TPLP: Page 1-8. (© The Author(s), 2021. Published by Cambridge University Press 2021 1
d0i:10.1017 /xxxxx

A Category-Theoretic Perspective on Higher-Order
Approximation Fizpoint Theory”

POLLACI SAMUELE

Vrijge Universiteit Brussel, Belgium and Katholieke Universiteit Leuven, Belgium

KOSTOPOULOS BABIS
Harokopio University of Athens, Greece

DENECKER MARC

Katholieke Universiteit Leuven, Belgium

BOGAERTS BART

Katholieke Universiteit Leuven, Belgium and Vrije Universiteit Brussel, Belgium

submitted xx xx xrTT; revised rx T TITT; accepted TT TT TTTT

Abstract

Approximation Fixpoint Theory (AFT) is an algebraic framework designed to study the semantics
of non-monotonic logics. Despite its success, AFT is not readily applicable to higher-order
definitions. To solve such an issue, we devise a formal mathematical framework employing
concepts drawn from Category Theory. In particular, we make use of the notion of Cartesian
closed category to inductively construct higher-order approximation spaces while preserving the
structures necessary for the correct application of AFT. We show that this novel theoretical
approach extends standard AFT to a higher-order environment, and generalizes the AFT setting
of Charalambidis et al. (2018).

KEYWORDS: Approximation fixpoint theory, Higher-order definitions, Category theory.

1 Introduction

Approximation Fixpoint Theory (AFT) (Denecker et al. 2000) is an algebraic framework
designed to study the semantics of non-monotonic logics. It was originally designed for
characterizing the semantics of logic programming, autoepistemic logic, and default logic,
and to resolve longstanding problems on the relation between these formalisms (Denecker
et al. 2011). Later, it has also been applied to a variety of other domains, including abstract
argumentation (Strass 2013; Bogaerts 2019), active integrity constraints (Bogaerts and
Cruz-Filipe 2018), stream reasoning (Antic 2020), integrity constraints for the semantic
web (Bogaerts and Jakubowski 2021), and Datalog (Pollaci 2025).

The core ideas of AFT are relatively simple: we are interested in fixpoints of an operator
O on a given lattice (L, <). For monotonic operators, Tarski’s theory guarantees the

* This study was funded by Fonds Wetenschappelijk Onderzoek — Vlaanderen (project GOB2221N, and
grant V426524N), and by the European Union — NextGenerationEU under the National Recovery and
Resilience Plan “Greece 2.0” (H.F.R.I. “Basic research Financing (Horizontal support of all Sciences)”,
Project Number: 16116).

2 Cambridge Author

existence of a least fixpoint, which is of interest in many applications. For non-monotonic
operators, the existence of fixpoints is not guaranteed; and even if fixpoints exist, it is
not clear which would be “good” fixpoints. AFT generalizes Tarki’s theory for monotonic
operators by making use of a so-called approximating operator; this is an operator
A: L? = L2, that operates on L%, and that is monotonic with respect to the precision
order <, (defined by (z,y) <, (u,v) if <wu and v < y)). The intuition is that elements
of L? approximate elements of L: (z,y) € L? approximates z if x < z < y, i.e., when
x <y, the tuple (z,y) can be thought of as an interval in L. Given such an approximator,
AFT defines several types of fixpoints (supported fixpoints, a Kripke-Kleene fixpoint,
stable fixpoints, a well-founded fixpoint) of interest.

In several fields of non-monotonic reasoning, it is relatively straightforward to define
an approximating operator and it turns out that the different types of fixpoints then
correspond to existing semantics. In this way, AFT clarifies on the one hand how different
semantics in a single domain relate, and on the other hand what the relation is between
different (non-monotonic) logics.

Let us illustrate the application of AFT to standard, first-order, logic programming.
In this setting, the lattice L is the lattice of interpretations with the truth order I < .J
if PI C P’ for each predicate P. The operator is the immediate consequence operator
Tp, as defined in the seminal work of van Emden and Kowalski (1976). Given a logic
program (i.e., a set of rules), this operator has the property that ¢ holds in Tp(I) if and
only if there is a rule ¢ « ¢ in P such that ¢ is true in I. In this setting, pairs (I, J)
are seen as four-valued interpretations: I represents what is true and J what is possible.
A fact is then true (resp. false) if it is true (resp. false) in both I and J, unknown if
it is true in J but not true in I and inconsistent if it is true in I but not in J. The
approximating operator Up is, in this case, nothing else than Fitting’s (2002) four-valued
immediate consequence operator, which uses Kleene’s truth tables to evaluate the body
of each rule in a four-valued interpretation. For this approximator, the fixpoints defined
by AFT correspond to the major semantics of logic programming: supported fixpoints are
models of Clark’s completion (Clark 1977), stable fixpoints correspond to (partial) stable
models (Gelfond and Lifschitz 1988), the Kripke-Kleene fixpoint to the Kripke-Kleene
model (Fitting 1985) and the well-founded fixpoint is the well-founded model (Van Gelder
et al. 1991).

This paper is motivated by a need to apply AFT to higher-order logic programming
that arose in several contexts (Dasseville et al. 2015; 2016; Charalambidis et al. 2018). An
important issue that arises in this context is that using pairs of interpretations no longer
allows for an obvious way to evaluate formulas in an approximation. Let us illustrate this
with a brief example (for more detailed ones, we invite the reader to look at Examples 3,
and 4). Consider a logic program in which a first-order predicate p and a second-order
predicate @) are defined. Now assume that in the body of a rule, the atom Q(p) occurs. A
tuple (I, J) of interpretations in this case tells us whether Q(S) is true, false, unknown,
or inconsistent, for any given set S. However, the interpretation of p via (I, J) is not a
set, but a partially defined set, making it hard to evaluate expressions of the form Q(p).
In other words, an approximation of the interpretation of @ has to take as argument not
only sets, i.e., exact elements, but also partially defined sets, i.e., approzimate elements,
like the interpretation of p in this example. Thus, there is a need for a richer space of
approximations where approximate objects can be applied to other approximate objects.

The above example and considerations suggest that spaces of approximations of higher-
order objects should be defined inductively from lower-order ones, following the type
hierarchy: we start by assigning a base approximation space to each type at the bottom of
the hierarchy, and then, for each composite type 71 — T2, we define its approximation space
as a certain class of functions from the approximation space for 7; to the approximation
space for 7o, and so on. This method was heavily inspired by the approach used by
Charalambidis et al. (2018) to obtain a generalization of the well-founded semantics for
higher-order logic programs with negation. Notice that there are two major points in the
construction above which are yet not defined: the base approximation spaces, and the
class of functions we consider. The main question of this paper is how to define them in a
generic way that works in all applications of AFT.

We want to apply the same AFT techniques on approximation spaces at any hierarchy
level, i.e., on base approximation spaces and the aforementioned sets of functions, which
should thus have the same algebraic structure. In Category Theory (CT), the notion of
Cartesian closed category captures this behavior. A category consists of a collection of
objects and a collection of morphisms, i.e., relations between objects. For example, we
can define the category of square bilattices as the one having square bilattices as objects,
and monotone functions as morphisms. The objects of a Cartesian closed category C
satisfy a property that can be intuitively understood as follows: if A and B are two
objects of C, then the set of morphisms from A to B is also an object of C. Hence, if the
base approximation spaces are objects of a Cartesian closed category, then the category
contains the full hierarchy of spaces we are aiming for. We call such a Cartesian closed
category an approximation category and denote it by Approx.

In this category-theoretic framework, the questions on the nature of the base approxi-
mation spaces and the class of functions reduce to defining the objects and the morphisms
of Approx. Clearly, this depends on the application we want to use AFT for. Different
applications imply different higher-order languages, with different types, and possibly
different versions of AFT (standard AFT (Denecker et al. 2000), consistent AFT (Denecker
et al. 2003), or other extensions (Charalambidis et al. 2018)). To formalize this, and
unify different AFT accounts, we develop the notion of an approximation system. Once a
language and the semantics of its types are fixed, we can choose an approximation system
that consists, among other things, of a Cartesian closed category Approx, equipped
with a function App associating the semantics of a type to an approximation space in
Approx. The approximation system also determines which elements of the approximation
spaces are exact, i.e., which elements approximate exactly one element of the semantics
of a type, and, for every type, it provides a projection from the exact elements to the
objects they represent in the corresponding semantics. This is non-trivial for higher-order
approximation spaces, and it is indeed fundamental to obtain a sensible account for AFT
for higher-order definitions.

In recent work, a stable semantics for higher-order logic programs was defined building
on consistent AFT (Bogaerts et al. 2024). In that work, the approach taken to evaluate
an expression of the form Q(p), instead of applying an approximate interpretation for @
to an approximate interpretation for p, is to apply the approximate interpretation for @
to all exact interpretations for p that are still possible, and returning the least precise
approximation of all the results. What this means in effect is that some sort of ultimate
construction (Denecker et al. 2004) is used; this has also been done in other extensions of

4 Cambridge Author

logic programming (Pelov et al. 2007; Dasseville et al. 2016). Bogaerts et al. (2024) also
pointed out a rather counterintuitive behaviour of the well-founded semantics defined in the
work of Charalambidis et al. (2018), namely that even for simple non-recursive programs,
the well-founded model might not assume expected values (leaving all atoms unknown).
It is important to mention, though, that this counterintuitive behaviour is caused solely
by the treatment of (existentially) quantified variables and not by the algebraic theory
(which is the focus of the current paper). Finally, it is interesting to mention that another
paper Charalambidis and Rondogiannis (2023) joined CT and AFT, albeit with different
perspective and aim: while we treat the whole set of possible approximation spaces as a
category to apply any account of AFT to higher-order definitions, Charalambidis and
Rondogiannis (2023) view the approximation spaces themselves as categories to provide a
novel version of standard AFT.
In short, the main contributions of our paper are as follows:

1. We generalize the work of Charalambidis et al. (2018) to a category-theoretic setting.
In doing so, we shed light on the general principles underlying their constructions for
higher-order logic programing and make their construction applicable to arbitrary
current and future non-monotonic reasoning formalism captured by AFT.

2. We improve the work of Charalambidis et al. (2018). In particular, we define a new
approximator, which provides the expected well-founded semantics; and we study
the concept of exactness, previously missing, allowing the use of the theory to define
exact stable models instead of focusing purely on the well-founded model.

It is also worth remarking that the generality of the CT environment allows to cover
various accounts of AFT, like the ones of Denecker et al. (2000), Denecker et al. (2003),
and Charalambidis et al. (2018), and possibly others. Different versions of AFT are
suitable for various situations and cater to specific applications. For instance, consistent
AFT (Denecker et al. 2003) utilizes a three-valued logic and provides a rather intuitive and
easily applicable notion of approximation. On the other hand, standard AFT (Denecker
et al. 2000) employs a four-valued approach, with inconsistent elements, as presented
earlier in this introduction. This can sometimes be of a more difficult use in applications,
but shows several advantages from the formal, mathematical standpoint: having a full
bilattice, composed of both consistent and inconsistent elements, provides symmetry
and allows for duality results to be derived, simplifying the proofs of the fundamental
theorems at the core of this version of AFT. It is hence valuable to obtain a framework
that covers as many accounts of AFT as possible.

