
TPLP : Page 1–8. © The Author(s), 2021. Published by Cambridge University Press 2021

doi:10.1017/xxxxx

1

A Category-Theoretic Perspective on Higher-Order
Approximation Fixpoint Theory∗

POLLACI SAMUELE
Vrije Universiteit Brussel, Belgium and Katholieke Universiteit Leuven, Belgium

KOSTOPOULOS BABIS
Harokopio University of Athens, Greece

DENECKER MARC
Katholieke Universiteit Leuven, Belgium

BOGAERTS BART
Katholieke Universiteit Leuven, Belgium and Vrije Universiteit Brussel, Belgium

submitted xx xx xxxx; revised xx xx xxxx; accepted xx xx xxxx

Abstract

Approximation Fixpoint Theory (AFT) is an algebraic framework designed to study the semantics
of non-monotonic logics. Despite its success, AFT is not readily applicable to higher-order
definitions. To solve such an issue, we devise a formal mathematical framework employing
concepts drawn from Category Theory. In particular, we make use of the notion of Cartesian
closed category to inductively construct higher-order approximation spaces while preserving the
structures necessary for the correct application of AFT. We show that this novel theoretical
approach extends standard AFT to a higher-order environment, and generalizes the AFT setting
of Charalambidis et al. (2018).

KEYWORDS: Approximation fixpoint theory, Higher-order definitions, Category theory.

1 Introduction

Approximation Fixpoint Theory (AFT) (Denecker et al. 2000) is an algebraic framework

designed to study the semantics of non-monotonic logics. It was originally designed for

characterizing the semantics of logic programming, autoepistemic logic, and default logic,

and to resolve longstanding problems on the relation between these formalisms (Denecker

et al. 2011). Later, it has also been applied to a variety of other domains, including abstract

argumentation (Strass 2013; Bogaerts 2019), active integrity constraints (Bogaerts and

Cruz-Filipe 2018), stream reasoning (Antic 2020), integrity constraints for the semantic

web (Bogaerts and Jakubowski 2021), and Datalog (Pollaci 2025).

The core ideas of AFT are relatively simple: we are interested in fixpoints of an operator

O on a given lattice ⟨L,≤⟩. For monotonic operators, Tarski’s theory guarantees the

∗ This study was funded by Fonds Wetenschappelijk Onderzoek – Vlaanderen (project G0B2221N, and
grant V426524N), and by the European Union – NextGenerationEU under the National Recovery and
Resilience Plan “Greece 2.0” (H.F.R.I. “Basic research Financing (Horizontal support of all Sciences)”,
Project Number: 16116).

2 Cambridge Author

existence of a least fixpoint, which is of interest in many applications. For non-monotonic

operators, the existence of fixpoints is not guaranteed; and even if fixpoints exist, it is

not clear which would be “good” fixpoints. AFT generalizes Tarki’s theory for monotonic

operators by making use of a so-called approximating operator ; this is an operator

A : L2 → L2, that operates on L2, and that is monotonic with respect to the precision

order ≤p (defined by (x, y) ≤p (u, v) if x ≤ u and v ≤ y)). The intuition is that elements

of L2 approximate elements of L: (x, y) ∈ L2 approximates z if x ≤ z ≤ y, i.e., when

x ≤ y, the tuple (x, y) can be thought of as an interval in L. Given such an approximator,

AFT defines several types of fixpoints (supported fixpoints, a Kripke-Kleene fixpoint,

stable fixpoints, a well-founded fixpoint) of interest.

In several fields of non-monotonic reasoning, it is relatively straightforward to define

an approximating operator and it turns out that the different types of fixpoints then

correspond to existing semantics. In this way, AFT clarifies on the one hand how different

semantics in a single domain relate, and on the other hand what the relation is between

different (non-monotonic) logics.

Let us illustrate the application of AFT to standard, first-order, logic programming.

In this setting, the lattice L is the lattice of interpretations with the truth order I ≤ J
if P I ⊆ P J for each predicate P . The operator is the immediate consequence operator

TP , as defined in the seminal work of van Emden and Kowalski (1976). Given a logic

program (i.e., a set of rules), this operator has the property that q holds in TP (I) if and

only if there is a rule q ← φ in P such that φ is true in I. In this setting, pairs (I, J)

are seen as four-valued interpretations: I represents what is true and J what is possible.

A fact is then true (resp. false) if it is true (resp. false) in both I and J , unknown if

it is true in J but not true in I and inconsistent if it is true in I but not in J . The

approximating operator ΨP is, in this case, nothing else than Fitting’s (2002) four-valued

immediate consequence operator, which uses Kleene’s truth tables to evaluate the body

of each rule in a four-valued interpretation. For this approximator, the fixpoints defined

by AFT correspond to the major semantics of logic programming: supported fixpoints are

models of Clark’s completion (Clark 1977), stable fixpoints correspond to (partial) stable

models (Gelfond and Lifschitz 1988), the Kripke-Kleene fixpoint to the Kripke-Kleene

model (Fitting 1985) and the well-founded fixpoint is the well-founded model (Van Gelder

et al. 1991).

This paper is motivated by a need to apply AFT to higher-order logic programming

that arose in several contexts (Dasseville et al. 2015; 2016; Charalambidis et al. 2018). An

important issue that arises in this context is that using pairs of interpretations no longer

allows for an obvious way to evaluate formulas in an approximation. Let us illustrate this

with a brief example (for more detailed ones, we invite the reader to look at Examples 3,

and 4). Consider a logic program in which a first-order predicate p and a second-order

predicate Q are defined. Now assume that in the body of a rule, the atom Q(p) occurs. A

tuple (I, J) of interpretations in this case tells us whether Q(S) is true, false, unknown,

or inconsistent, for any given set S. However, the interpretation of p via (I, J) is not a

set, but a partially defined set, making it hard to evaluate expressions of the form Q(p).

In other words, an approximation of the interpretation of Q has to take as argument not

only sets, i.e., exact elements, but also partially defined sets, i.e., approximate elements,

like the interpretation of p in this example. Thus, there is a need for a richer space of

approximations where approximate objects can be applied to other approximate objects.

3

The above example and considerations suggest that spaces of approximations of higher-

order objects should be defined inductively from lower-order ones, following the type

hierarchy: we start by assigning a base approximation space to each type at the bottom of

the hierarchy, and then, for each composite type τ1 → τ2, we define its approximation space

as a certain class of functions from the approximation space for τ1 to the approximation

space for τ2, and so on. This method was heavily inspired by the approach used by

Charalambidis et al. (2018) to obtain a generalization of the well-founded semantics for

higher-order logic programs with negation. Notice that there are two major points in the

construction above which are yet not defined: the base approximation spaces, and the

class of functions we consider. The main question of this paper is how to define them in a

generic way that works in all applications of AFT.

We want to apply the same AFT techniques on approximation spaces at any hierarchy

level, i.e., on base approximation spaces and the aforementioned sets of functions, which

should thus have the same algebraic structure. In Category Theory (CT), the notion of

Cartesian closed category captures this behavior. A category consists of a collection of

objects and a collection of morphisms, i.e., relations between objects. For example, we

can define the category of square bilattices as the one having square bilattices as objects,

and monotone functions as morphisms. The objects of a Cartesian closed category C

satisfy a property that can be intuitively understood as follows: if A and B are two

objects of C, then the set of morphisms from A to B is also an object of C. Hence, if the

base approximation spaces are objects of a Cartesian closed category, then the category

contains the full hierarchy of spaces we are aiming for. We call such a Cartesian closed

category an approximation category and denote it by Approx.

In this category-theoretic framework, the questions on the nature of the base approxi-

mation spaces and the class of functions reduce to defining the objects and the morphisms

of Approx. Clearly, this depends on the application we want to use AFT for. Different

applications imply different higher-order languages, with different types, and possibly

different versions of AFT (standard AFT (Denecker et al. 2000), consistent AFT (Denecker

et al. 2003), or other extensions (Charalambidis et al. 2018)). To formalize this, and

unify different AFT accounts, we develop the notion of an approximation system. Once a

language and the semantics of its types are fixed, we can choose an approximation system

that consists, among other things, of a Cartesian closed category Approx, equipped

with a function App associating the semantics of a type to an approximation space in

Approx. The approximation system also determines which elements of the approximation

spaces are exact, i.e., which elements approximate exactly one element of the semantics

of a type, and, for every type, it provides a projection from the exact elements to the

objects they represent in the corresponding semantics. This is non-trivial for higher-order

approximation spaces, and it is indeed fundamental to obtain a sensible account for AFT

for higher-order definitions.

