485

References Experimental Evaluation

Experiments: Parity Reasoning

Parity Reasoning: Proof Size for DRAT and PB Proof Logging

0.01

0.1

1

10

100

3 10 30 100
Instance Size (KiB)

P
ro

of
 S

iz
e

(M
iB

)

Proof Format

DRAT

PBP

Proof sizes for Tseitin formulas using DRAT and pseudo-Boolean proof logging

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 107 / 95

References Experimental Evaluation

Experiments: Parity Reasoning

Parity Reasoning: Solving and Proof Checking Time

0.01

0.1

1

10

100

3 10 30 100
Instance Size (KiB)

T
im

e
(s

)

Tool

DRAT−trim (DRAT verification)

VeriPB (PBP verification)

MiniSat+XOR (PBP)

MiniSat+XOR (DRAT)

Solving and proof checking time for Tseitin formulas using DRAT and PB proof logging

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 108 / 95

References Experimental Evaluation

Experiments: Parity Reasoning

Parity Reasoning: Crypto Track of SAT 2021 Competition

0

50

100

150

0 2500 5000 7500 10000
Time (s)

N
um

be
r

of
 S

ol
ve

d
In

st
an

ce
s

Solver

SLIME

CryptoMiniSat

MiniSat

MiniSat+XOR (PBP)

MiniSat+XOR (no prooflogging)

MiniSat+XOR (DRAT)

Cumulative plot for the crypto track of the SAT Competition 2021

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 109 / 95

References Experimental Evaluation

Experiments: Parity Reasoning

Parity Reasoning: Crypto Track Proof Size

0.1

1

10

100

timeout
error

0.1 1 10 100
timeout

error

Proof Size PBP (GiB)

P
ro

of
 S

iz
e

D
R

AT
 (

G
iB

)

Satisfiability

SAT

UNSAT

DRAT and PB proof sizes for crypto track of SAT Competition 2021

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 110 / 95

References Experimental Evaluation

Experiments: Parity Reasoning

Parity Reasoning: Crypto Track Solving & Proof Checking Time

10

100

1000

10000

10 100
1000

10000
timeout

error

Verification Time with VeriPB (s)

S
ol

vi
ng

 T
im

e
w

ith
 M

in
iS

AT
+

X
O

R
 (

s)
Satisfiability

SAT

UNSAT

Time required for solving and proof checking for cryptographic instances

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 111 / 95

References Experimental Evaluation

Experiments: Pseudo-Boolean-to-CNF Translation

PB-to-CNF Translation: Experimental Evaluation

Certified translations for CNF encodings with VeritasPBLib5

Sequential counter [Sin05]
Totalizer [BB03]
Generalized totalizer [JMM15]
Adder network [ES06]

Proofs verified by proof checker VeriPB

Formulas solved with fork of Kissat6 syntactically modified to output VeriPB proofs
Benchmarks from PB 2016 Evaluation7 in 3 categories

Only cardinality constraints (sequential counter, totalizer)
Only general 0-1 ILP constraints (generalized totalizer, adder network)
Mixed cardinality & general 0-1 ILP constraints (sequential counter + adder network)

5https://github.com/forge-lab/VeritasPBLib
6https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork
7http://www.cril.univ-artois.fr/PB16/

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 112 / 95

https://github.com/forge-lab/VeritasPBLib
https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork
http://www.cril.univ-artois.fr/PB16/

References Experimental Evaluation

Experiments: Pseudo-Boolean-to-CNF Translation

PB-to-CNF: CNF Size vs Proof Size in KiB

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

CNF

P
ro
of

L
og
gi
n
g

sequential
totalizer

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

CNF

P
ro
of

L
og
gi
n
g

adder
gte

seq+adder

Nice scaling for proof size in terms of original CNF formula size
Except for some sequential encoding cases (which is not such a great encoding anyway)

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 113 / 95

References Experimental Evaluation

Experiments: Pseudo-Boolean-to-CNF Translation

PB-to-CNF: Translation Time vs Proof Checking Time in Seconds

10−410−310−210−1 100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

translation

ve
ri

fi
ca

ti
on

sequential
totalizer

10−410−310−210−1 100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

translation

ve
ri

fi
ca

ti
on

adder
gte

seq+adder

Translation faster — only has to generate clauses and proof
Proof checking slower — has to verify full proof

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 114 / 95

References Experimental Evaluation

Experiments: Pseudo-Boolean-to-CNF Translation

PB-to-CNF: Solving Time vs Proof Checking Time in Seconds

10−4 10−3 10−2 10−1 100 101 102 103 104 10510−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

solving

ve
rifi

ca
tio

n

sequential
totalizer

10−4 10−3 10−2 10−1 100 101 102 103 104 10510−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

solving

ve
rifi

ca
tio

n

adder
gte

seq+adder

Room for improvement of end-to-end proof checking process
But even first proof-of-concept implementation shows our approach is viable

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 115 / 95

References Experimental Evaluation

Experiments: Subgraph Algorithms

Clique Solving: Experimental Evaluation

Implemented in the Glasgow Subgraph Solver
Bit-parallel, can perform a colouring and recursive call in under a microsecond