The rest of this paper is structured as follows. In Section 2, we provide an overview of
the fundamental concepts from AFT and CT that we use. Section 3 presents the novel
definitions of approximation system, with the category Approx, and of exact elements of
an approximation space. In Section 4, we show that the square bilattices form a Cartesian
closed category that can be chosen as Approx for standard AFT. With a suitable
choice of App and exact elements, depending on the application at hand, we obtain an
approximation system that recovers the framework of standard AFT and extends it to
higher-order objects. This section can be skipped by the reader interested uniquely in the
AFT version of Charalambidis et al. (2018), which is addressed in the following section.
In Section 5, we apply the novel categorical framework to Charalambidis et al. (2018).
First, in Subsection 5.1, we show that the approximation spaces from Charalambidis

et al. (2018) form a Cartesian closed category. Second, in Subsection 5.2 we define an
approximation system that enables us to reconstruct in a simple way (using the general
principles outlined above) the semantic elements defined ad-hoc by Charalambidis et al.
(2018). At the same time, the definition of such approximation system also resolves a
question that was left open in that work. Namely, what we get now is a clear definition
for exact higher-order elements, and, in particular, this allows to determine when a model
of a program is two-valued (see Example 2). We proceed with Subsection 5.3, where we
present the new approximator that adjusts the behaviour of the well-founded semantics
of Charalambidis et al. (2018) for programs with existential quantifiers in the body of
rules. We close the subsection with two examples of logic programs in which we need to
apply an approximate object on another approximate object. We conclude in Section 6.

2 Preliminaries

In this section, we provide a concise introduction to the formal concepts we utilize
throughout the paper. We divide the content into two subsections. In the former (Section
2.1), we outline the core ideas at the foundation of AFT, and we present in more detail
the parts of the work of Charalambidis et al. (2018) that we aim to modify in Section
5. In the second subsection (Section 2.2), we present the notions of Category Theory
(CT) we need, with the definition of Cartesian closed category being the key concept. For
further information on CT, we refer to the book by Riehl (2017).

2.1 Approximation Fixpoint Theory

AFT generalizes Tarki’s theory to non-monotonic operators, with the initial goal of
studying the semantics of non-monotonic logics. As such, AFT heavily relies on the
following notions from order theory.

A partially ordered set (poset) P is a set equipped with a partial order, i.e., a reflexive,
antisymmetric, transitive relation. We denote a poset by P = (P, <p), where P is the
underlying set, and <p the partial order. By abuse of notation, when referring to a poset
P, we often use the notation for the underlying set P in place of the calligraphic one.
We denote by P°P the poset with the same underlying set as P but opposite order, i.e.,
PP = (P, >p). Given a subset S C P, a lower bound [of S is the greatest lower bound
of S, denoted by [].5, if it is greater than any other lower bound of S. Analogously, an
upper bound u of S is the least upper bound of S, denoted by | | S, if it is lower than
any other upper bound of S. A chain complete poset (cpo) is a poset C' such that for
every chain S C C, i.e., a totally ordered subset, | | S exists. A complete join semilattice
is a poset J such that for any subset S C J, | | S exists. A complete lattice is a poset L
such that for any subset S C L, both []S and | | S exist. A function f: P; — P» between
posets is monotone if for all z,y € P; such that z <p, y, it holds that f(z) <p, f(y).
We refer to functions O: C — C with domain equal to the codomain as operators. An
element z € C' is a fizpoint of O if O(z) = x. By Tarski’s least fixpoint theorem, every
monotone operator O on a cpo has a least fixpoint, denoted Ifp(O). To use a similar
principle for operators stemming from non-monotonic logics, standard AFT (Denecker
et al. 2000) considers, for each complete lattice £, its associated square bilattice (L%, <,),
where <, is the precision order on the Cartesian product L?, i.e., (z1,y1) <p (z2,y2) iff

6 Cambridge Author

x1 <p, 9 and yo <y, y1. A square bilattice <L2, <,p) can be viewed as an approximation
of L: an element (z,y) € L? such that x <7 y “approximates” all the values z € L such
that <j, z <y, y. Such pairs (z,y) with <;, y are called consistent. Pairs of the form
(z,2) € L? are called ezact, since they approximate only one element of L.

An approzimator A: L?> — L? is a monotone operator that is symmetric, i.e., for all
(z,y) € L? it holds that A;(z,y) = Aa(y,z), where Ay, Ay: L? — L are the components
of A, ie. A(z,y) = (A1(x,y), A2(z,y)). An approximator A: L? — L? approzimates an
operator O: L — L if for all z € L, A(z,z) = (O(x),0(x)). Since A is by definition
monotone, by Tarski’s theorem A has a least fixpoint, which is called the Kripke-Kleene
fixpoint. Moreover, given an approximator A, there are three other operators which
deserve our attention, together with their fixpoints: the operator approximated by A,
Os:x € L — Aj(x,x) € L whose fixpoints are called supported; the stable operator
Sa:x € L — Up(Ai(-,x)) € L with the stable fixpoints (where Ai(-,z):y € L —
Ai(y,z) € L); and the well-founded operator Sy: (x,y) € L? + (Sa(y),Sa(z)) € L?,
whose least fixpoint is referred to as the well-founded fixpoint. If A is the four-valued
immediate consequence operator (Fitting 2002), then the aformentioned four types of
fixpoint correspond to the homonymous semantics of logic programing (Denecker et al.
2000; 2012).

The concepts presented so far are part of what we refer to as standard AFT (Denecker
et al. 2000), i.e. the first account of AFT. Following this initial take, several other variants
have been developed: consistent AFT (Denecker et al. 2003), non-deterministic AFT
(Heyninck et al. 2024), or other extensions (Charalambidis et al. 2018). In particular, the
latter already proposes a way to deal with higher-order logic programs via an extension
of consistent AFT. However, as already highlighted by Bogaerts et al. (2024), the work
of Charalambidis et al. (2018) had some hidden problematic features. They can be
summarised as follows:

1. The Approzimator: the well-founded semantics obtained via the approximator defined
by Charalambidis et al. (2018) does not behave as expected when an existential
quantifier occurs in the body of a rule. Take for instance the logic program with just
the simple rule p +~ R A ~ R, where R is a variable ranging over the booleans {f, t}.
If we naively ground such program, we obtain p < f At and p + t A f, and p would
clearly be evaluated as false. However, the approach adopted by Charalambidis et al.
(2018) uses approximated elements. In particular, variables of type boolean range
over {f,t,u}. In more detail, for the logic program p < R A ~ R, the approximator
assignes to p the least upper bound of the body R A ~ R, with R ranging over
{f,t,u}. Since such least upper bound is computed with respect to the truth order
f <u <, the predicate p is assigned the value | [{t Af,f At,uAu} = u under the
well-founded semantics. This contradicts the more intuitive and standard two-valued
approach via grounding, which assigns f to p. In a way, allowing the existentially
quantified variable to vary over all approximated elements seems to unnecessarily
increase (w.r.t. the truth order) the value of the defined predicate, when evaluated
under the well-founded semantics.

2. The Notion of Ezactness: the work of Charalambidis et al. (2018) lacks the notion
of exactness for higher-order objects, which is fundamental in the context of AFT
and rather non-trivial in the higher-order setting: exactness allows to recognize

7

whether an approximated object, i.e. a pair (z,y) in the bilattice, represents just
one real element of the lattice, and, in particular, when a model is two-valued. In
other words, having such concept makes it possible to study not just the well-funded
models, but also the stable ones.

In Section 5, we will show how we can use our novel concepts in the framework of
Charalambidis et al. (2018) to solve the issues listed above.

2.2 Category Theory

Category Theory (CT) studies mathematical structures and the relations between them,
through the notion of a category. Intuitively, a category C consists of a collection Ob(C)
of objects and a collection Mor(C) of relations, called morphisms, between objects,
satisfying some basic properties: every morphism f has a domain s(f) and a codomain
t(f), morphisms can be composed, and so on.

Definition 1
A category C consists of

a collection of objects Ob(C),

a collection of morphisms Mor(C),

for every morphism f € Mor(C), an object s(f) called the source (or domain) of f, and
an object t(f) called the target (or codomain) of f,

for every object X € Ob(C), a morphism idx called the identity morphism,

for every two morphisms f,g € Mor(C) with ¢(f) = s(g), a morphism g o f, called their
composite,

such that

for all f,g € Mor(C) such that ¢(f) =
for all f,g € Mor(C) such that ¢(f) = (g)7 t() = (g)7
for all X € Ob(C), s(idx) =t(idx) = X,

for all f, g, h € Mor(C) such that ¢(f) = s(g) and t(g) = s(h), (hog)o f =ho(go f),
for all X,Y € Ob(C) and for all f € Mor(C) such that s(f) = X and ¢(f) = Y,
foidx = fand idy o f = f.

In this paper, objects will always be certain ordered sets, and morphisms will be
monotone functions. In the same way as morphisms between objects encode relations
within a category, a morphism of categories, called a functor, describes the relation
between two categories.

Definition 2

Let C,D be two categories. A functor F': C — D consists of a function Fy: Ob(C) —
Ob(D) between the classes of objects, and a function F;: Mor(C) — Mor(D), such that
it respects target and source of morphisms, identity morphisms, and composition.

For each z,y € Ob(C), we denote by homc(z,y) the set of morphisms of C with
domain z and codomain y.

Definition 3
A functor F': C - D is

8 Cambridge Author

e full if for each X,Y € Ob(C), the map Fi [nhome(x,v): homc(X,Y) —
homp (Fo(X), Fo(Y)) is surjective,

o faithful if for each X,Y € Ob(C), the map Fi [home(x,y): homc(X,Y) —
homp (Fy(X), Fo(Y)) is injective,

e embedding if F is faithful and Fj is injective.

The domain of a full embedding F': C — D is called a full subcategory of the codomain
(denoted as C C D).

It is easy to see that we can define a category POSet with objects the posets, and
as morphisms the monotone functions between posets. We denote by CPO, CJSLat,
and CLat the full subcategories of POSet with objects the cpo’s, the complete join
semilattices, and the complete lattices, respectively. Clearly, it also holds that CLat C
CPO C POSet and CLat C CJSLat C POSet.

We are interested in inductively building approximation spaces for higher-order concepts
starting from base ones. To be able to perform this construction, we need the approximation
spaces to belong to a Cartesian closed category, i.e., a category C with a terminal object,
products, and exponentials.

Definition 4
T € Ob(C) is terminal if for each A € Ob(C) there exists a unique morphism f: A — T

For instance, the poset with one element and trivial order is the terminal object of
POSet, CPO, CJSLat, and CLat.

Definition 5

Let Ay, As € Ob(C). A product of Ay and Ay is an object of C, denoted by A; x As,
equipped with two morphisms 7: A1 X Ay — Ay and 7o: A1 X Ay — As, called first,
and second projection respectively, such that for any B € Ob(C) and any morphisms
fi: B — A; and fo: B — As, there exists a unique morphism f; X fo: B — A; X Ay
such that m1 o (f1 x f2) = f1 and w2 0 (f1 X f2) = fa.

In POSet, and analogously for CPO, CJSLat, and CLat, the product of two objects
Py and P, is the Cartesian product of P, and P, equipped with the product order, i.e.,
(z1,y1) < (22,y2) if and only if 21 <p, x5 and y; <p, y2. The projections m and 7o are
given by the usual Cartesian projections.

Definition 6

Let A1, Ay € Ob(C). An exponential of Ay and A, is an object of C, denoted by Ag‘l,
equipped with a morphism ev: AQA1 x A1 — A, called the evaluation, such that for
any B € Ob(C) and any morphism f: B X A; — A, there exists a unique morphism
f': B — A" such that evo (f' x id) = f.

In POSet, and analogously for CPO, CJSLat, and CLat, the exponential 73;)1 is the
set of monotone functions from P; to P; equipped with the pointwise order (induced by
<p,), i.e., f1 <p fo if and only if for all x € Py, fi(x) <p, f2(z). The evaluation ev is
given by the usual function evaluation, i.e., ev(f,z) = f(x).

Definition 7
A category C is Cartesian closed if it has a terminal object, and for each A1, As € Ob(C),
there exist A; x A; € Ob(C) and A" € Ob(C).

Ll e s

9

By our prior observations, it follows that POSet, CPO, CJSLat, and CLat are all
Cartesian closed.

In the context of AFT, we are often interested in the space of interpretations over a
possibly infinite vocabulary of a logic program. In order to include this, we need another
notion from CT, namely a generalized version of the categorical product for (possibly
infinite) families of objects.