In recent work, a stable semantics for higher-order logic programs was defined building

on consistent AFT (Bogaerts et al. 2024). In that work, the approach taken to evaluate

an expression of the form Q(p), instead of applying an approximate interpretation for Q

to an approximate interpretation for p, is to apply the approximate interpretation for Q

to all exact interpretations for p that are still possible, and returning the least precise

approximation of all the results. What this means in effect is that some sort of ultimate

construction (Denecker et al. 2004) is used; this has also been done in other extensions of

4 Cambridge Author

logic programming (Pelov et al. 2007; Dasseville et al. 2016). Bogaerts et al. (2024) also

pointed out a rather counterintuitive behaviour of the well-founded semantics defined in the

work of Charalambidis et al. (2018), namely that even for simple non-recursive programs,

the well-founded model might not assume expected values (leaving all atoms unknown).

It is important to mention, though, that this counterintuitive behaviour is caused solely

by the treatment of (existentially) quantified variables and not by the algebraic theory

(which is the focus of the current paper). Finally, it is interesting to mention that another

paper Charalambidis and Rondogiannis (2023) joined CT and AFT, albeit with different

perspective and aim: while we treat the whole set of possible approximation spaces as a

category to apply any account of AFT to higher-order definitions, Charalambidis and

Rondogiannis (2023) view the approximation spaces themselves as categories to provide a

novel version of standard AFT.

In short, the main contributions of our paper are as follows:

1. We generalize the work of Charalambidis et al. (2018) to a category-theoretic setting.

In doing so, we shed light on the general principles underlying their constructions for

higher-order logic programing and make their construction applicable to arbitrary

current and future non-monotonic reasoning formalism captured by AFT.

2. We improve the work of Charalambidis et al. (2018). In particular, we define a new

approximator, which provides the expected well-founded semantics; and we study

the concept of exactness, previously missing, allowing the use of the theory to define

exact stable models instead of focusing purely on the well-founded model.

It is also worth remarking that the generality of the CT environment allows to cover

various accounts of AFT, like the ones of Denecker et al. (2000), Denecker et al. (2003),

and Charalambidis et al. (2018), and possibly others. Different versions of AFT are

suitable for various situations and cater to specific applications. For instance, consistent

AFT (Denecker et al. 2003) utilizes a three-valued logic and provides a rather intuitive and

easily applicable notion of approximation. On the other hand, standard AFT (Denecker

et al. 2000) employs a four-valued approach, with inconsistent elements, as presented

earlier in this introduction. This can sometimes be of a more difficult use in applications,

but shows several advantages from the formal, mathematical standpoint: having a full

bilattice, composed of both consistent and inconsistent elements, provides symmetry

and allows for duality results to be derived, simplifying the proofs of the fundamental

theorems at the core of this version of AFT. It is hence valuable to obtain a framework

that covers as many accounts of AFT as possible.

The rest of this paper is structured as follows. In Section 2, we provide an overview of

the fundamental concepts from AFT and CT that we use. Section 3 presents the novel

definitions of approximation system, with the category Approx, and of exact elements of

an approximation space. In Section 4, we show that the square bilattices form a Cartesian

closed category that can be chosen as Approx for standard AFT. With a suitable

choice of App and exact elements, depending on the application at hand, we obtain an

approximation system that recovers the framework of standard AFT and extends it to

higher-order objects. This section can be skipped by the reader interested uniquely in the

AFT version of Charalambidis et al. (2018), which is addressed in the following section.

In Section 5, we apply the novel categorical framework to Charalambidis et al. (2018).

First, in Subsection 5.1, we show that the approximation spaces from Charalambidis

5

et al. (2018) form a Cartesian closed category. Second, in Subsection 5.2 we define an

approximation system that enables us to reconstruct in a simple way (using the general

principles outlined above) the semantic elements defined ad-hoc by Charalambidis et al.

(2018). At the same time, the definition of such approximation system also resolves a

question that was left open in that work. Namely, what we get now is a clear definition

for exact higher-order elements, and, in particular, this allows to determine when a model

of a program is two-valued (see Example 2). We proceed with Subsection 5.3, where we

present the new approximator that adjusts the behaviour of the well-founded semantics

of Charalambidis et al. (2018) for programs with existential quantifiers in the body of

rules. We close the subsection with two examples of logic programs in which we need to

apply an approximate object on another approximate object. We conclude in Section 6.

2 Preliminaries

In this section, we provide a concise introduction to the formal concepts we utilize

throughout the paper. We divide the content into two subsections. In the former (Section

2.1), we outline the core ideas at the foundation of AFT, and we present in more detail

the parts of the work of Charalambidis et al. (2018) that we aim to modify in Section

5. In the second subsection (Section 2.2), we present the notions of Category Theory

(CT) we need, with the definition of Cartesian closed category being the key concept. For

further information on CT, we refer to the book by Riehl (2017).

2.1 Approximation Fixpoint Theory

AFT generalizes Tarki’s theory to non-monotonic operators, with the initial goal of

studying the semantics of non-monotonic logics. As such, AFT heavily relies on the

following notions from order theory.

A partially ordered set (poset) P is a set equipped with a partial order, i.e., a reflexive,

antisymmetric, transitive relation. We denote a poset by P = ⟨P,≤P ⟩, where P is the

underlying set, and ≤P the partial order. By abuse of notation, when referring to a poset

P, we often use the notation for the underlying set P in place of the calligraphic one.

We denote by Pop the poset with the same underlying set as P but opposite order, i.e.,

Pop = ⟨P,≥P ⟩. Given a subset S ⊆ P , a lower bound l of S is the greatest lower bound

of S, denoted by
d
S, if it is greater than any other lower bound of S. Analogously, an

upper bound u of S is the least upper bound of S, denoted by
⊔
S, if it is lower than

any other upper bound of S. A chain complete poset (cpo) is a poset C such that for

every chain S ⊆ C, i.e., a totally ordered subset,
⊔
S exists. A complete join semilattice

is a poset J such that for any subset S ⊆ J ,
⊔
S exists. A complete lattice is a poset L

such that for any subset S ⊆ L, both
d
S and

⊔
S exist. A function f : P1 → P2 between

posets is monotone if for all x, y ∈ P1 such that x ≤P1
y, it holds that f(x) ≤P2

f(y).

We refer to functions O : C → C with domain equal to the codomain as operators. An

element x ∈ C is a fixpoint of O if O(x) = x. By Tarski’s least fixpoint theorem, every

monotone operator O on a cpo has a least fixpoint, denoted lfp(O). To use a similar

principle for operators stemming from non-monotonic logics, standard AFT (Denecker

et al. 2000) considers, for each complete lattice L, its associated square bilattice ⟨L2,≤p⟩,
where ≤p is the precision order on the Cartesian product L2, i.e., (x1, y1) ≤p (x2, y2) iff

6 Cambridge Author

x1 ≤L x2 and y2 ≤L y1. A square bilattice ⟨L2,≤p⟩ can be viewed as an approximation

of L: an element (x, y) ∈ L2 such that x ≤L y “approximates” all the values z ∈ L such

that x ≤L z ≤L y. Such pairs (x, y) with x ≤L y are called consistent. Pairs of the form

(x, x) ∈ L2 are called exact, since they approximate only one element of L.