59 of the 80 DIMACS instances take under 1,000 seconds to solve without logging

Produced and verified proofs for 57 of these 59 instances (the other two reached 1TByte disk
space)

Mean slowdown from proof logging is 80.1 (due to disk I/O)

Mean verification slowdown a further 10.1

Approximate implementation effort: one Masters student

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 116 / 95

References Experimental Evaluation

Experiments: Subgraph Algorithms

Subgraph Isomorphism Solving: Experimental Evaluation (1/3)

The Pseudo-Boolean models can be large: had to restrict to instances with no more than 260
vertices in the target graph

Took enumeration instances which could be solved without proof logging in under ten seconds
1,227 instances from Solnon’s benchmark collection:

789 unsatisfiable, up to 50,635,140 solutions in the rest
498 instances solved without guessing
Hardest solved satisfiable and unsatisfiable instances required 53,605,482 and 2,074,386 recursive
calls

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 117 / 95

References Experimental Evaluation

Experiments: Subgraph Algorithms

Subgraph Isomorphism Solving: Experimental Evaluation (2/3)

0

200

400

600

800

1000

1200

100 101 102 103 104 105 106 107 108 109

In
st
an
ce
sS

ol
ve
d

Time (ms)

Solve
Prove
Verify

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 118 / 95

References Experimental Evaluation

Experiments: Subgraph Algorithms

Subgraph Isomorphism Solving: Experimental Evaluation (3/3)

1

1K

1M

1G

100G

1 102 104 106

O
PB

+
Pr
oo

fL
og

Si
ze

Time with Proof Logging (ms)
(Colour: Time without Proof Logging)

1ms

10ms

100ms

1s

10s

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 119 / 95

References Experimental Evaluation

Experiments: Constraint Programming

Constraint Programming: How Expensive is Proof Logging? (1/2)

Laurent D. Michel, Pierre Schaus, Pascal Van Hentenryck: MiniCP: A Lightweight Solver for
Constraint Programming [MSH21]
Five benchmark problems allowing comparison of solvers “doing the same thing”:

Simple models
Fixed search order and well-defined propagation consistency levels
Few global constraints

Probably close to the worst case for proof logging performance

Also: Crystal Maze and World’s Hardest Sudoku

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 120 / 95

References Experimental Evaluation

Experiments: Constraint Programming

Constraint Programming: How Expensive is Proof Logging? (2/2)

Our solver: faster than the fastest ofMiniCP , OscaR, and Choco
Proof logging slowdown: between 8.4 and 61.1 factor

800,000 to 3,000,000 inferences per second
Proof logs can be hundreds of GBytes
No effort put into making the proof-writing code run fast

Verification slowdown: a further factor 10 to 100
Probably possible to reduce this substantially if we are prepared to put more care into writing
proofs

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 121 / 95

References Experimental Evaluation

Experiments: SAT Symmetry Breaking

SAT Symmetry Breaking: Experimental Evaluation
Evaluated on SAT competition benchmarks
BreakID [DBBD16, Bre] used to find and break symmetries

1

10

100

1000

10000

1 10 100 1000 10000
BreakID + proof logging (time in s)

B
re

ak
ID

 (
tim

e
in

 s
)

1MB

1GB

proof size

1

10

100

1000

10000

1 10 100 1000 10000
VeriPB (verification time in s)

B
re

ak
ID

 +
 p

ro
of

 lo
gg

in
g

(t
im

e
in

 s
)

Requires Breaking no unsolved yes

Proof logging overhead negligible
Proof checking at most 20 times slower than solving for 95% of instances

Combinatorial Solving with Provably Correct Results Bart Bogaerts, Ciaran McCreesh, Jakob Nordström 122 / 95

	Part 1
	Introduction
	The Success of Combinatorial Solving (and the Dirty Little Secret…)
	Ensuring Correctness with the Help of Proof Logging
	This Tutorial

	Proof Logging for SAT
	SAT Basics
	Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)
	Proof System for SAT Proof Logging

	Pseudo-Boolean Proof Logging
	Pseudo-Boolean Constraints and Cutting Planes Reasoning
	Pseudo-Boolean Proof Logging for SAT Solving
	More Pseudo-Boolean Proof Logging Rules

	Advanced SAT Techniques and Optimisation
	Proof Logging for Parity Reasoning
	Proof Logging for Translations of Pseudo-Boolean Constraints to CNF
	Proof Logging for SAT-Based Optimisation (MaxSAT solving)

	Part 2
	Quick Recap
	Subgraph Algorithms
	Proof Logging for Maximum Clique Solvers
	Proof Logging for Subgraph Isomorphism Solvers

	Constraint Programming
	Non-Boolean Variables
	Constraints
	Proof Logging for the CP Solver
	More About Proof Logging for Constraint Programming

	Strengthening & Symmetry
	Conclusions
	Future Work
	Concluding Remarks

	Appendix
	References
	Experimental Evaluation
	Experiments: Parity Reasoning
	Experiments: Pseudo-Boolean-to-CNF Translation
	Experiments: Maximum Satisfiability
	Experiments: Subgraph Algorithms
	Experiments: Constraint Programming
	Experiments: SAT Symmetry Breaking