Definition 8

Let {A;};cr be a family of objects of a category C indexed by I. The (generalized)
product of the family {A;};cr is an object of C, denoted by Il;c;4;, equipped with
morphisms m;: I;erA; — A;, called the i-th projection, such that for all B € Ob(C)
and for all families of morphisms {¢;: B — A;};cr indexed by I, there exists a unique
¥: B — Il;er A; such that for all ¢ € I it holds that ¢; = 7; 0 9.

We say that a category C has generalized products if for all families {A; };cr of objects
of C the product II;c 1 A; € Ob(C) exists. Clearly, if C is Cartesian closed and the index I
is finite, this product always exists; but this is not always the case for infinite I. However,
we will show in the remainder of this subsection that every full subcategory of POSet
has generalized products (Proposition 2). We wish to warn the reader that the following
category-theoretic notions are only meant to support the proofs of Propositions 2 and 3,
and will not be used in the next sections of the paper.

The generalized product is a special case of a very common construction in CT, called
the limiting cone, or simply limit. We proceed with the definitions leading to the concept
of limit.

Definition 9
A diagram X, in a category C is

a set {X;}ier of objects of C,

for every pair (i,j) € I x I, a set {fo: Xi = X;}acr, ; of morphisms,

for every i € I an element ¢; € I; ;,

for each (4,7, k) € I x I x I a function comp; ; ,: I; j X Ij x — I; such that

(a) comp is associative and unital with the f.,’s being the neutral elements,

(b) for every i € I, f., = idx, is the identity morphism of Xj,

(c) for every two composable morphisms f,: X; — X; and fg: X; — X, it holds that
fpofa= fcompi,j,k(aﬁ)'

Definition 10

Let Xo = ({fa: Xi = Xj}ijer,acr,;, comp) be a diagram in C. A cone over X, is an
object X € Ob(C) together with, for each i € I, a morphism p;: X — X; € Mor(C) such
that for all (¢,j) € I x I and for all « € I, ;, it holds that f, o p; = p;.

Moreover, the limiting cone or limit of X, is, if it exists, the cone over X, which is
universal among all possible cones over X,.

Definition 11
A functor F': C — D reflects all limits if for all diagrams X, in C, and for all cones C
over X, such that F(C) is a limiting cone of F(X,), C is a limiting cone of X,.

10 Cambridge Author

Proposition 1
A full and faithful functor reflects all limits.

Proof
Lemma 3.3.5 in (Riehl 2017). [

We are finally able to prove that every full subcategory of POSet has geeralized
products.

Proposition 2
If C C POSet, then C has generalized products.

Proof

By Definition 3, there exists a full embedding F': C — POSet. By Proposition 1, F’
reflects all limits. Moreover, it is clear that POSet has generalized products. Since
generalized products are a type of limit, we conclude that C has generalized products. []

In a full subcategory of POSet we can rewrite a generalized product as a poset of
functions. Given two posets P1, P2 € Ob(POSet), we denote by (P; — P2) € Ob(POSet)
the poset of functions from P; to Py ordered with the pointwise order. In particular,
notice that (P; — P2) may contain non-monotone functions.

Proposition 3
Let C be a full subcategory of POSet, X € Ob(POSet), and Y € Ob(C). Then there
exists an isomorphism (X — V) 2 I,cxY in C.

Proof

By Proposition 2, II,cxY € Ob(C). Moreover, there exists a bijection ¢: (X - Y) —
M.exY, defined by o(f) = (f(a))aex, with inverse ¢~ 1: IIexY — (X — Y), defined
by, for all @ € X, ¢ ((yz)zex)(a) = ya. Because of the definition of pointwise order and
product order, it is immediate to show that both ¢ and ¢! preserve the orders, i.e., they
are monotone. [

3 The Approximation System

In this section, we introduce the notions of approximation category and of approzimation
system, which constitute the core of the theoretical framework for AFT we developed.

Let £ be a higher-order language based on a hierarchy of types H comprising of base
types 7, and two kinds of composite types: product types IL;c;1;, and morphism types
71 — To. For instance, a base type could be the boolean type o or the type ¢ of individuals,
whereas in the composite types we may find the type ¢ — o, which is the type of unary
first-order predicates. We denote by By the set of base types. For the sake of simplicity,
we omit the subscript of B when it is clear from the context of use.

We associate to each type 7 of By, an object E, € Ob(POSet), and we define inductively
for all {r;}ie; € H, Fn,.,r, = icrEy,, and for all 7, € H, E, ., = (E,, = E.,).
The object E. is called the semantics of 7. For example, if the semantics of the boolean
type o is chosen to be E, := {f, t} with the standard truth ordering, then the semantics
for type o — o is the poset of functions from F, to E,.

11

In many applications of AFT, we are ultimately interested in the space of interpretations,
which associate to each symbol of a vocabulary, an element of the semantics of the type
of such symbol. It follows that an interpretation can be seen as a tuple of elements of
different semantics. In more detail, given a vocabulary V', we can consider the product type
7 = Hsevt(s), where t(s) is the type of the symbol s. Then, the space of interpretations
for the vocabulary V' coincides with the semantics £, = ey Ey ().

We have so far defined the semantics of all the base types and the composite ones
constructed from them. Notice that, it is often not necessary to define the spaces of
approximations for all such semantics E, which are infinitely many. Because of the nature
of our formalism, we can easily restrict the set of types we take into account: we can fix a
subset T C H of types, and focus our attention onto the set St defined as follows:

e forall7 €T, E, € S,
o if £, _,;, €5, then E,, € ST,
o if By € St, then ., € St for all i € I.

i€ITi

We will dive deeper into this matter in Section 5 where we present applications of our
framework. We denote by Bt the set of base types of H belonging to T.

The notion of approximation system (Definition 12) together with what follows in this
section, provide a general framework in which the techniques of AFT can be applied on
higher-order languages. Before stating the, rather lengthy, definition of an approximation
system, we provide an intuitive understanding of its components.

For each E. € Sy, we shall consider a corresponding space App(E;), called an ap-
proximation space, whose elements approximate the elements of E.. Hence, we de-
fine a Cartesian closed full subcategory of CPO, denoted by Approx, and a map
App: St — Ob(Approx) encoding such correspondence. The fact that Approx C CPO
allows us to apply the Knaster-Tarski theorem on the approximation spaces, and guar-
antees the existence of generalized products (Proposition 2). Notice that, even though
we fixed a mapping App between the set St and the objects of Approx, there is, so
far, no relation between the elements of E. and those of App(E.). The approximation
space App(E;) is meant to approximate the elements of E;. In particular, we want the
order < gpp(1) ON App(E;), which we call a precision order, to encode the approximating
nature of App(E;) for E;: intuitively, a <app(g) b if a is less precise than b, i.e., if an
element e € E. is approximated by b, then e is also approximated by a. In the context
of AFT, of particular interest are the elements of App(E;) which approximate just one
element, called the exact elements. Thus, in the definition of approximation system that
we are about to give, for every base type 7 € By, we fix a set £, of exact elements of
App(E,), and a function p?: £ — E,, which associates each exact element to the unique
element of E, it represents.

To obtain a sensible framework, it is fundamental to carefully define the sets of exact
elements and a projection that associates each exact element to the object it represents.
Hence, we impose conditions on the possible choices of the sets £, and the functions p?, for
T € Br. Since an exact element of App(F.) approximates a single element of the semantics
FE,, if both a and b are exact and one is more precise than the other, then they should
represent the same element, i.e. p2(a) = p2(b) (Item 4b in Definition 12). This requirement
also hints at a very important fact: the definition of approximation system allows for the
existence of multiple exact elements of App(E;) representing the same element of E.

12 Cambridge Author

Because of this possible multitude of exact representatives, we want to have, for each
element e € E,, a natural choice for a representative in the approximation space App(E;).
This is why, for each element e € F., we require that the greatest lower bound of all the
exact elements representing e exists, is exact, and represents e (Item 4c in Definition 12).
Lastly, we add one more condition on exact elements to accommodate several existing
versions of AFT. In consistent AFT (Denecker et al. 2003), exact elements are maximal,
while in standard AFT, this is not the case, and there are elements beyond exact ones.
We require that either the exact elements are maximal, or we can take arbitrary joins in
the approximation spaces (Item 3b in Definition 12). This last condition will later allow
for a generalization of both & and p? to any type 7 of H, satisfying properties analogous
to the ones required for the base types counterparts (Propositions 4 and 5).

We are now ready to state the definition of an approximation system. We write f~1(b)
for the preimage of an element b € B via a function f: A — B, ie., f~1(b) = {a |
f(a) = b} C A. Recall that given two posets Py, P2 € Ob(POSet), we denote by
(P1 — P2) € Ob(POSet) the poset of (possibly non-monotone) functions from P; to Ps
ordered with the pointwise order.

Definition 12
A tuple (Approx, App,{&;}ren, {p2}reB) is an approzimation system (for St) if

. Approx is a Cartesian closed full subcategory of CPO, called the approzimation category.
The objects of Approx are called approzimation spaces.
. App: St — Ob(Approx) is a function such that for all E, € St

(a) if 7 = IL;e 7 is a product type, then App(E;) = ;e App(E;),
(b) if =7 — 72 and E;, ¢ St, then App(E; —r,) = (Er, — App(Er,)),
(c) if 7 =7 — = and E,, € Sr, then App(E,, .,,) = App(E,,) PrEn),

. {&;}rep is a family of sets such that the following hold:

(a) for each base type 7 € B, & C App(E,),
(b) either App(E;) € Ob(CJSLat) for all 7 € B, or for all 7 € B, if a € &, and
b e App(E;) such that a <4,,(g,) b, then also b € &;.

. {p%},ep is a family of surjective functions such that for each base type 7 € B:

(a) p2: & — B,
(b) for all a,b € &, if a <app(p,) b, then p2(a) = p2(b),
(c) for all e € E,, there exists [((p2)~1(e)) € & and p([(p2) " (e)) = e.

Notice that, by Proposition 3, the object (E;, — App(E;,)) in Item 2b of Definition 12
is indeed an object of the approximation category Approx. Morover, again by Proposition
3, it holds that Er -, = (E7, = Er,) = 1licp, Er, = B,y r,- However, in Item 2¢
of the above definition, we have App(E;, .,,) = App(E,,) PP(Fr) 2 Wier,, App(Er,) =
App(Em,, By). Hence, while the map App, in a way, respects the structure given by the
type hierarchy H, it does not commute with isomorphisms of posets.

Finally, it is important to notice that, while the approximation system depends on the
application at hand, i.e., on the language, the semantics, and so on, the approximation
category depends only on the version of AFT.

= o=

13

We now fix an approximation system S = (Approx, App, {E; }ren, {p?}re5) for Srt,
and extend the notion of exactness to all approximation spaces.

Definition 18
Let E. € St. An element e € App(E;) is exact if one of the following conditions holds:

TE€Brandee€&,,

7 = IL;cr7; and for each ¢ € I, the i-th component 7;(e) of e is exact,

T=7 — T2, E; ¢ St,and for all e; € E., e(e1) € App(E.,) is exact.

T=m — T2, E;, € 51, and for all e; € App(E.,) exact, e(e1) € App(E,,) is exact.

The reader may wonder why there are two cases for a morphism type 71 — 75 in
Definition 13, depending whether E, is in St or not, i.e. whether we approximate the
elements of the semantics of 77 or not. Recall that an exact element in the approximation
space is meant to represent one and only one element of the semantics of the same type.
Intuitively, for a morphism type 7 — 72, a function in App(E,, —,) is exact when the
image of any exact element is exact. This is indeed sufficient and we do not need to
consider the image of non-exact elements of the domain: we will prove in Proposition
5 that there is an exact element in the approximation space for each element of the
semantics of the corresponding type. Now, considering ezact elements of the domain (and
looking at their image) makes sense only when the domain is an approximation space, i.e.
when E,, € St; in the other case, when E., ¢ St we can directly consider the elements
of the semantics, as they do not get approximated.