An approximator A : L2 → L2 is a monotone operator that is symmetric, i.e., for all

(x, y) ∈ L2 it holds that A1(x, y) = A2(y, x), where A1, A2 : L
2 → L are the components

of A, i.e. A(x, y) = (A1(x, y), A2(x, y)). An approximator A : L2 → L2 approximates an

operator O : L → L if for all x ∈ L, A(x, x) = (O(x), O(x)). Since A is by definition

monotone, by Tarski’s theorem A has a least fixpoint, which is called the Kripke-Kleene

fixpoint. Moreover, given an approximator A, there are three other operators which

deserve our attention, together with their fixpoints: the operator approximated by A,

OA : x ∈ L 7→ A1(x, x) ∈ L whose fixpoints are called supported ; the stable operator

SA : x ∈ L 7→ lfp(A1(·, x)) ∈ L with the stable fixpoints (where A1(·, x) : y ∈ L 7→
A1(y, x) ∈ L); and the well-founded operator SA : (x, y) ∈ L2 7→ (SA(y), SA(x)) ∈ L2,

whose least fixpoint is referred to as the well-founded fixpoint. If A is the four-valued

immediate consequence operator (Fitting 2002), then the aformentioned four types of

fixpoint correspond to the homonymous semantics of logic programing (Denecker et al.

2000; 2012).

The concepts presented so far are part of what we refer to as standard AFT (Denecker

et al. 2000), i.e. the first account of AFT. Following this initial take, several other variants

have been developed: consistent AFT (Denecker et al. 2003), non-deterministic AFT

(Heyninck et al. 2024), or other extensions (Charalambidis et al. 2018). In particular, the

latter already proposes a way to deal with higher-order logic programs via an extension

of consistent AFT. However, as already highlighted by Bogaerts et al. (2024), the work

of Charalambidis et al. (2018) had some hidden problematic features. They can be

summarised as follows:

1. The Approximator: the well-founded semantics obtained via the approximator defined

by Charalambidis et al. (2018) does not behave as expected when an existential

quantifier occurs in the body of a rule. Take for instance the logic program with just

the simple rule p← R ∧ ∼ R, where R is a variable ranging over the booleans {f , t}.
If we naively ground such program, we obtain p← f ∧ t and p← t∧ f , and p would

clearly be evaluated as false. However, the approach adopted by Charalambidis et al.

(2018) uses approximated elements. In particular, variables of type boolean range

over {f , t,u}. In more detail, for the logic program p← R ∧ ∼ R, the approximator

assignes to p the least upper bound of the body R ∧ ∼ R, with R ranging over

{f , t,u}. Since such least upper bound is computed with respect to the truth order

f ≤ u ≤ t, the predicate p is assigned the value
⊔
{t∧ f , f ∧ t,u∧ u} = u under the

well-founded semantics. This contradicts the more intuitive and standard two-valued

approach via grounding, which assigns f to p. In a way, allowing the existentially

quantified variable to vary over all approximated elements seems to unnecessarily

increase (w.r.t. the truth order) the value of the defined predicate, when evaluated

under the well-founded semantics.

2. The Notion of Exactness: the work of Charalambidis et al. (2018) lacks the notion

of exactness for higher-order objects, which is fundamental in the context of AFT

and rather non-trivial in the higher-order setting: exactness allows to recognize

7

whether an approximated object, i.e. a pair (x, y) in the bilattice, represents just

one real element of the lattice, and, in particular, when a model is two-valued. In

other words, having such concept makes it possible to study not just the well-funded

models, but also the stable ones.

In Section 5, we will show how we can use our novel concepts in the framework of

Charalambidis et al. (2018) to solve the issues listed above.

2.2 Category Theory

Category Theory (CT) studies mathematical structures and the relations between them,

through the notion of a category. Intuitively, a category C consists of a collection Ob(C)

of objects and a collection Mor(C) of relations, called morphisms, between objects,

satisfying some basic properties: every morphism f has a domain s(f) and a codomain

t(f), morphisms can be composed, and so on.

Definition 1

A category C consists of

• a collection of objects Ob(C),

• a collection of morphisms Mor(C),

• for every morphism f ∈ Mor(C), an object s(f) called the source (or domain) of f , and

an object t(f) called the target (or codomain) of f ,

• for every object X ∈ Ob(C), a morphism idX called the identity morphism,

• for every two morphisms f, g ∈ Mor(C) with t(f) = s(g), a morphism g ◦ f , called their

composite,

such that

• for all f, g ∈ Mor(C) such that t(f) = s(g), s(g ◦ f) = s(f)

• for all f, g ∈ Mor(C) such that t(f) = s(g), t(g ◦ f) = t(g),

• for all X ∈ Ob(C), s(idX) = t(idX) = X,

• for all f, g, h ∈ Mor(C) such that t(f) = s(g) and t(g) = s(h), (h ◦ g) ◦ f = h ◦ (g ◦ f),
• for all X,Y ∈ Ob(C) and for all f ∈ Mor(C) such that s(f) = X and t(f) = Y ,

f ◦ idX = f and idY ◦ f = f .

In this paper, objects will always be certain ordered sets, and morphisms will be

monotone functions. In the same way as morphisms between objects encode relations

within a category, a morphism of categories, called a functor, describes the relation

between two categories.

Definition 2

Let C,D be two categories. A functor F : C→ D consists of a function F0 : Ob(C)→
Ob(D) between the classes of objects, and a function F1 : Mor(C)→ Mor(D), such that

it respects target and source of morphisms, identity morphisms, and composition.

For each x, y ∈ Ob(C), we denote by homC(x, y) the set of morphisms of C with

domain x and codomain y.

Definition 3

A functor F : C→ D is

8 Cambridge Author

• full if for each X,Y ∈ Ob(C), the map F1 ↾homC(X,Y) : homC(X,Y) →
homD(F0(X), F0(Y)) is surjective,

• faithful if for each X,Y ∈ Ob(C), the map F1 ↾homC(X,Y) : homC(X,Y) →
homD(F0(X), F0(Y)) is injective,

• embedding if F is faithful and F0 is injective.

The domain of a full embedding F : C→ D is called a full subcategory of the codomain

(denoted as C ⊆ D).

It is easy to see that we can define a category POSet with objects the posets, and

as morphisms the monotone functions between posets. We denote by CPO, CJSLat,

and CLat the full subcategories of POSet with objects the cpo’s, the complete join

semilattices, and the complete lattices, respectively. Clearly, it also holds that CLat ⊆
CPO ⊆ POSet and CLat ⊆ CJSLat ⊆ POSet.

We are interested in inductively building approximation spaces for higher-order concepts

starting from base ones. To be able to perform this construction, we need the approximation

spaces to belong to a Cartesian closed category, i.e., a category C with a terminal object,

products, and exponentials.

Definition 4

T ∈ Ob(C) is terminal if for each A ∈ Ob(C) there exists a unique morphism f : A→ T .

For instance, the poset with one element and trivial order is the terminal object of

POSet, CPO, CJSLat, and CLat.

Definition 5

Let A1, A2 ∈ Ob(C). A product of A1 and A2 is an object of C, denoted by A1 × A2,

equipped with two morphisms π1 : A1 × A2 → A1 and π2 : A1 × A2 → A2, called first,

and second projection respectively, such that for any B ∈ Ob(C) and any morphisms

f1 : B → A1 and f2 : B → A2, there exists a unique morphism f1 × f2 : B → A1 × A2

such that π1 ◦ (f1 × f2) = f1 and π2 ◦ (f1 × f2) = f2.

In POSet, and analogously for CPO, CJSLat, and CLat, the product of two objects

P1 and P2 is the Cartesian product of P1 and P2 equipped with the product order, i.e.,

(x1, y1) ≤ (x2, y2) if and only if x1 ≤P1 x2 and y1 ≤P2 y2. The projections π1 and π2 are

given by the usual Cartesian projections.

Definition 6

Let A1, A2 ∈ Ob(C). An exponential of A1 and A2 is an object of C, denoted by AA1
2 ,

equipped with a morphism ev : AA1
2 × A1 → A2, called the evaluation, such that for

any B ∈ Ob(C) and any morphism f : B × A1 → A2, there exists a unique morphism

f ′ : B → AA1
2 such that ev ◦ (f ′ × id) = f .

In POSet, and analogously for CPO, CJSLat, and CLat, the exponential PP1
2 is the

set of monotone functions from P1 to P2 equipped with the pointwise order (induced by

≤P2), i.e., f1 ≤pt f2 if and only if for all x ∈ P1, f1(x) ≤P2 f2(x). The evaluation ev is

given by the usual function evaluation, i.e., ev(f, x) = f(x).

Definition 7

A category C is Cartesian closed if it has a terminal object, and for each A1, A2 ∈ Ob(C),

there exist A1 ×A2 ∈ Ob(C) and AA1
2 ∈ Ob(C).

9

By our prior observations, it follows that POSet,CPO, CJSLat, and CLat are all

Cartesian closed.

In the context of AFT, we are often interested in the space of interpretations over a

possibly infinite vocabulary of a logic program. In order to include this, we need another

notion from CT, namely a generalized version of the categorical product for (possibly

infinite) families of objects.

Definition 8

Let {Ai}i∈I be a family of objects of a category C indexed by I. The (generalized)

product of the family {Ai}i∈I is an object of C, denoted by Πi∈IAi, equipped with

morphisms πi : Πi∈IAi → Ai, called the i-th projection, such that for all B ∈ Ob(C)

and for all families of morphisms {φi : B → Ai}i∈I indexed by I, there exists a unique

ψ : B → Πi∈IAi such that for all i ∈ I it holds that φi = πi ◦ ψ.

We say that a category C has generalized products if for all families {Ai}i∈I of objects

of C the product Πi∈IAi ∈ Ob(C) exists. Clearly, if C is Cartesian closed and the index I

is finite, this product always exists; but this is not always the case for infinite I. However,

we will show in the remainder of this subsection that every full subcategory of POSet

has generalized products (Proposition 2). We wish to warn the reader that the following

category-theoretic notions are only meant to support the proofs of Propositions 2 and 3,

and will not be used in the next sections of the paper.

The generalized product is a special case of a very common construction in CT, called

the limiting cone, or simply limit. We proceed with the definitions leading to the concept

of limit.

Definition 9

A diagram X• in a category C is

1. a set {Xi}i∈I of objects of C,

2. for every pair (i, j) ∈ I × I, a set {fα : Xi → Xj}α∈Ii,j of morphisms,

3. for every i ∈ I an element ϵi ∈ Ii,i,
4. for each (i, j, k) ∈ I × I × I a function compi,j,k : Ii,j × Ij,k → Ii,k such that

(a) comp is associative and unital with the fϵi ’s being the neutral elements,

(b) for every i ∈ I, fϵi = idXi
is the identity morphism of Xi,

(c) for every two composable morphisms fα : Xi → Xj and fβ : Xj → Xk, it holds that

fβ ◦ fα = fcompi,j,k(α,β)
.

Definition 10

Let X• = ({fα : Xi → Xj}i,j∈I,α∈Ii,j , comp) be a diagram in C. A cone over X• is an

object X ∈ Ob(C) together with, for each i ∈ I, a morphism pi : X → Xi ∈ Mor(C) such

that for all (i, j) ∈ I × I and for all α ∈ Ii,j , it holds that fα ◦ pi = pj .

Moreover, the limiting cone or limit of X• is, if it exists, the cone over X• which is

universal among all possible cones over X•.

Definition 11

A functor F : C→ D reflects all limits if for all diagrams X• in C, and for all cones C

over X• such that F (C) is a limiting cone of F (X•), C is a limiting cone of X•.

10 Cambridge Author

Proposition 1

A full and faithful functor reflects all limits.

Proof

Lemma 3.3.5 in (Riehl 2017).

We are finally able to prove that every full subcategory of POSet has geeralized

products.

Proposition 2

If C ⊆ POSet, then C has generalized products.

Proof

By Definition 3, there exists a full embedding F : C → POSet. By Proposition 1, F

reflects all limits. Moreover, it is clear that POSet has generalized products. Since

generalized products are a type of limit, we conclude that C has generalized products.

In a full subcategory of POSet we can rewrite a generalized product as a poset of

functions. Given two posets P1,P2 ∈ Ob(POSet), we denote by (P1 → P2) ∈ Ob(POSet)

the poset of functions from P1 to P2 ordered with the pointwise order. In particular,

notice that (P1 → P2) may contain non-monotone functions.

Proposition 3

Let C be a full subcategory of POSet, X ∈ Ob(POSet), and Y ∈ Ob(C). Then there

exists an isomorphism (X → Y) ∼= Πx∈XY in C.

Proof

By Proposition 2, Πx∈XY ∈ Ob(C). Moreover, there exists a bijection φ : (X → Y)→
Πx∈XY , defined by φ(f) = (f(a))a∈X , with inverse φ−1 : Πx∈XY → (X → Y), defined

by, for all a ∈ X, φ−1((yx)x∈X)(a) = ya. Because of the definition of pointwise order and

product order, it is immediate to show that both φ and φ−1 preserve the orders, i.e., they

are monotone.

3 The Approximation System

In this section, we introduce the notions of approximation category and of approximation

system, which constitute the core of the theoretical framework for AFT we developed.

Let L be a higher-order language based on a hierarchy of types H comprising of base

types τ , and two kinds of composite types: product types Πi∈Iτi, and morphism types

τ1 → τ2. For instance, a base type could be the boolean type o or the type ι of individuals,

whereas in the composite types we may find the type ι→ o, which is the type of unary

first-order predicates. We denote by BH the set of base types. For the sake of simplicity,

we omit the subscript of B when it is clear from the context of use.

We associate to each type τ of BH, an object Eτ ∈ Ob(POSet), and we define inductively

for all {τi}i∈I ⊆ H, EΠi∈Iτi = Πi∈IEτi , and for all τ1, τ2 ∈ H, Eτ1→τ2 = (Eτ1 → Eτ2).

The object Eτ is called the semantics of τ . For example, if the semantics of the boolean

type o is chosen to be Eo := {f , t} with the standard truth ordering, then the semantics

for type o→ o is the poset of functions from Eo to Eo.

11

In many applications of AFT, we are ultimately interested in the space of interpretations,

which associate to each symbol of a vocabulary, an element of the semantics of the type

of such symbol. It follows that an interpretation can be seen as a tuple of elements of

different semantics. In more detail, given a vocabulary V , we can consider the product type

τ = Πs∈V t(s), where t(s) is the type of the symbol s. Then, the space of interpretations

for the vocabulary V coincides with the semantics Eτ = Πs∈V Et(s).

We have so far defined the semantics of all the base types and the composite ones

constructed from them. Notice that, it is often not necessary to define the spaces of

approximations for all such semantics Eτ , which are infinitely many. Because of the nature

of our formalism, we can easily restrict the set of types we take into account: we can fix a

subset T ⊆ H of types, and focus our attention onto the set ST defined as follows:

• for all τ ∈ T, Eτ ∈ ST,

• if Eτ1→τ2 ∈ ST, then Eτ2 ∈ ST,

• if EΠi∈Iτi ∈ ST, then Eτi ∈ ST for all i ∈ I.

We will dive deeper into this matter in Section 5 where we present applications of our

framework. We denote by BT the set of base types of H belonging to T.
The notion of approximation system (Definition 12) together with what follows in this

section, provide a general framework in which the techniques of AFT can be applied on

higher-order languages. Before stating the, rather lengthy, definition of an approximation

system, we provide an intuitive understanding of its components.

For each Eτ ∈ ST, we shall consider a corresponding space App(Eτ), called an ap-

proximation space, whose elements approximate the elements of Eτ . Hence, we de-

fine a Cartesian closed full subcategory of CPO, denoted by Approx, and a map

App : ST → Ob(Approx) encoding such correspondence. The fact that Approx ⊆ CPO

allows us to apply the Knaster-Tarski theorem on the approximation spaces, and guar-

antees the existence of generalized products (Proposition 2). Notice that, even though

we fixed a mapping App between the set ST and the objects of Approx, there is, so

far, no relation between the elements of Eτ and those of App(Eτ). The approximation

space App(Eτ) is meant to approximate the elements of Eτ . In particular, we want the

order ≤App(Eτ) on App(Eτ), which we call a precision order, to encode the approximating

nature of App(Eτ) for Eτ : intuitively, a ≤App(Eτ) b if a is less precise than b, i.e., if an

element e ∈ Eτ is approximated by b, then e is also approximated by a. In the context

of AFT, of particular interest are the elements of App(Eτ) which approximate just one

element, called the exact elements. Thus, in the definition of approximation system that

we are about to give, for every base type τ ∈ BT, we fix a set Eτ of exact elements of

App(Eτ), and a function p0τ : Eτ → Eτ , which associates each exact element to the unique

element of Eτ it represents.