For 7 € T, we denote by &, the subset of App(E;) of exact elements of type 7. The
following proposition shows that the condition 3b of Definition 12 holds for any E. € St.

Proposition 4
Either for all E. € St it holds that App(E,) € Ob(CJSLat), or for all E; € S, for all
be App(E:), and for all e € &, if e <ppp(p) b, then b € &.

Proof

Suppose there exists F.» € St such that App(E.) ¢ Ob(CJSLat). We have to show that
for all E. € St, for all b € App(E;), and for all e € &, if e <ppp(p) b, then b € &. We
proceed by induction on 7.

Let 7 be a base type. Since we assumed that App(FE.) ¢ Ob(CJSLat) for some
E., € St, and CJSLat is Cartesian closed, and has generalized products by Proposition
2, then there must exists a o € B such that App(E,) ¢ Ob(CJSLat). Thus, by condition
3b of Definition 12 we can conclude the base step of the induction.

Now let 7 = Il;c;7; and suppose the proposition hold for E., for all ¢ € I. Let
(b;) € App(E;) such that e := (e;) <app(z,) (b;). By the definition of the product order,
Definition 13, and the induction hypothesis, we get that b; € &, for alli € I, i.e., (b;) € &,
as desired.

Let 7 = 71 — 7 with E; ¢ Sr, and suppose the proposition hold for E.,. By
Proposition 3, it holds that App(E;) = App(Ilicg,, E-,), thus, we can reduce to the
previous case.

Let 7 =1 — 72 with E, € St, and suppose the proposition hold for E,, and E,,. Let
[€ App(E;) such that e <, g) f. For f to be exact, it must send exact elements to
exact elements. Let a € £;,. By the definition of the order on morphisms, and Defintion

=W N

14 Cambridge Author

13, it holds that f(a) >app(m,,) €(a) € &,. By induction hypothesis, it follows that
f(a) € &,. Hence, f € &, as desired. [

Now that we have defined the exact elements for any semantics in St, we extend the
family {p%},c5 to have a map for each E, € St. We can do this inductively, by defining
a new family of functions {p.: & — E }g cs, as follows:

1. if 7 € B, then p, := p2,

2. if 7 =Ty, then for all (e;)ier € &, pr((€i)ier) == (97 (e:))ier,

3. if 7 =7 — 1, and E,, ¢ S, then for all f € &, and for all e € E, p,(f)(e) :=
bz, (f(€)).

4. if T =7 — 1, and E,, € S, then for all f € &, and for all e € E, p,(f)(e) :=
pr, (f(d)), where d € p-(e), ie., pr,(d) =e.

Recall that, intuitively, the function p, sends an exact element of type 7 to the element
it represents in the semantics of 7.

In the following proposition, we prove that for each E. € St, the function p, is
well-defined, surjective, and satisfies properties analogous to 4b and 4c of Definition 12.

Proposition 5
Let E, € St, e1,e5 € &, and e € E.. The following statements hold:

. b, is well-defined.

. P, is surjective.

L if el SAP:D(Er) €9, then pT(el) = pT(eg).

. there exists [p;1(e) € & and p-([p;t(e)) =e.

Proof
We proceed by induction on 7. Let 7 € Br. Then p, = p? and the Items 1, 2, 3, and 4
hold by definition of p?.

Now suppose 7 = Il;c;7;, and assume that Items 1, 2, 3, and 4 hold for 7; for all
i € I. Since p,, is well-defined and surjective by hypothesis for all ¢ € I, it is clear
by definition that also p. is well-defined and surjective. Let (a;), (b;) € & such that
(ai) <app(r.) (bi). By the product order on App(E;) we have a; <app(g,,) b; for all
i € I. By definition 13, a;,b; € &;, for all ¢ € I. Hence, by hypothesis it follows that
pr,(a;) = pr,(b;) for all ¢ € I. By definition of p., we get that p,((a;)) = p-((b:)).
Thus, Item 3 hold. Now let (a;) € E.. By the definition of p,, it is easy to see that
p-((a;)) = Ierpy'(a;). Hence, by induction hypothesis for Item 4, we have that
MG (@) = MMierpy @) = ies [p5Hai) € Tierp; (ai) = 5 ((ar)), where the
second equality holds because of the definition of the product order on App(E;). Thus,
also Item 4 hold for p..

Suppose T = 71 — 7o with E;, ¢ St, and assume that Items 1, 2, 3, and 4 hold for and
To. By Proposition 3 and Definition 12, we have E,, ., = (F,, — E,,) & Wiep, Er, and
App(Er,—r,) = App(Ilicp,, Er,). It is easy to see that we can reduce to the previous case
with [:= E,.

Finally, suppose 7 = 7 — 12 with E. € St, and assume that Items 1, 2, 3, and
4 hold for 7 and 75. We first show that p, is well-defined, i.e., for all f € & there
exists unique g € E = Ef;” such that p.(f) = g. Let f € &. First notice that,

15

since p,, is surjective by hypothesis, for all e € E, there exists d € &, such that
pr, (d) = e. Moreover, since p,, is well-defined by hypothesis, for all e € E,, and d €
p-t(e), we get an element p,,(f(d)) € E,,. It remains to show that for all e € E,,, if
di,dy € p;t(e) C &, then pr,(f(d1)) = pry(f(d2)). Let e € E;, and dy,do € pt(e).
By induction hypothesis for Item 4, there exists ds € p;ll(e) such that d3 <app(E,,) di,

ds <App(E-,) ds. Since f € & = é'f;l is a morphism of cpo’s, it is monotone. Hence, it
holds that f(ds) < App(E.,) f(dy), f(ds) < App(E.,) f(d2). By induction hypothesis for
Item 3, it follows that p,, (f(d1)) = pr,(f(d2)). Thus, p, is well-defined.

We now show that p, is surjective. Let g € E. = Ef;”. By the induction hypothesis on
7 for Ttem 4, for each e € E,,, we can define an element d. :=[]p;!(g(e)) € p;. (g(e)).
By Proposition 4, for each a € App(E;,) \ &, such that there exists (at least one) b € &,
with b <App(E,,) @, We can define

Cq = |_|{de1) | b € &, such that b <appm,) a}.
We define f: App(E,,) — App(E,,) for all a € App(E;,) as follows:

dp_,_l (a) ifae &,
fla) =< cq if a ¢ &, and exists b € &;, such that b <a,,m,,) @, (1)

Lapp(E,,) otherwise.

In the following we show that f is monotone. Let a1, a2 € App(E;,) such that ay <, E,)
az. If a1 ¢ &, and for all b € &, is not the case that b SApp(Eﬂ) a, then clearly
fla1) = Lapp(e,,) Sapp(m,,) fla2). If a1,a2 € &, then f(a1) = f(az) by the induction
hypothesis for Ttem 3. If a; is exact but as is not, then clearly f(a;) < App(Ery) flag). If
both a1, as ¢ &, and they are greater than some exact b € &, then {b € &, | b <app(E,,)
a1} CH{b € &, [b <app(,,) az}. Hence, f(a1) = ca; Sapp(k,,) Ca, = f(a2), as desired.
It follows that f € App(E;). Moreover, it is clear that f sends exact elements to exact
elements, ie., f € &. Foralle € Er,, p-(f)(e) = pr,(f(c)) = pr, (dpTl (c)) = pr,(de) = g(e),
where ¢ is some element in the preimage p;'(e). Thus, p-(f) = g, as desired.

We proceed to show that Item 3 holds for 7. Let f1, f2 € & such that f1 <appE,) f2,
and let e € E, . We have already shown in Item 1 for 7 that p, is well defined. In particular,
p-(9)(€) = pr,(g(d1)) = pr,(9(d2)) for all g € & and dy,ds € p;'(e). By the definition
of the order on morphisms, fi(d) <app(s,,) f2(d) for all d € &;,. By the induction
hypothesis for Item 3, it holds that p,(f1)(e) = pr, (f1(d)) = pr, (f2(d)) = p-(f2)(e).
Hence, p,(f1) = p-(f2), as desired.

Finally, we show that Item 4 holds for 7. Let g € E;. We can construct a morphism
f € & using the same technique as in (1). By the proof of Item 2, we already have
p-(f) = g. It remains to show that f = []p;1(g). Let h € p;1(g). First notice that
since p,(h) = p-(f) = g, it holds that for all e € E,, p.,(f(I)) = pr,(h(1)) = g(e) for
all | € p;*(e). In particular, for all a € &, it holds that f(a),h(a) € p;'(g(pr (a))).
Hence, for all a € &, we have that f(a) = d,_ (o) = [1(p5,'(9(pr, () <app(e,,) h(a).
Now let a ¢ &, such that there exists b € &, such that b <.z,) a. Since we have
already shown that f(c) = dy_ () Sapp(s,,) h(c) for all ¢ € &, it is easy to see that
f(a) = ca <app(m,,) Ma). For all the other cases of a € App(Er,) it is obvious that
f(a) <app(e,,) h(a). Hence, f is a lower bound of p-'(g). Since f € p;'(g), we get
f=Tpr:(g), as desired. [

16 Cambridge Author

In most applications of AFT, for approximation spaces of base types, there exists
a unique exact element representing an object of a semantics, and Items 3 and 4 of
Proposition 5 are trivially verified. However, for higher-order approximation spaces, this
is not always the case, as we illustrate in the following example.

FExample 1

Let o be the Boolean type, with semantics E, := ({f,t}, <;), where <; is the standard
truth order. In standard AFT, we would define the approximation space for E, to be the
bilattice App(E,) := (E, x E,, <,), with <, the precision order. Then, the semantics
for o — o is the poset of functions from E, to F,, and the approximation space for it
is the exponential, i.e., the set of monotone functions from App(FE,) to itself, ordered
pointwise. Clearly, we can set the exact elements of App(E,) to be (f,f) and (t,t),
and p, to send them to f and t, respectively. Now consider the following two functions:
fig: App(E,) — App(E,) defined by f(f,t) = (f,t), g(f,t) = f(f.f) = g(f.f) =
f(t,t) = g(t,t) = (t,t), and f(t,f) = g(t,f) = (t,f). Clearly, both f and g send exacts
to exacts, thus, they are exact. Moreover, even though f # g, it is easy to see that
Poso(f) = Poso(g) = h: E, = E,, where h(f) = h(t) = t.

We conclude this section with the definition of consistent elements.

Definition 14
Let E. € St. An element ¢ € App(E;) is consistent if there exists e € & such that
C S app(E) €

Notice that a function of the family {p,: & — E;} g s, not only determines which
element of the semantics an exact element represents, but it also helps understanding what
a consistent element is approximating: if ¢ € App(E;) is consistent and ¢ < App(E,) € for
some exact e, then ¢ approximates p.(e). Clearly, consistent elements may approximate
more than one element of a semantics.

4 An approximation system for standard AFT

In this section, we show how our new framework extends the standard AFT setting to
higher-order definitions.

The main building block of an approximation system is the category Approx, containing
all the desired approximation spaces. Hence, we start by showing that the approximation
spaces used in standard AFT, i.e. the square bilattices, form a Cartesian closed category.

First, recall that a square bilattice is a poset of the form (L x L, <,), where (L, <r)
is a complete lattice and <, is the precision order, i.e. (x1,y1) <p (T2,92) iff 1 <p 29
and yo <p, y;. If we view these objects from a category-theoretic perspective, we can
write (L x L, <,) = L x L°? where £ := (L, <) € Ob(CLat). Hence, we can define the
category BiLat of square bilattices as follows:

Ob(BiLat) := {£ x £ | L € CLat}
Mor(BiLat) :={f: £1 — L2 | £1, L2 € Ob(BiLat) A f monotone}

We will denote an element £ x £°P of BiLat by L.