To obtain a sensible framework, it is fundamental to carefully define the sets of exact

elements and a projection that associates each exact element to the object it represents.

Hence, we impose conditions on the possible choices of the sets Eτ and the functions p0τ , for

τ ∈ BT. Since an exact element of App(Eτ) approximates a single element of the semantics

Eτ , if both a and b are exact and one is more precise than the other, then they should

represent the same element, i.e. p0τ (a) = p0τ (b) (Item 4b in Definition 12). This requirement

also hints at a very important fact: the definition of approximation system allows for the

existence of multiple exact elements of App(Eτ) representing the same element of Eτ .

12 Cambridge Author

Because of this possible multitude of exact representatives, we want to have, for each

element e ∈ Eτ , a natural choice for a representative in the approximation space App(Eτ).

This is why, for each element e ∈ Eτ , we require that the greatest lower bound of all the

exact elements representing e exists, is exact, and represents e (Item 4c in Definition 12).

Lastly, we add one more condition on exact elements to accommodate several existing

versions of AFT. In consistent AFT (Denecker et al. 2003), exact elements are maximal,

while in standard AFT, this is not the case, and there are elements beyond exact ones.

We require that either the exact elements are maximal, or we can take arbitrary joins in

the approximation spaces (Item 3b in Definition 12). This last condition will later allow

for a generalization of both Eτ and p0τ to any type τ of H, satisfying properties analogous

to the ones required for the base types counterparts (Propositions 4 and 5).

We are now ready to state the definition of an approximation system. We write f−1(b)

for the preimage of an element b ∈ B via a function f : A → B, i.e., f−1(b) = {a |
f(a) = b} ⊆ A. Recall that given two posets P1,P2 ∈ Ob(POSet), we denote by

(P1 → P2) ∈ Ob(POSet) the poset of (possibly non-monotone) functions from P1 to P2

ordered with the pointwise order.

Definition 12

A tuple (Approx,App, {Eτ}τ∈B, {p0τ}τ∈B) is an approximation system (for ST) if

1. Approx is a Cartesian closed full subcategory of CPO, called the approximation category.

The objects of Approx are called approximation spaces.

2. App : ST → Ob(Approx) is a function such that for all Eτ ∈ ST

(a) if τ = Πi∈Iτi is a product type, then App(Eτ) = Πi∈IApp(Ei),

(b) if τ = τ1 → τ2 and Eτ1 /∈ ST, then App(Eτ1→τ2) = (Eτ1 → App(Eτ2)),

(c) if τ = τ1 → τ2 and Eτ1 ∈ ST, then App(Eτ1→τ2) = App(Eτ2)
App(Eτ1

).

3. {Eτ}τ∈B is a family of sets such that the following hold:

(a) for each base type τ ∈ B, Eτ ⊆ App(Eτ),

(b) either App(Eτ) ∈ Ob(CJSLat) for all τ ∈ B, or for all τ ∈ B, if a ∈ Eτ and

b ∈ App(Eτ) such that a ≤App(Eτ) b, then also b ∈ Eτ .

4. {p0τ}τ∈B is a family of surjective functions such that for each base type τ ∈ B:

(a) p0τ : Eτ → Eτ ,

(b) for all a, b ∈ Eτ , if a ≤App(Eτ) b, then p0τ (a) = p0τ (b),

(c) for all e ∈ Eτ , there exists
d
((p0τ)

−1(e)) ∈ Eτ and p0τ (
d
(p0τ)

−1(e)) = e.

Notice that, by Proposition 3, the object (Eτ1 → App(Eτ2)) in Item 2b of Definition 12

is indeed an object of the approximation category Approx. Morover, again by Proposition

3, it holds that Eτ1→τ2 = (Eτ1 → Eτ2)
∼= Πi∈Eτ1

Eτ2 = EΠi∈Eτ1
τ2 . However, in Item 2c

of the above definition, we have App(Eτ1→τ2) = App(Eτ2)
App(Eτ1

) ̸∼= Πi∈Eτ1
App(Eτ2) =

App(EΠi∈Eτ1
τ2). Hence, while the map App, in a way, respects the structure given by the

type hierarchy H, it does not commute with isomorphisms of posets.

Finally, it is important to notice that, while the approximation system depends on the

application at hand, i.e., on the language, the semantics, and so on, the approximation

category depends only on the version of AFT.

13

We now fix an approximation system S = (Approx,App, {Eτ}τ∈B, {p0τ}τ∈B) for ST,

and extend the notion of exactness to all approximation spaces.

Definition 13

Let Eτ ∈ ST. An element e ∈ App(Eτ) is exact if one of the following conditions holds:

1. τ ∈ BT and e ∈ Eτ ,
2. τ = Πi∈Iτi and for each i ∈ I, the i-th component πi(e) of e is exact,

3. τ = τ1 → τ2, Eτ1 /∈ ST, and for all e1 ∈ Eτ1 , e(e1) ∈ App(Eτ2) is exact.

4. τ = τ1 → τ2, Eτ1 ∈ ST, and for all e1 ∈ App(Eτ1) exact, e(e1) ∈ App(Eτ2) is exact.

The reader may wonder why there are two cases for a morphism type τ1 → τ2 in

Definition 13, depending whether Eτ1 is in ST or not, i.e. whether we approximate the

elements of the semantics of τ1 or not. Recall that an exact element in the approximation

space is meant to represent one and only one element of the semantics of the same type.

Intuitively, for a morphism type τ1 → τ2, a function in App(Eτ1→τ2) is exact when the

image of any exact element is exact. This is indeed sufficient and we do not need to

consider the image of non-exact elements of the domain: we will prove in Proposition

5 that there is an exact element in the approximation space for each element of the

semantics of the corresponding type. Now, considering exact elements of the domain (and

looking at their image) makes sense only when the domain is an approximation space, i.e.

when Eτ1 ∈ ST; in the other case, when Eτ1 /∈ ST we can directly consider the elements

of the semantics, as they do not get approximated.

For τ ∈ T, we denote by Eτ the subset of App(Eτ) of exact elements of type τ . The

following proposition shows that the condition 3b of Definition 12 holds for any Eτ ∈ ST.

Proposition 4

Either for all Eτ ∈ ST it holds that App(Eτ) ∈ Ob(CJSLat), or for all Eτ ∈ ST, for all

b ∈ App(Eτ), and for all e ∈ Eτ , if e ≤App(Eτ) b , then b ∈ Eτ .

Proof

Suppose there exists Eτ ′ ∈ ST such that App(Eτ ′) /∈ Ob(CJSLat). We have to show that

for all Eτ ∈ ST, for all b ∈ App(Eτ), and for all e ∈ Eτ , if e ≤App(Eτ) b , then b ∈ Eτ . We

proceed by induction on τ .

Let τ be a base type. Since we assumed that App(Eτ ′) /∈ Ob(CJSLat) for some

Eτ ′ ∈ ST, and CJSLat is Cartesian closed, and has generalized products by Proposition

2, then there must exists a σ ∈ B such that App(Eσ) /∈ Ob(CJSLat). Thus, by condition

3b of Definition 12 we can conclude the base step of the induction.

Now let τ = Πi∈Iτi and suppose the proposition hold for Eτi for all i ∈ I. Let

(bi) ∈ App(Eτ) such that e := (ei) ≤App(Eτ) (bi). By the definition of the product order,

Definition 13, and the induction hypothesis, we get that bi ∈ Eτi for all i ∈ I, i.e., (bi) ∈ Eτ ,
as desired.

Let τ = τ1 → τ2 with Eτ1 /∈ ST, and suppose the proposition hold for Eτ2 . By

Proposition 3, it holds that App(Eτ) ∼= App(Πi∈Eτ1
Eτ2), thus, we can reduce to the

previous case.

Let τ = τ1 → τ2 with Eτ1 ∈ ST, and suppose the proposition hold for Eτ1 and Eτ2 . Let

f ∈ App(Eτ) such that e ≤App(Eτ) f . For f to be exact, it must send exact elements to

exact elements. Let a ∈ Eτ1 . By the definition of the order on morphisms, and Defintion

14 Cambridge Author

13, it holds that f(a) ≥App(Eτ2
) e(a) ∈ Eτ2 . By induction hypothesis, it follows that

f(a) ∈ Eτ2 . Hence, f ∈ Eτ , as desired.

Now that we have defined the exact elements for any semantics in ST, we extend the

family {p0τ}τ∈B to have a map for each Eτ ∈ ST. We can do this inductively, by defining

a new family of functions {pτ : Eτ → Eτ}Eτ∈ST as follows:

1. if τ ∈ B, then pτ := p0τ ,

2. if τ = Πi∈Iτi, then for all (ei)i∈I ∈ Eτ , pτ ((ei)i∈I) := (pτi(ei))i∈I ,

3. if τ = τ1 → τ2, and Eτ1 /∈ ST, then for all f ∈ Eτ , and for all e ∈ Eτ1 , pτ (f)(e) :=

pτ2(f(e)).

4. if τ = τ1 → τ2, and Eτ1 ∈ ST, then for all f ∈ Eτ , and for all e ∈ Eτ1 , pτ (f)(e) :=

pτ2(f(d)), where d ∈ p−1
τ1 (e), i.e., pτ1(d) = e.

Recall that, intuitively, the function pτ sends an exact element of type τ to the element

it represents in the semantics of τ .

In the following proposition, we prove that for each Eτ ∈ ST, the function pτ is

well-defined, surjective, and satisfies properties analogous to 4b and 4c of Definition 12.

Proposition 5

Let Eτ ∈ ST, e1, e2 ∈ Eτ , and e ∈ Eτ . The following statements hold:

1. pτ is well-defined.

2. pτ is surjective.

3. if e1 ≤App(Eτ) e2, then pτ (e1) = pτ (e2).

4. there exists
d
p−1
τ (e) ∈ Eτ and pτ (

d
p−1
τ (e)) = e.

Proof

We proceed by induction on τ . Let τ ∈ BT. Then pτ = p0τ and the Items 1, 2, 3, and 4

hold by definition of p0τ .

Now suppose τ = Πi∈Iτi, and assume that Items 1, 2, 3, and 4 hold for τi for all

i ∈ I. Since pτi is well-defined and surjective by hypothesis for all i ∈ I, it is clear

by definition that also pτ is well-defined and surjective. Let (ai), (bi) ∈ Eτ such that

(ai) ≤App(Eτ) (bi). By the product order on App(Eτ) we have ai ≤App(Eτi
) bi for all

i ∈ I. By definition 13, ai, bi ∈ Eτi for all i ∈ I. Hence, by hypothesis it follows that

pτi(ai) = pτi(bi) for all i ∈ I. By definition of pτ , we get that pτ ((ai)) = pτ ((bi)).

Thus, Item 3 hold. Now let (ai) ∈ Eτ . By the definition of pτ , it is easy to see that

p−1
τ ((ai)) = Πi∈Ip

−1
τi (ai). Hence, by induction hypothesis for Item 4, we have thatd

(p−1
τ ((ai))) =

d
(Πi∈Ip

−1
τi (ai)) = Πi∈I

d
p−1
τi (ai) ∈ Πi∈Ip

−1
τi (ai) = p−1

τ ((ai)), where the

second equality holds because of the definition of the product order on App(Eτ). Thus,

also Item 4 hold for pτ .

Suppose τ = τ1 → τ2 with Eτ1 /∈ ST, and assume that Items 1, 2, 3, and 4 hold for and

τ2. By Proposition 3 and Definition 12, we have Eτ1→τ2 = (Eτ1 → Eτ2)
∼= Πi∈Eτ1

Eτ2 and

App(Eτ1→τ2)
∼= App(Πi∈Eτ1

Eτ2). It is easy to see that we can reduce to the previous case

with I := Eτ1 .

Finally, suppose τ = τ1 → τ2 with Eτ1 ∈ ST, and assume that Items 1, 2, 3, and

4 hold for τ1 and τ2. We first show that pτ is well-defined, i.e., for all f ∈ Eτ there

exists unique g ∈ Eτ = E
Eτ1
τ2 such that pτ (f) = g. Let f ∈ Eτ . First notice that,

15

since pτ1 is surjective by hypothesis, for all e ∈ Eτ1 there exists d ∈ Eτ1 such that

pτ1(d) = e. Moreover, since pτ2 is well-defined by hypothesis, for all e ∈ Eτ1 and d ∈
p−1
τ1 (e), we get an element pτ2(f(d)) ∈ Eτ2 . It remains to show that for all e ∈ Eτ1 , if

d1, d2 ∈ p−1
τ1 (e) ⊆ Eτ1 , then pτ2(f(d1)) = pτ2(f(d2)). Let e ∈ Eτ1 and d1, d2 ∈ p−1

τ1 (e).

By induction hypothesis for Item 4, there exists d3 ∈ p−1
τ1 (e) such that d3 ≤App(Eτ1)

d1,

d3 ≤App(Eτ1
) d2. Since f ∈ Eτ = EEτ1

τ2 is a morphism of cpo’s, it is monotone. Hence, it

holds that f(d3) ≤App(Eτ2
) f(d1), f(d3) ≤App(Eτ2

) f(d2). By induction hypothesis for

Item 3, it follows that pτ2(f(d1)) = pτ2(f(d2)). Thus, pτ is well-defined.

We now show that pτ is surjective. Let g ∈ Eτ = E
Eτ1
τ2 . By the induction hypothesis on

τ2 for Item 4, for each e ∈ Eτ1 , we can define an element de :=
d

p−1
τ2 (g(e)) ∈ p−1

τ2 (g(e)).

By Proposition 4, for each a ∈ App(Eτ1) \ Eτ1 such that there exists (at least one) b ∈ Eτ1
with b ≤App(Eτ1)

a, we can define

ca :=
⊔
{dpτ1

(b) | b ∈ Eτ1 such that b ≤App(Eτ1
) a}.

We define f : App(Eτ1)→ App(Eτ2) for all a ∈ App(Eτ1) as follows:

f(a) :=


dpτ1

(a) if a ∈ Eτ1 ,
ca if a /∈ Eτ1 and exists b ∈ Eτ1 such that b ≤App(Eτ1)

a,

⊥App(Eτ2
) otherwise.

(1)

In the following we show that f is monotone. Let a1, a2 ∈ App(Eτ1) such that a1 ≤App(Eτ1
)

a2. If a1 /∈ Eτ1 and for all b ∈ Eτ1 is not the case that b ≤App(Eτ1
) a, then clearly

f(a1) = ⊥App(Eτ2
) ≤App(Eτ2

) f(a2). If a1, a2 ∈ Eτ1 , then f(a1) = f(a2) by the induction

hypothesis for Item 3. If a1 is exact but a2 is not, then clearly f(a1) ≤App(Eτ2
) f(a2). If

both a1, a2 /∈ Eτ1 and they are greater than some exact b ∈ Eτ1 , then {b ∈ Eτ1 | b ≤App(Eτ1)

a1} ⊆ {b ∈ Eτ1 | b ≤App(Eτ1
) a2}. Hence, f(a1) = ca1

≤App(Eτ2
) ca2

= f(a2), as desired.

It follows that f ∈ App(Eτ). Moreover, it is clear that f sends exact elements to exact

elements, i.e., f ∈ Eτ . For all e ∈ Eτ1 , pτ (f)(e) = pτ2(f(c)) = pτ2(dpτ1
(c)) = pτ2(de) = g(e),

where c is some element in the preimage p−1
τ1 (e). Thus, pτ (f) = g, as desired.

We proceed to show that Item 3 holds for τ . Let f1, f2 ∈ Eτ such that f1 ≤App(Eτ) f2,

and let e ∈ Eτ1 . We have already shown in Item 1 for τ that pτ is well defined. In particular,

pτ (g)(e) = pτ2(g(d1)) = pτ2(g(d2)) for all g ∈ Eτ and d1, d2 ∈ p−1
τ1 (e). By the definition

of the order on morphisms, f1(d) ≤App(Eτ2
) f2(d) for all d ∈ Eτ1 . By the induction

hypothesis for Item 3, it holds that pτ (f1)(e) = pτ2(f1(d)) = pτ2(f2(d)) = pτ (f2)(e).