17

Lemma 1
The category BiLat is a full subcategory of CLat.

Proof
Clearly, if £ € CLat, then £°? € CLat. Since CLat is Cartesian closed, for all £ € CLat,
we have that £ x L°P € CLat. We conclude by the definition of BiLat. [

By Lemma 1, proving that BiLat is Cartesian closed reduces to show that the following
isomorphisms of complete lattices hold for all £, £, € BiLat:

1. T =T, where T is the terminal object of CLat,
2. Eﬁzg (‘Cl X ‘62)7

3. Lol

While the first two isomorphisms are rather straightforward, the latter deserves some
attention. Consider a morphism of square bilattices f from £ to Lo. Since Lo = Lo x £2°P,
we can write f as a pair (f1, f2) of morphisms of complete lattices, where f;: £ — Lo

and fo: L1 — L2°P. It follows easily that Eﬁl o Egil x (L2°P)?1 Then, the isomoprhism
©: ?251 — [,517 is realised by mapping f=(f1, f2) to a new pair o(f) := (f1,f}) €
L5 % (Effl)op = L5, where the second component is defined by f3(z,y) == fa(y, z).
Notice that, since f, is a monotone function from £; to £2°7, f} is indeed a monotone

function from £; to Lo. Further details regarding the isomorphisms listed above are
contained in the proof of Theorem 1.

Theorem 1
The category BiLat is Cartesian closed.

Proof
Since CLat is Cartesian closed, and BiLat is a full-subcategory of CLat (Lemma 1), it
is sufficient to show that the terminal object of CLat is an object of BiLat and that

for all £1, L, € BiLat, the product £; x £ and the exponential 5—2&7 computed in the
category CLat, are also objects of BiLat.

Terminal object. There is an obvious isomorphism from the terminal object 7 of CLat,
i.e. the lattice with just one element and trivial order, and the object 7 x 7°P € BiLat.
Product. Let £1,L, € BiLat. By Cartesian closedness of CLat, £, x £ is an ob-
ject of BiLat. We define a function ¢: £; x Lo — L1 x Lo by sending an element
((a1,b1), (az,b2)) to ((a1,asz), (b1,b2)). Clearly, ¢ is bijective. Moreover, by the definition
of the product order, the following double-implications hold for all a1, b1, x1,y1 € £1, and
for all bl,bg,xg,yg € Lo

((a1,b1), (a2,02)) <7777 ((T1,91), (2, 92))
= (a1,b1) <z (71,91) A (a2, b2) <z (22,92)
< a1 <z, T1ANy1 <g, b1 Naz <g, w2 Aya <p, bo
<= (a1,02) <gyxco (T1,22) A (Y1,92) <oyxc, (b1,02)
= ((a1,a2), (b1,02)) <zrzy (21, 22), (y1,2))-

18 Cambridge Author

Hence, ¢ and its inverse are monotone functions, i.e. morphisms. It follows that £; x Lo 22
L1 X Lo € BiLat, as desired.

Ezxponential. Let £,, L, € BiLat. By Cartesian closedness of CLat, L7 is an object
of BiLat. Let §: £; — £; be the function sending (z,y) to (y,). We define a function
Y [’—21:1 — Efz by sending a morphism f := (f1, f2) to (f1, f206), where fi: L1 — Lo
and fo: £1 — L£2°7 are the components of f. Since f5 is an antimonotone function from

L1 to Lo, it is easy to check that f; o § is a monotone function from £, to L, as desired.
Clearly, ¢ is bijective. Moreover, by the definition of the pointwise order, the following
double-implications hold for all f1, g1 € £5, and for all fy, go € (£2°P)%

(f1,f2) <z (91,92)
= Y(z,9) € L1, (fi(z,y), f2(2,9)) <z (91(2,9), g2(,y))
= Y(z,y) € L1, f1(z,y) <, 91(x,y) A ga(z,y) <c, folz,y)
= V(x,y) € Ly, fi(z,y) <c, 1(x,y) A g2y, x) <r, foly,)
—
—

fi Sﬁfﬁgl/\g205 S£§f206
(f1, f200) <= (91,92 ©6).

1

o~

Hence, ¢ and its inverse are monotone functions, i.e. morphisms. It follows that £, ' 2
L2 e BiLat, as desired. [J

It is interesting to observe that the approximators used in standard AFT, i.e., the
symmetric approximators, when viewed in their square bilattice approximator space,
correspond to pairs of equal functions, i.e., the classic definition of exact pair (Denecker
et al. 2000). Similarly, a gracefully degrading approximator A = (A, As): £ — L, i.e.,
such that A;(z,y) <z As(y,z) for all (z,y) € L (Denecker and Vennekens 2007), when
viewed in ££ is a pair ¢(A) = (Ay, Ab) with A; <,z Aj, ie., a consistent pair according
to the classic definition of AFT.

Thanks to Theorem 1 and BiLat C CPO, we can fix BiLat as our approximation
category. This can be done for any application in which we want to use standard AFT
techniques. Nevertheless, depending on the application at hand, the approximation system
may differ. Let us show how to define an approximation system given a language based
on a type hierarchy H. Let St be the set of the semantics of types of H we want to
approximate, and assume that such semantics are complete lattices, as is usually the case
in logic programming. Then, we can inductively define a mapping App: St — Ob(BiLat)
by setting, for all 7 € Br, App(E,) := E,, and proceed using the conditions in Definition
12. Notice that the base case of the induction is nothing more than what is usually done
in standard AFT: from a complete lattice (L, <j) we obtain the square bilattice (L2, <,).
The remaining steps are naturally provided by following the Cartesian closed structure of
BiLat.

For each base type 7 € Br, the exact elements of App(E;) are defined as in standard
AFT: (z,y) € App(E,) is exact if z =y, i.e., & = {(x,z) | ¢ € E;}. Notice that, since
BiLat C CLat C CJSLat, the condition 3b in Defintion 12 is satisfied. Finally, for each
base type 7, we define p2: £, — E, by sending (z,) to z. Both conditions 4b and 4c in

19

Definition 12 hold since (p2)~!(z) = {(x,z)}. Hence, we have obtained an approximation
system (BiLat, App, {€; }ren, {P}ren) for St.

In standard AFT, we are ultimately interested in the approximation space of interpre-
tations. Given a vocabulary V', St can be easily chosen to contain the semantics of the
types of the symbols in V' and the space of interpretations for V, i.e., the complete lattice
Hsev: Eys), where t(s) is the type of the symbol s. It follows that the approximation space
of interpretations is App(Ilsev Ey(s)) = Msev: App(Ey(s)) € BiLat. Clearly, if we restrict
to a vocabulary with only symbols of base type, then we retrieve the usual framework of
standard AFT.

5 Revised Extended Consistent AFT

Charalambidis et al. (2018) developed an extension of consistent AFT (Denecker et al. 2003)
to generalize the well-founded semantics for classical logic programs to one for programs
with higher-order predicates. As already pointed out in Section 2.1, this generalization
bears some issues.

In this section, we examine in detail the work of Charalambidis et al. (2018) under
the lenses of our novel categorical framework. First, in Subsection 5.1, we present their
extension of consistent AFT with their version of approximation spaces, and we prove
that this new class of mathematical objects forms a Cartesian closed category. Then, in
Subsection 5.2, we briefly recall the types and semantics used by Charalambidis et al.
(2018), and we define an approximation system for it. Thanks to the inductive nature of
Cartesian closed categories, from the tuple defining the approximation system, we can
effortlessly retrieve the entire, complex hierarchy built by Charalambidis et al. (2018).
From the definition of the approximation system, we already obtain a concept of exactness
for higher-order objects, which was previously missing in Charalambidis et al. (2018).
Finally, in Subsection 5.3, we present our solution to the problem encountered in the work
of Charalambidis et al. (2018) concerning the semantics of logic programs with existential
quantifiers. In particular, we propose a new approximator which provides the expected
well-founded semantics. We conclude the subsection with two examples of logic programs
in which we need to apply an approximate object on another approximate object.

5.1 The Approxrimation Category for Extended Consistent AFT

In consistent AFT (Denecker et al. 2003), an approximation space is the consistent part
of a square bilattice, i.e., given a bilattice £ = (L x L, <,), only the subset {(z,y) |
x <1 y} C L of consistent elements is taken into account. Charalambidis et al. (2018)
extended consistent AFT to a new class of approximation spaces: the sets of the form
LU :={(z,y) | x € L,y € U,z < y}, comprising the consistent elements of the cartesian
product between a set L of lower bounds and a set U of upper bounds, where L may differ
from U.

In order for the machinery of consistent AFT to work over these new spaces, Char-
alambidis et al. (2018) added some conditions to restrain the possible choices for L and

U.
Definition 15

ENENGVI R

20 Cambridge Author

An approzimation tuple is a tuple (L,U <), where L and U are sets, and < is a partial
order on L U U such that the following conditions hold:

. (LUU, <) has a top element T and a bottom element L,

. T,LeLnU,

. (L, <) and (U, <) are complete lattices,

. Interlattice Least Upper Bound Property (ILP): for all b € U and for all S C L such that

for all z € S, < b, we have | |, S <b,

. Interlattice Greatest Lower Bound Property (IGP): for all a € L and for all S C U such

that for all z € S,a <z, we have a <[] S.

Definition 16

Let (L, U, <) be an approximation tuple. The approzimation space (associated to (L, U, <))
is the poset (L ® U, <,), where L@ U = {(z,y) |z € L,y € U,z < y}, and <, is the
partial order defined for all (z1,41), (x2,y2) € LU by: (z1,y1) <p (z2,y2) iff 21 < x9
and ya < y1. We call <, the precision order on L® U.

In the remainder of this subsection, we prove that the new class of approximation spaces
defined in Definition 16 forms a Cartesian closed full subcategory of CPO (Theorem
2). First, we define a new category LUcons, with objects the approximation spaces just
introduced, as follows:

Ob(LUcons) :={{(L @ U, <,) | (L,U, <) is an approximation tuple}
Mor(LUcons) :={f: A — B | A, B € Ob(LUcons) A f monotone}.

Theorem 2
The category LUcons is a Cartesian closed full subcategory of CPO.

We split the proof of Theorem 2 into smaller results: first we show that LUcons is a
full subcategory of CPO, then we prove it is Cartesian closed.

Proposition 6
Let L ® U € Ob(LUcons). Then L ® U is a cpo.

Proof

Let L® U € Ob(LUcons), and S C L ® U a chain. We denote by p1: L ® U — L the
function of sets sending (x,y) to x, and by ps: L ® U — U the function sending (x,y)
to y. Clearly, p1(S) and p2(S) are chains in (L, <) and (U, <), respectively. Since (L, <)
and (U, <) are lattices, there exist | |, p1(S) =: € p1(S) and [, p2(S) =: y € p2(5).
We now show that (z,y) € LU, i.e., x <y. Let r € p1(S) C L and ¢ € p2(S) C U.
Then, there exist p € p1(S) and s € p2(S) such that (r,s), (p,q) € S. Since S is a chain,
we either have (r,s) <, (p,q) or (p,q) <, (r,s). In both cases, s < ¢. By the arbitrarity
of ¢ and the IGP, s < y. By the arbitrarity of s and the ILP, we have x < y, as desired.
Clearly (z,y) = |, ou S € L ®@U, so it remains to show that (z,y) € S. Since z € p1(S)
and y € p2(5), there exist ' € p1(S) and ¥’ € pa(S) such that (z,y'), (¢/,y) € S. By the
definitions of = and y, we must have 2’ < z and y’ > y. Suppose 2’ < z and y’ > y. Then
(z,9y') and (z,y’) cannot be ordered, which condradicts S being a chain. Hence, either
x=2"ory =1 In any case, (z,y) € S, as desired. [

21

Corollary 1
LUcons is a full subcategory of CPO.

Proof
Clear from Proposition 6 and the definition of Mor(LUcons). [

Proposition 7
LUcons is a Cartesian closed category.

Proof
Since CPO is Cartesian closed, and LUcons is a full-subcategory of CPO (Corollary
1), it is sufficient to show that the terminal object of CPO is an object of LUcons and
that for all A, B € LUcons, the product A x B and the exponential B4, computed in
the category CPO, are also objects of LUcons.

Let A, B € LUcons. Let (L4, Ua,<4) and (Lg,Up,<g) be the approximation tuples
of the approximation spaces A, B € LUcons. We denote the orders on A and B as <, 4
and <, g, respectively.

Terminal object. Let T = ({x}, <) be the cpo with one element, i.e., the terminal object of
CPO. Clearly, ({*},{*}, <) is an approximation tuple, and 7 = ({*} ® {*}, <) in CPO.
Hence, 7 € Ob(LUcons).

Product. This follows from Proposition 2 and Corollary 1.

Ezxponential. We have to show that B4 € CPO is isomorphic (in CPO) to some C =
Le®Ue € LUcons. Let Le .= hOIn.gpo(.A7 (Lg, §B>)7 Uc := homcpo (A, <UB, ZB>)» and
<c¢ be the restriction onto L¢ U Ug of the pointwise extension of <p, namely for all
fa g€ LcU UC7

f<cg = VreA f(z)<p g

We first show that L¢ ® Ue with the precision order <, ¢ induced by <¢ is an object of
LUcons. In other words, we show that (L¢, Ue, <¢) is an approximation tuple.

1. The morphisms l¢: z— 1Lg and Te: x — Tp are the bottom and top element of
Le U Ug, respectively.

2. Clearly, L¢, Te € Le NUe.

3. Since (Lp,<g) and (Up, <p) are complete lattices by definition of approximation
space, and <¢ is the pointwise extension of <g, it is straightforward to see that
(Le¢, <c) and (Uc, <c¢) are also complete lattices.

4. Let g € Ug, and let S C L¢ such that for all f € S, f <¢ g, i.e., for all z € A we
have f(z) <p g(z). We have to show that | |; S <¢ g. Since g € Uc and f € Lc,
for all z € A we have g(x) € Ug and S, := {f(z) | f € S} C Lp. By using the
ILP on B, we get that | |, =S, <gp g(z), for all x € A. It is not difficult to see that
Ur. S(z) =g, Sz, for all z € A. Hence, | |, S <c g, as desired.

5. Analogous to Item 4.

22 Cambridge Author

Hence, C € LUcons. It remains to show that C is isomorphic to B4 in CPO. Notice that
there is an obvious isomorphism of sets

L homcpo(A, LB X UB) — Lc X Uc
f'_) (flaf2)7

where fi, fo are the two components of f. By the definitions of the orders (notice
the inversion of the order <z on Ug in Uc), it is easy to check that y and p~! are
both well-defined, i.e., they send a monotone function to a pair of monotone functions,
and a pair of monotone functions to a monotone function, respectively. Now, let f €

homcpo(.A, LB X UB) Then
f € homcpo(A,B) < Vz e A, f(z)e B
= Vo e A (f)(z) = fi(z) <p fa(z) = pa(f)()

= m(f) <c pa(f)
> pu(f) € Le ® Uc.

Analogously, if (g,h) € Le ® Ue, then u=1(f,g) € homcpo (A, B). Hence, by restricting
domain and codomain of u, we get another isomorphism of sets v: homcpo(A, B) —
Le ® Ue. Tt remains to show that v and v~! are monotone. Let f,g € homcpo (A, B)
such that f <ga g, i.e, for all z € A, f(z) <, g g(z). By the defintion of the precision
order, this means that vi(f)(z) <p v1(g9)(z) <p va(g)(x) <g va(f)(x) for all x € A.
Hence, v1(f) <c v1(g) and v2(g) <¢ va2(f). It follows by definition that v(f) <, ¢ v(g),
as desired. The analogous result holds for #~! and can be shown similarly. Therefore, the
corresponding morphism v/: BA — C between cpo’s is an isomorphism. By Corollary 1,

B4 € LUcons, as desired. [J

5.2 An Approximation System

Thanks to Theorem 2, we can take LUcons as the approximation category for any
application in which we wish to apply the version of AFT of Charalambidis et al. (2018).
Depending on the specific language and semantics at hand, demanded by the application,
we would define a different approximation system with LUcons. In this subsection, we
present the approximation system for the language HOL and the semantics used in
(Charalambidis et al. 2018) to tackle higher-order logic programs.

The language HOL is based on a type hierarchy H with base types o, the boolean type,
and ¢, the type of individuals. The composite types are morphism types obtained from o
and ¢. In particular, the types are divided into functional types o := |t — o, predicate
types m:= o | p — m, and parameter types p := ¢ | m. The semantics of the base types are
defined as usual: E, := {t,f} with the truth order f <; t, and E, = D with the trivial
order (d; < ds iff dy = ds), where D is some fixed domain for individuals. The semantics
for composite types are defined following the Cartesian closed structure of POSet. For
instance, the semantics of type o — o is simply the poset of functions from FE, to itself,
ie, Eoo:=(E, = E,).

Since the ultimate goal of this application is studying the well-founded semantics of
higher order logic programs via AFT, we are interested in the approximation space of
Herbrand interpretations. Since Herbrand interpretations fix the value assigned to symbols

23

of functional types, we only need the approximation spaces for the semantics F,, for all
predicate types 7. In other terms, we can focus on the smallest subset S of Ob(POSet)
containing E. for all 7w, and closed under generalized product.

Now the definition of a suitable approximation system for S is very straightforward: we
just have to define the approximation space App(FE,), the set of exact elements &,, and
the projection p,. All the other elements are defined inductively following the Cartesian
closed structure of LUcons. We define: App(E,) := E, ® E, = ({(t,t), (f,t), (£,)}, <,);
E = {(t,t),(f,f)}; and p,(t,t) :=t and p,(f,f) := f. Finally, given a vocabulary V for
HOL containing symbols of predicate type, and a program P over V', the approximation
space of Herbrand interpretations of P is Hp := App (Isev Ey(s)) = Hsev App(Eys)) €
Ob(Approx), where t(s) is the type of the symbol s.

This greatly simplifies the construction of Charalambidis et al. (2018). In particular,
notice that the pairs of monotonte-antimonotone and antimonotone-monotone functions
they defined are precisely the elements of the exponential objects of LUcons. Moreover,
by changing the base types and their semantics, this approximation system can be readily
adapted to suit other applications.

In conclusion, it is important to stress that we now have a clear concept of exactness: for
the base type o the exact elements are &, = {(t,t), (f,f)}, and for higher-order types, we
follow Definition 13. The work of Charalambidis et al. (2018) lacked a notion of exactness,
making it impossible to determine whether a model is actually two-valued; they discussed
this question in their future work section. Let us illustrate on their example accompanying
the discussion.

Ezample 2

Let P be a program with the single rule p(R) < R, where p is a predicate of type o — o
and R is a variable of type o. The space of interpretations for p is simply App(F,—o) =
App(E,)APP(Eo) 'je., all the monotone functions from App(E,) = {(f,t), (f,), (t,t)} to
itself, as defined above. By the semantics of Charalambidis et al. (2018), the meaning of this
program is given by the interpretation (I, J), where I(p)(t,t) = J(p)(t,t) = J(p)(f, t) = t,
and I(p)(f,f) = J(p)(f,f) = I(p)(f,t) = f. Since I # J, (I,J) is not exact according
to the classical definition of AFT (Denecker et al. 2000), even though we would expect
to find a 2-valued model, i.e., the one assigning to p the identity function over {f,t}.
Nevertheless, according to our definition, (I, .J) is indeed exact: it sends exacts of E, to
exacts of F,. Furthermore, by the approximation system we defined in this section, it is
easy to see that (I,J) represents po—o(I,J) =Z € Eyyo = (E, — E,), where Z(t) =t
and Z(f) = f, as desired.

5.3 A New Approximator

As presented at the end of Section 2.1, the approximator of Charalambidis et al. (2018)
does not provide the expected well-founded semantics for logic programs when there
is an existential quantifier in the body of a rule. In this subsection, we propose a new
approximator that solves such issue. We achieve this by restricting the set of elements
over which certain variables can range. In particular, variables that are arguments of a
predicate being defined, i.e., in the head of a rule, can range over all the elements of the
approximation spaces of the corresponding types: we want to define the approximation of
a higher order predicate also when the argument is an approximation. On the contrary,

AR R

24 Cambridge Author

variables that appear exclusively in the body of a rule do not need to be approximated.
In other words, a variable of type 7 that is not argument of any predicate being defined,
will be forced to range only over the set &, of exact elements.

Before stating the new definition for the approximator, we briefly recall the full syntax
of HOL. We slightly modify the one presented in (Charalambidis et al. 2018) to make it
less heavy.

The alphabet of HOL consists of the following: predicate variables/constants of every
predicate type 7; individual variables/constants of type ¢; the equality constant a of
type ¢ = ¢ — o for comparing individuals of type ¢; the conjunction constant A of type
0 — 0 — 0; the rule operator constant < of type o — 0 — 0; and the negation constant
~ of type 0 — o.

Every predicate variable/constant and every individual variable/constant is a term;
if E; is a term of type p — 7 and Es a term of type p then (E; Es) is a term of type .
Every term is also an expression; if E is a term of type o then (~E) is an expression of
type o; if E; and E5 are terms of type ¢, then (E; = Ej) is an expression of type o.

A rule of HOL is a formula p Ry---R,, + Ei1 A ... A E,,, where p is a predicate
constant of type py — --- — pp, — 0, Ry, ..., R, are distinct variables of types p1,..., pn
respectively and the E; are expressions of type o. The term p Ry - -+ R, is the head of the
rule and E; A ... AE,, is the body of the rule. For the sake of simplicity, we often write
Ei,...,En, in place of Ey A ... AE,,. A program P of HOL is a finite set of rules. A state
s of a program P is a function that assigns to each variable R of type p, an element of
App(E,), if p # ¢, or an element of E, = D, if p = +. We denote by s[R1/d1,...,Ryn/dy]
a state that assigns to each R; the corresponding value d;, and coincides with s on the
other variables.

Finally, we provide the definition for the three-valued semantics of Charalambidis et al.
(2018) adapted to the above, slightly-modified definitions.

Definition 17
Let P be a program, Z an interpretation of P, and s a state. The three-valued semantics
of expressions and bodies is defined as follows:

[c]s(Z) = c, for every individual constant c,
[p]s(Z) = Z(p), for every predicate constant p,
[R]s(Z) = s(R), for every variable R,

[(E1 E2)]s(Z) = [E1]s(Z) ([E2]s(Z)),

[(Ex AE2)[s(Z) = [< {[E1ls(T), [E2]s ()}
[(~ B)s(Z) = ([E[s(2)) ", with (t,¢) "' =(£,f), (£,)" =(t,t) and (f,t)""=(£,¢),
(6 ez {0 TIELE) = [Eal(D)

(f,f), otherwise
where <; is the truth order defined by f <; u <; t.

As already explained, we want to restrict a variable appearing only in the body of a
rule to range over the elements of £;, with 7 being the type of the variable. We call a
state s exact if for all variables R of type T # ¢, it holds that s(R) € &.. We denote by S
the set of exact states.

25

We have now all the elements to introduce the new approximator, i.e. the three-valued
immediate consequence operator. For the sake of simplicity, in the following we define
App(E,) := E, = D, even though F, ¢ S and has no associated approximation space.

Definition 18

Let P be a program. The three-valued immediate consequence operator Wp : Hp — Hp
is defined for every predicate constant p : py — -+ — p, — o in P, and for all
di € App(B,,), .. dy € App(E,,), as: Wp(D)(p) di -+~ dn = < {[ELsfry st/ (D) |
se€Sand (pRy---R, + E) in P}.