Hence, pτ (f1) = pτ (f2), as desired.

Finally, we show that Item 4 holds for τ . Let g ∈ Eτ . We can construct a morphism

f ∈ Eτ using the same technique as in (1). By the proof of Item 2, we already have

pτ (f) = g. It remains to show that f =
d
p−1
τ (g). Let h ∈ p−1

τ (g). First notice that

since pτ (h) = pτ (f) = g, it holds that for all e ∈ Eτ1 , pτ2(f(l)) = pτ2(h(l)) = g(e) for

all l ∈ p−1
τ1 (e). In particular, for all a ∈ Eτ1 , it holds that f(a), h(a) ∈ p−1

τ2 (g(pτ1(a))).

Hence, for all a ∈ Eτ1 , we have that f(a) = dpτ1 (a)
=

d
(p−1

τ2 (g(pτ1(a)))) ≤App(Eτ2)
h(a).

Now let a /∈ Eτ1 such that there exists b ∈ Eτ1 such that b ≤App(Eτ1
) a. Since we have

already shown that f(c) = dpτ1 (c)
≤App(Eτ2)

h(c) for all c ∈ Eτ1 , it is easy to see that

f(a) = ca ≤App(Eτ2
) h(a). For all the other cases of a ∈ App(Eτ1) it is obvious that

f(a) ≤App(Eτ2
) h(a). Hence, f is a lower bound of p−1

τ (g). Since f ∈ p−1
τ (g), we get

f =
d
p−1
τ (g), as desired.

16 Cambridge Author

In most applications of AFT, for approximation spaces of base types, there exists

a unique exact element representing an object of a semantics, and Items 3 and 4 of

Proposition 5 are trivially verified. However, for higher-order approximation spaces, this

is not always the case, as we illustrate in the following example.

Example 1

Let o be the Boolean type, with semantics Eo := ⟨{f , t},≤t⟩, where ≤t is the standard

truth order. In standard AFT, we would define the approximation space for Eo to be the

bilattice App(Eo) := ⟨Eo × Eo,≤p⟩, with ≤p the precision order. Then, the semantics

for o → o is the poset of functions from Eo to Eo, and the approximation space for it

is the exponential, i.e., the set of monotone functions from App(Eo) to itself, ordered

pointwise. Clearly, we can set the exact elements of App(Eo) to be (f , f) and (t, t),

and po to send them to f and t, respectively. Now consider the following two functions:

f, g : App(Eo) → App(Eo) defined by f(f , t) = (f , t), g(f , t) = f(f , f) = g(f , f) =

f(t, t) = g(t, t) = (t, t), and f(t, f) = g(t, f) = (t, f). Clearly, both f and g send exacts

to exacts, thus, they are exact. Moreover, even though f ̸= g, it is easy to see that

po→o(f) = po→o(g) = h : Eo → Eo, where h(f) = h(t) = t.

We conclude this section with the definition of consistent elements.

Definition 14

Let Eτ ∈ ST. An element c ∈ App(Eτ) is consistent if there exists e ∈ Eτ such that

c ≤App(Eτ) e.

Notice that a function of the family {pτ : Eτ → Eτ}Eτ∈ST not only determines which

element of the semantics an exact element represents, but it also helps understanding what

a consistent element is approximating: if c ∈ App(Eτ) is consistent and c ≤App(Eτ) e for

some exact e, then c approximates pτ (e). Clearly, consistent elements may approximate

more than one element of a semantics.

4 An approximation system for standard AFT

In this section, we show how our new framework extends the standard AFT setting to

higher-order definitions.

The main building block of an approximation system is the categoryApprox, containing

all the desired approximation spaces. Hence, we start by showing that the approximation

spaces used in standard AFT, i.e. the square bilattices, form a Cartesian closed category.

First, recall that a square bilattice is a poset of the form ⟨L× L,≤p⟩, where ⟨L,≤L⟩
is a complete lattice and ≤p is the precision order, i.e. (x1, y1) ≤p (x2, y2) iff x1 ≤L x2
and y2 ≤L y1. If we view these objects from a category-theoretic perspective, we can

write ⟨L× L,≤p⟩ = L × Lop where L := ⟨L,≤L⟩ ∈ Ob(CLat). Hence, we can define the

category BiLat of square bilattices as follows:

Ob(BiLat) := {L × Lop | L ∈ CLat}
Mor(BiLat) := {f : L1 → L2 | L1,L2 ∈ Ob(BiLat) ∧ f monotone}

We will denote an element L × Lop of BiLat by L.

17

Lemma 1

The category BiLat is a full subcategory of CLat.

Proof

Clearly, if L ∈ CLat, then Lop ∈ CLat. Since CLat is Cartesian closed, for all L ∈ CLat,

we have that L × Lop ∈ CLat. We conclude by the definition of BiLat.

By Lemma 1, proving that BiLat is Cartesian closed reduces to show that the following

isomorphisms of complete lattices hold for all L1,L2 ∈ BiLat:

1. T ∼= T , where T is the terminal object of CLat,

2. L1 × L2
∼= (L1 × L2),

3. L2
L1 ∼= LL1

2 .

While the first two isomorphisms are rather straightforward, the latter deserves some

attention. Consider a morphism of square bilattices f from L1 to L2. Since L2 = L2×L2
op ,

we can write f as a pair (f1, f2) of morphisms of complete lattices, where f1 : L1 → L2

and f2 : L1 → L2
op . It follows easily that L2

L1 ∼= LL1
2 × (L2

op)L1 . Then, the isomoprhism

φ : L2
L1 → LL1

2 , is realised by mapping f=̂(f1, f2) to a new pair φ(f) := (f1, f
′
2) ∈

LL1
2 × (LL1

2)
op

= LL1
2 , where the second component is defined by f ′2(x, y) := f2(y, x).

Notice that, since f2 is a monotone function from L1 to L2
op , f ′2 is indeed a monotone

function from L1 to L2. Further details regarding the isomorphisms listed above are

contained in the proof of Theorem 1.

Theorem 1

The category BiLat is Cartesian closed.

Proof

Since CLat is Cartesian closed, and BiLat is a full-subcategory of CLat (Lemma 1), it

is sufficient to show that the terminal object of CLat is an object of BiLat and that

for all L1,L2 ∈ BiLat, the product L1 × L2 and the exponential L2
L1

, computed in the

category CLat, are also objects of BiLat.

• Terminal object. There is an obvious isomorphism from the terminal object T of CLat,

i.e. the lattice with just one element and trivial order, and the object T × T op ∈ BiLat.

• Product. Let L1,L2 ∈ BiLat. By Cartesian closedness of CLat, L1 × L2 is an ob-

ject of BiLat. We define a function φ : L1 × L2 → L1 × L2 by sending an element

((a1, b1), (a2, b2)) to ((a1, a2), (b1, b2)). Clearly, φ is bijective. Moreover, by the definition

of the product order, the following double-implications hold for all a1, b1, x1, y1 ∈ L1, and

for all b1, b2, x2, y2 ∈ L2

((a1, b1), (a2, b2)) ≤L1×L2
((x1, y1), (x2, y2))

⇐⇒ (a1, b1) ≤L1
(x1, y1) ∧ (a2, b2) ≤L2

(x2, y2)

⇐⇒ a1 ≤L1
x1 ∧ y1 ≤L1

b1 ∧ a2 ≤L2
x2 ∧ y2 ≤L2

b2

⇐⇒ (a1, a2) ≤L1×L2
(x1, x2) ∧ (y1, y2) ≤L1×L2

(b1, b2)

⇐⇒ ((a1, a2), (b1, b2)) ≤L1×L2
((x1, x2), (y1, y2)).

18 Cambridge Author

Hence, φ and its inverse are monotone functions, i.e. morphisms. It follows that L1×L2
∼=

L1 × L2 ∈ BiLat, as desired.

• Exponential. Let L1,L2 ∈ BiLat. By Cartesian closedness of CLat, L2
L1

is an object

of BiLat. Let δ : L1 → L1 be the function sending (x, y) to (y, x). We define a function

ψ : L2
L1 → LL2

1 by sending a morphism f := (f1, f2) to (f1, f2 ◦ δ), where f1 : L1 → L2

and f2 : L1 → L2
op are the components of f . Since f2 is an antimonotone function from

L1 to L2, it is easy to check that f2 ◦ δ is a monotone function from L1 to L2, as desired.