With Definition 18, we solve the issue linked to existential quantifiers. Let us review
the example presented in Subsection 2.1. We considered a program P with just one rule
p < RA ~ R, where p is a predicate constant of type o, and R is a variable of type o.
Observe that in this case the space of Herbrand interpretations is just Hp := App(E,) €
Ob(Approx), as we are only interested in the interpretation of the predicate p. For all
interpretations Z € Hp, we have

Up(Z)(p) = |_[{[ELs(Z) | s € S and (p + E) in P} =
=| HIRA~R](2) | s € S} =] [{s(R)As(R)™" | s €S} = @)
=| J{(E.£) A (6,1), (6, 6) A (£,£)} = (£,£).

Notice that for this specific program P, both the approximator ¥p and the old version
from (Charalambidis et al. 2018) do not depend on the interpretation Z, but only on the
states. While the approximator of Charalambidis et al. (2018) considered any possible
state, even the one sending R to (f,t), ¥p takes into account only exact states, i.e. R can
only be sent to an element of &, = {(f,f), (t,t)}. This limitation removes the formula
(f,t) A (f,t) = (f,t) from the least upper bound computation in (2), which was the
one causing the evaluation of p being (f, t) for the approximator of Charalambidis et al.
(2018).

Since the approximator ¥p does not depend on the interpretation, it is immediate
to see that the well-founded operator Sy, coincides with the approximator Wp for all
(I, J) € Hp:

Su,(I,J) = (lfp(\Ilp(-,J)l),lfp(\Ilp(I,)2)) = (\Ilp(-,J)l,\I/p(I,)2) = Up(I,J).

It follows that Sy, does not depend on the interpretation either. Thus, the least fixpoint
of Sy,, which corresponds to the well-founded model of P, is just the interpretation sending
p to (f,f), resulting in a sensible account for the well-founded sementics. Moreover, observe
that this interpretation is also exact by our new definition, and it corresponds to the
unique exact stable model of the program P.

In the remainder of this section, we present two examples that highlight the importance
of enabling the application of approximate objects to approximate objects.

Ezample 3

26 Cambridge Author

Consider an undirected graph given by a predicate node: ¢ — o, containing all the nodes
of the graph, and a predicate edge: ¢ — ¢+ — o defining the edge relation, which we
assume to be symmetric. Some nodes of the graph are marked. We call a set of nodes S
a covering if for every marked node n there exists a node in S with an edge to n. Now,
suppose that a Player can modify the set of marked nodes by swapping a marked node
with a neighbouring, unmarked node. The goal of the Player is reached when the set of
marked nodes is a covering. At that point, the game is over and the Player cannot swap
nodes anymore.

The key predicates of our example are contained in Listing 1. We have defined them in
terms of a time parameter T of type ¢, assuming that the Player can only do one swap
at a time. In particular, here are the signatures and meanings of the main predicates
of Listing 1: swap: ¢t = ¢+ — ¢ — o indicates whether at a certain time, two nodes are
swapped; marked: ¢ — ¢ — o represents the set of marked nodes at a specific time (Lines
6 to 8); covering: + — (¢ — 0) — o tells whether at a certain time a set of nodes is a
covering (Lines 14, and 15); and gameOver: ¢ expresses whether the game is over at a
certain time (Line 18).

Listing 1. Graph Game.

1 % We define predicates to add/remove nodes to/from marked set.
>

2 add T X < swap T X Y

3 remove T Y <« swap T X Y

4

o

% We define the set of marked nodes based on the marked nodes at
— the previous time point and the last swap.

6 marked T X < succ T’ T, ~(gameOver T), marked T’ X,
< ~(remove T’ X).

7 marked T X < succ T’ T, ~(gameOver T), add T’ X.

8 marked T X < succ T’ T, gameOver T’, marked T’ X.

9

10 % We define what a covering of a set of nodes is.

11 nextTo S X < S Y, edge Y X.

12 nonsubset S Q « S X, ~(Q X).

13 subset S Q + ~(nonsubset S Q).

14 ncovering T S < marked T X, ~(nextTo S X).

15 covering T S < subset S node, ~(ncovering T S).

16

17 % We define when the game ends.

18 gameOver T < covering T (marked T).

In the formalization of Charalambidis et al. (2018), natural numbers are not taken into
account. Thus, we regard the time variable T as an individual variable of type ¢ and we
limit our example to only three time points, expressed by the individual constants a,b,
and c, related by the successor relation succ: ¢t — ¢t — 0, as expressed in Listing 2. In
the same Listing, we also instantiate the nodes and edges of the graph that we chose for
this example, and the initial set of marked nodes, i.e. marked a.

Listing 2. Instantiation of time points, graph’s nodes and edges, and initial set of marked

nodes.
1 % Time points a, b, and c: b successor of a, and c of b.
2 time a.
3 time
4

b
time ¢
succ b a.
succ ¢

o o

27

7 % Nodes.

8 node x.

9 node y.

10 node z.

11 node u.

12 node v.

13 % Edges.

14 edge x y.
15 edge x z.
16 edge x u.
17 edge z V.
18 edge u v.
19 % Marked nodes at the start of the game (time point a).
20 marked a y.
21 marked a u.

We are only missing the swaps the Player makes at each of the three time points. For
example, we could have those listed in Listing 3.

Listing 3. Swaps.

1 % Nodes x, y, z, u, and v, and swaps at the time points a, b, and
— cC.

2 sSwap a v u.

3 swap b x y.

4 swap ¢ z X

By joining Listings 1, 2, and 3, we obtain a program P encoding a specific run of the
game.

Using the machinery of AFT, we can easily find the well-founded, the stable, the Kripke-
Kleene, and the supported models of P. To obtain the well-founded operator, we compute
the least fixpoint of the well-founded operator of the approximator contained in Definition
18, i.e., the least fixpoint of Sy, : (x,y) — (Sw, (y), Swp(x)), where Sy, : © — Up(¥p (-, z))
is the stable operator!. Since the well-founded operator is monotone, to find its least
fixpoint it is sufficient to repeatedely apply the operator starting from the bottom
element of its domain, namely the interpretation sending every predicate constant to
the bottom element of the respective approximation space. Notice that during the first
iterative applications of the well-founded operator, the predicates marked, covering, and
gameOver are being defined only for the first time points, i.e., they are partially defined. In
other words, the three-valued interpretations that we obtain from the first computations
leading to the well-founded fixpoint, send the aforementioned predicates to approximate
objects of the respective approximation spaces. Since marked, covering, and gameOver
are all defined by mutual induction, we are forced to apply an approximate object on
another approximate object. In particular, in Line 18 of Listing 1, for the definition
of gameOver, the predicate covering is applied on marked. Only when the fixpoint is
reached, all the predicates being defined will be exact, i.e. two-valued.

In Listing 3, we have provided a specific set of swaps the Player makes. We can obtain a
more general setup by using choice rules to define the predicate swap, as we do in Listing
4.

Listing 4. Choice Rules.

1 The well-founded, and the stable operator have been briefly introduced in Section 2.1 of the Preliminaries.

28 Cambridge Author

1 % Choice rules: the user can swap one edge with a neighbour at
<~ each time.

2 swap T X Y < node X, node Y, time T, ~(nswap T X Y).

3 nswap T X Y < node X, node Y, time T, ~(swap T X Y).

4 % First element must be in the marked set, second cannot

5 < swap T X Y, ~(marked T X).

6 < swap T X Y, marked T Y.

7 % At most one swap at a time.

8 < swap T X Y, swap T X’ Y’, ~(X’ = X).

9 < swap T X Y, swap T X’ Y’, ~(Y’ = Y).

-
[S)

% Can only swap neighbors.
< swap T X Y, ~(edge X Y).

[
.

By joining Listings 1, 2, and 4, we obtain another program P’, and we can again
compute the models of interest via AFT. In particular, now each stable model corresponds
to a possible run of the game with starting set of marked nodes marked a. Notice that,
because of the choice rules in Listing 4, the well-founded model of P’ leaves most of the
predicates undefined.

Ezxzample 4

Let us consider a manufacturing company that aims at growing and diversifying its
production. We represent raw materials with individual constants of type ¢, and finished
products with predicate constants of type ¢ — o, such that if P is any finished product,
and M is any raw material, then P M is true if and only if M is necessary to craft P. We
denote by materials: ¢ — o the predicate corresponding to the set of all raw materials,
and by products: (1 — 0) — o the predicate corresponding to the set of all finished
products.

We want to define a predicate production: ¢ — ¢ — o (Lines 24 and 26 of Listing
5) that indicates which raw materials the company has to acquire for production at a
certain time: production T M is true if and only if the company acquires the material M
at time T. As in Example 3, we regard the time variable T as an individual variable of
type ¢ and we limit our program in Listing 5 to only three time points, related by the
successor relation (Lines 2 to 6). We fix the initial set production a: ¢ — o of materials
the company starts with. At each time point, the company decides which new materials
to acquire: we encode the information about these potential new ingredients with the
predicate candidates: ¢ — (1 — 0) — o (Lines 18 and 20), which takes as argument a
time point, i.e., an individual variable, and a set of materials, i.e., a predicate of type
t — 0. The selection of new materials the company takes into consideration obeys a few
criteria:

. Maximize profit: products necessitating more raw materials to be crafted require more
expertise and more capital to invest, but they provide more profit. Hence, as time
progresses, the company aims at products more and more complex: at time T, a set
P of raw materials is a candidate if it can be covered by sets corresponding to some
finished products of complexity T (Lines 14, 16, and 18). We assume a constant predicate
complexity: (¢ = 0) = ¢ — o indicating the complexity of a product is given.

. Cautiousness: producing items using only new materials may be risky and time consuming,
as the manifacturing team has to acquire novel knowledge, and new suppliers for the raw
materials need to be found. Hence, the newly accepted products are required to share at

29

least one raw material with a product in production at the prevous time point (Lines 8,
14, 16, and 18).

. Efficient growth: as time passes and the company produces more complex items, older,
simpler products can be put out of production. This is done gradually: if in production T
there is still some material that is not needed to craft any product of size T or succ T,
then such material will not be in production at the following time point; otherwise, all
materials that are not needed to craft any product of size succ T are dropped out of
production at time succ T (Lines 20). In other words, all the products with the lowest
complexity are dropped.

Finally, production is just the union of all the candidates (Line 24). If there are no
candidates at a certain time point, the production does not vary at the next time point,
and the company ends its expansion (Lines 22, and 26).

Listing 5. The growth of the manifacturing company.
1 % a, b, and c are time points, b is the successor of a, and c of
— b.
time
time
time
succ a.
succ ¢ b.
% intersect Q R is true if the intersection between Q and R is
— non—empty.
intersects Q R < Q X, R X.

N e s w o
oo oe

©

9 % subset Q R is true (nonsubset Q R is true) if R is (is not) a
— subset of Q.

10 nonsubset Q@ R « Q X, ~(R X).

11 subset Q R < ~(nonsubset Q R).

12

13 % There exists a product P made of T raw materials, all

<~ belonging to S, some belonging to production T', and
— including M.

14 existsubprod T S M < products P, complexity P T, subset P S,
— P M, intersects P (production T’), succ T T’.

15 % S cannot be covered by products of size T if there exists a
< material M in S that is never part of a subproduct of S.

16 notcovered T S < S M, ~(existsubprod T S M), time T.

17 % S is a candidate at time T if it can be covered and it is a
< set of materials (maximize profit, and cautiousness).

18 candidates T S 4 ~mnotcovered T S, time T, subset S materials.

19 % S is a candidate if it is a product of size T', in production

— at time T', and if in production T' there were still raw
— materials only needed for products of size different than
— T’ (efficient growth).

20 candidates T S < ~(candidates T’ (production T’)), products P,
— subset P (production T’), complexity P T’, succ T T’.

21 % There exists a candidate at time T.

22 existcandidate T < candidates T S.

23 % A material is needed for production at time T if it is in one
— of the candidate sets at time T.

24 production T M < candidates T S, S M.

25 % If there are no candidates at time T, then the production
— remains the same.

26 production T M < ~(existcandidate T), production T’ M,

<~ succ T T’.

Note that the symbols Q, R, and S, highlighted in red, are predicate variables of type
t — o that are used in a higher-order style in the rules in Lines 8, 10, 16, and 24.

30 Cambridge Author

Similarly to what happens for Example 3, since the predicates candidates and
production are defined by mutual induction, they will be fully defined only at the
end of the least fixpoint construction. However, in order to define candidates we need to
apply it to production (Line 20). In particular, before reaching the fixpoint, we will need
to apply an approximate object, namely candidates, on another approximate object,
i.e., production.

6 Conclusion

We introduced a novel theoretical framework that provides a mathematical foundation
for using the machinery of AFT on higher-order objects. In particular, we defined
approximation categories and approzimation systems: they employ the notion of Cartesian
closedness to inductively construct a hierarchy of approximation spaces for each semantics
of the types of a given (higher-order) language. This approach solves the issue of applying
approximate objects onto approximate objects and ensures that the approximation
spaces have the same mathematical structure at any order of the hierarchy, enabling
the application of the same AFT techniques at all levels. Moreover, we defined exact
elements of a higher-order approximation space, together with a projection function. This
is a non-trivial definition and it is fundamental to obtain a sensible AFT framework, i.e.,
a framework in which we can determine when an object, and in particular a model, is
two-valued, and retrieve the elements that are being approximated.

Despite seeming complicated at first, the use of CT not only provides a solid, formal
mathematical foundation to work with, but also allows to reduce the complexity of proofs.
The inductive nature and generality of the definition of an approximation system make
it extremely easy to adapt the framework to different languages, types, and semantics,
as we only have to modify the base elements of the induction. Such generality enables
extending different existing versions of AFT while capturing their common underlying
characteristics, as we have shown for standard AFT and the extension of consistent AFT
of Charalambidis et al. (2018). Moreover, concerning the latter version of AFT mentioned,
we have resolved its problematic features. In particular, we provided a novel approximator
which behaves properly, even on programs with existential quantifiers in the body of rules,
and we defined the concept of exactness, previously missing in the work of Charalambidis
et al. (2018), allowing to consider exact stable models.

As far as future work and developments are concerned, it is paramount to notice
that by systematically extending present (and possibly future) versions of AFT to the
higher-order setting, this paper further enriches the vast body of algebraic results on AFT.
In particular, this allows us to make all the already-existing formal results regarding AFT
readily available in a higher-order AFT context. This includes, but it is not limited to,
stratification results (Vennekens et al. 2006; Bogaerts and Cruz-Filipe 2021), grounded
fixpoints (Bogaerts et al. 2015), well-founded induction (Denecker and Vennekens 2007),
and strong equivalence (Truszczynski 2006). Moreover, in light of this newly established
bridge to the higher-order environment, one could explore the possibilities within the
application fields where AFT previously succeeded, such as abstract argumentation
(Strass 2013; Bogaerts 2019), active integrity constraints (Bogaerts and Cruz-Filipe 2018),
stream reasoning (Antic 2020), integrity constraints for the semantic web (Bogaerts and
Jakubowski 2021), and Datalog (Pollaci 2025).

31

Lastly, it may be of interest to research how the developed higher-order semantics and
language HOL presented in Section 5 relate to Hilog and Prolog with meta-predicates
(Chen et al. 1993). In particular, HOL and Prolog show two rather different natures:
while Prolog is procedural and intensional, the language HOL provides a declarative and
extensional approach. This is indeed not trivial to obtain for the higher-order setting, as
it was also pointed out by Rondogiannis and Symeonidou (2018).

Competing Interests

The authors declare none.

References

ANTIC, C. 2020. Fixed point semantics for stream reasoning. Artif. Intell., 288, 103370.

BOGAERTS, B. Weighted abstract dialectical frameworks through the lens of approximation
fixpoint theory. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019,
The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019 2019, pp. 2686-2693. AAAI Press.

BOGAERTS, B., CHARALAMBIDIS, A., CHATZIAGAPIS, G., KosTorPouLOs, B., PoLLACI, S., AND
RONDOGIANNIS, P. 2024. The stable model semantics for higher-order logic programming.
Theory Pract. Log. Program., 24, 4, 737-754.

BocGAEgrTs, B. AND Cruz-FILIPE, L. 2018. Fixpoint semantics for active integrity constraints.
Artif. Intell., 255, 43-70.

BOGAERTS, B. AND CrUZ-FILIPE, L. 2021. Stratification in approximation fixpoint theory and
its application to active integrity constraints. ACM Trans. Comput. Log., 22, 1, 6:1-6:19.

BOGAERTS, B. AND JAKUBOWSKI, M. Fixpoint semantics for recursive SHACL. In FORMISANO,
A., Liu, Y. A., BOGAERTS, B., BRIK, A., DAHL, V., DODARO, C., FODOR, P., P0OzzATO,
G. L., VENNEKENS, J., AND ZHOU, N., editors, Proceedings 37th International Conference
on Logic Programming (Technical Communications), ICLP Technical Communications 2021,
Porto (virtual event), 20-27th September 2021 2021, volume 345 of EPTCS, pp. 41-47.

BOGAERTS, B., VENNEKENS, J., AND DENECKER, M. 2015. Grounded fixpoints and their
applications in knowledge representation. Artif. Intell., 224, 51-71.

CHARALAMBIDIS, A. AND RONDOGIANNIS, P. Categorical approximation fixpoint theory. In
GAGGL, S. A., MARTINEZ, M. V., AND ORTIZ, M., editors, Logics in Artificial Intelligence - 18th
European Conference, JELIA 2023, Dresden, Germany, September 20-22, 2023, Proceedings
2023, volume 14281 of Lecture Notes in Computer Science, pp. 515-530. Springer.

CHARALAMBIDIS, A., RONDOGIANNIS, P., AND SYMEONIDOU, I. 2018. Approximation fixpoint
theory and the well-founded semantics of higher-order logic programs. Theory Pract. Log.
Program., 18, 3-4, 421-437.

CHEN, W., KIFER, M., AND WARREN, D. S. 1993. HILOG: A foundation for higher-order logic
programming. J. Log. Program., 15, 3, 187-230.

CLARK, K. L. Negation as failure. In GALLAIRE, H. AND MINKER, J., editors, Logic and Data
Bases, Symposium on Logic and Data Bases, Centre d’études et de recherches de Toulouse,
France, 1977 1977, Advances in Data Base Theory, pp. 293-322, New York. Plemum Press.

DASSEVILLE, 1., VAN DER HALLEN, M., BOGAERTS, B., JANSSENS, G., AND DENECKER, M. A
compositional typed higher-order logic with definitions. In CARRO, M., KING, A., SAEEDLOEI,
N., AND Vos, M. D., editors, Technical Communications of the 32nd International Conference
on Logic Programming, ICLP 2016 TCs, October 16-21, 2016, New York City, USA 2016,
volume 52 of OASIcs, pp. 14:1-14:13. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik.

32 Cambridge Author

DASSEVILLE, 1., VAN DER HALLEN, M., JANSSENS, G., AND DENECKER, M. 2015. Semantics of
templates in a compositional framework for building logics. Theory Pract. Log. Program., 15,
4-5, 681-695.

DENECKER, M., BRUYNOOGHE, M., AND VENNEKENS, J. Approximation fixpoint theory and
the semantics of logic and answers set programs. In ERDEM, E., LEE, J., LIERLER, Y., AND
PEARCE, D., editors, Correct Reasoning - Essays on Logic-Based Al in Honour of Vladimir
Lifschitz 2012, volume 7265 of Lecture Notes in Computer Science, pp. 178-194. Springer.

DENECKER, M., MAREK, V., AND TRUSZCZYNSKI, M. Approximations, stable operators, well-
founded fixpoints and applications in nonmonotonic reasoning. In MINKER, J., editor, Logic-
Based Artificial Intelligence 2000, volume 597 of The Springer International Series in Engi-
neering and Computer Science, pp. 127-144. Springer US.

DENECKER, M., MAREK, V., AND TRUSZCZYNSKI, M. Reiter’s default logic is a logic of autoepis-
temic reasoning and a good one, too. In BREWKA, G., MAREK, V., AND TRUSZCZYNSKI, M.,
editors, Nonmonotonic Reasoning — Essays Celebrating Its 30th Anniversary 2011, pp. 111-144.
College Publications.

DENECKER, M., MAREK, V. W., AND TRUSZCZYNSKI, M. 2003. Uniform semantic treatment of
default and autoepistemic logics. Artif. Intell., 143, 1, 79-122.

DENECKER, M., MAREK, V. W., AND TRUSZCZYNSKI, M. 2004. Ultimate approximation and its
application in nonmonotonic knowledge representation systems. Inf. Comput., 192, 1, 84-121.

DENECKER, M. AND VENNEKENS, J. Well-founded semantics and the algebraic theory of non-
monotone inductive definitions. In BARAL, C., BREWKA, G., AND SCHLIPF, J. S., editors,
Logic Programming and Nonmonotonic Reasoning, 9th International Conference, LPNMR
2007, Tempe, AZ, USA, May 15-17, 2007, Proceedings 2007, volume 4483 of Lecture Notes in
Computer Science, pp. 84—96. Springer.

FrrTing, M. 1985. A Kripke-Kleene semantics for logic programs. J. Log. Program., 2, 4, 295-312.

FirTing, M. 2002. Fixpoint semantics for logic programming a survey. Theor. Comput. Sci.,
278, 1-2, 25-51.

GELFOND, M. AND LIrscHITZ, V. The stable model semantics for logic programming. In
KowaLski, R. A. AND BOweN, K. A.| editors, Logic Programming, Proceedings of the Fifth
International Conference and Symposium, Seattle, Washington, USA, August 15-19, 1988 (2
Volumes) 1988, pp. 1070-1080. MIT Press.

HEYNINCK, J., ARIELI, O., AND BOGAERTS, B. 2024. Non-deterministic approximation fixpoint
theory and its application in disjunctive logic programming. Artif. Intell., 331, 104110.

PELOvV, N., DENECKER, M., AND BRUYNOOGHE, M. 2007. Well-founded and stable semantics of
logic programs with aggregates. Theory Pract. Log. Program., 7, 3, 301-353.

PovrLaci, S. 2025. Fixpoint semantics for datalogmtl with negation.

RieHL, E. 2017. Category theory in context. Aurora: Dover modern math originals. Dover
Publications.

RONDOGIANNIS, P. AND SYMEONIDOU, I. 2018. Extensional semantics for higher-order logic
programs with negation. Log. Methods Comput. Sci., 14, 2.

STrASS, H. 2013. Approximating operators and semantics for abstract dialectical frameworks.
Artif. Intell., 205, 39-70.

TRUSZCZYNSKI, M. 2006. Strong and uniform equivalence of nonmonotonic theories - an algebraic
approach. Ann. Math. Artif. Intell., 48, 3-4, 245-265.

VAN EMDEN, M. H. AND KowALsKI, R. A. 1976. The semantics of predicate logic as a program-
ming language. J. ACM, 23, 4, 733-742.

VAN GELDER, A., Ross, K. A., AND SCHLIPF, J. S. 1991. The well-founded semantics for general
logic programs. J. ACM, 38, 3, 620-650.

VENNEKENS, J., GILIS, D., AND DENECKER, M. 2006. Splitting an operator: Algebraic modularity
results for logics with fixpoint semantics. ACM Trans. Comput. Log., 7, 4, 765-797.