Clearly, φ is bijective. Moreover, by the definition of the pointwise order, the following

double-implications hold for all f1, g1 ∈ LL1
2 , and for all f2, g2 ∈ (L2

op)L1

(f1, f2) ≤L2
L1

(g1, g2)

⇐⇒ ∀(x, y) ∈ L1, (f1(x, y), f2(x, y)) ≤L2
(g1(x, y), g2(x, y))

⇐⇒ ∀(x, y) ∈ L1, f1(x, y) ≤L2
g1(x, y) ∧ g2(x, y) ≤L2

f2(x, y)

⇐⇒ ∀(x, y) ∈ L1, f1(x, y) ≤L2
g1(x, y) ∧ g2(y, x) ≤L2

f2(y, x)

⇐⇒ f1 ≤LL1
2

g1 ∧ g2 ◦ δ ≤LL1
2

f2 ◦ δ

⇐⇒ (f1, f2 ◦ δ) ≤
LL2

1

(g1, g2 ◦ δ).

Hence, ψ and its inverse are monotone functions, i.e. morphisms. It follows that L2
L1 ∼=

LL2
1 ∈ BiLat, as desired.

It is interesting to observe that the approximators used in standard AFT, i.e., the

symmetric approximators, when viewed in their square bilattice approximator space,

correspond to pairs of equal functions, i.e., the classic definition of exact pair (Denecker

et al. 2000). Similarly, a gracefully degrading approximator A = (A1, A2) : L → L, i.e.,
such that A1(x, y) ≤L A2(y, x) for all (x, y) ∈ L (Denecker and Vennekens 2007), when

viewed in LL is a pair φ(A) = (A1, A
′
2) with A1 ≤LL A′

2, i.e., a consistent pair according

to the classic definition of AFT.

Thanks to Theorem 1 and BiLat ⊆ CPO, we can fix BiLat as our approximation

category. This can be done for any application in which we want to use standard AFT

techniques. Nevertheless, depending on the application at hand, the approximation system

may differ. Let us show how to define an approximation system given a language based

on a type hierarchy H. Let ST be the set of the semantics of types of H we want to

approximate, and assume that such semantics are complete lattices, as is usually the case

in logic programming. Then, we can inductively define a mapping App : ST → Ob(BiLat)

by setting, for all τ ∈ BT, App(Eτ) := Eτ , and proceed using the conditions in Definition

12. Notice that the base case of the induction is nothing more than what is usually done

in standard AFT: from a complete lattice ⟨L,≤L⟩ we obtain the square bilattice ⟨L2,≤p⟩.
The remaining steps are naturally provided by following the Cartesian closed structure of

BiLat.

For each base type τ ∈ BT, the exact elements of App(Eτ) are defined as in standard

AFT: (x, y) ∈ App(Eτ) is exact if x = y, i.e., Eτ = {(x, x) | x ∈ Eτ}. Notice that, since

BiLat ⊆ CLat ⊆ CJSLat, the condition 3b in Defintion 12 is satisfied. Finally, for each

base type τ , we define p0τ : Eτ → Eτ by sending (x, x) to x. Both conditions 4b and 4c in

19

Definition 12 hold since (p0τ)
−1(x) = {(x, x)}. Hence, we have obtained an approximation

system (BiLat,App, {Eτ}τ∈B, {p0τ}τ∈B) for ST.

In standard AFT, we are ultimately interested in the approximation space of interpre-

tations. Given a vocabulary V , ST can be easily chosen to contain the semantics of the

types of the symbols in V and the space of interpretations for V , i.e., the complete lattice

Πs∈V ′Et(s), where t(s) is the type of the symbol s. It follows that the approximation space

of interpretations is App(Πs∈V ′Et(s)) = Πs∈V ′App(Et(s)) ∈ BiLat. Clearly, if we restrict

to a vocabulary with only symbols of base type, then we retrieve the usual framework of

standard AFT.

5 Revised Extended Consistent AFT

Charalambidis et al. (2018) developed an extension of consistent AFT (Denecker et al. 2003)

to generalize the well-founded semantics for classical logic programs to one for programs

with higher-order predicates. As already pointed out in Section 2.1, this generalization

bears some issues.

In this section, we examine in detail the work of Charalambidis et al. (2018) under

the lenses of our novel categorical framework. First, in Subsection 5.1, we present their

extension of consistent AFT with their version of approximation spaces, and we prove

that this new class of mathematical objects forms a Cartesian closed category. Then, in

Subsection 5.2, we briefly recall the types and semantics used by Charalambidis et al.

(2018), and we define an approximation system for it. Thanks to the inductive nature of

Cartesian closed categories, from the tuple defining the approximation system, we can

effortlessly retrieve the entire, complex hierarchy built by Charalambidis et al. (2018).

From the definition of the approximation system, we already obtain a concept of exactness

for higher-order objects, which was previously missing in Charalambidis et al. (2018).

Finally, in Subsection 5.3, we present our solution to the problem encountered in the work

of Charalambidis et al. (2018) concerning the semantics of logic programs with existential

quantifiers. In particular, we propose a new approximator which provides the expected

well-founded semantics. We conclude the subsection with two examples of logic programs

in which we need to apply an approximate object on another approximate object.

5.1 The Approximation Category for Extended Consistent AFT

In consistent AFT (Denecker et al. 2003), an approximation space is the consistent part

of a square bilattice, i.e., given a bilattice L = ⟨L × L,≤p⟩, only the subset {(x, y) |
x ≤L y} ⊆ L of consistent elements is taken into account. Charalambidis et al. (2018)

extended consistent AFT to a new class of approximation spaces: the sets of the form

L⊗U := {(x, y) | x ∈ L, y ∈ U, x ≤ y}, comprising the consistent elements of the cartesian

product between a set L of lower bounds and a set U of upper bounds, where L may differ

from U .

In order for the machinery of consistent AFT to work over these new spaces, Char-

alambidis et al. (2018) added some conditions to restrain the possible choices for L and

U .

Definition 15

20 Cambridge Author

An approximation tuple is a tuple (L,U ≤), where L and U are sets, and ≤ is a partial

order on L ∪ U such that the following conditions hold:

1. ⟨L ∪ U,≤⟩ has a top element ⊤ and a bottom element ⊥,
2. ⊤,⊥ ∈ L ∩ U ,

3. ⟨L,≤⟩ and ⟨U,≤⟩ are complete lattices,

4. Interlattice Least Upper Bound Property (ILP): for all b ∈ U and for all S ⊆ L such that

for all x ∈ S, x ≤ b, we have
⊔

L S ≤ b,
5. Interlattice Greatest Lower Bound Property (IGP): for all a ∈ L and for all S ⊆ U such

that for all x ∈ S, a ≤ x, we have a ≤
d

U S.

Definition 16

Let (L,U,≤) be an approximation tuple. The approximation space (associated to (L,U,≤))
is the poset ⟨L ⊗ U,≤p⟩, where L ⊗ U := {(x, y) | x ∈ L, y ∈ U, x ≤ y}, and ≤p is the

partial order defined for all (x1, y1), (x2, y2) ∈ L⊗ U by: (x1, y1) ≤p (x2, y2) iff x1 ≤ x2
and y2 ≤ y1. We call ≤p the precision order on L⊗ U .

In the remainder of this subsection, we prove that the new class of approximation spaces

defined in Definition 16 forms a Cartesian closed full subcategory of CPO (Theorem

2). First, we define a new category LUcons, with objects the approximation spaces just

introduced, as follows:

Ob(LUcons) :={⟨L⊗ U,≤p⟩ | (L,U,≤) is an approximation tuple}
Mor(LUcons) :={f : A→ B | A,B ∈ Ob(LUcons) ∧ f monotone}.

Theorem 2

The category LUcons is a Cartesian closed full subcategory of CPO.

We split the proof of Theorem 2 into smaller results: first we show that LUcons is a

full subcategory of CPO, then we prove it is Cartesian closed.

Proposition 6

Let L⊗ U ∈ Ob(LUcons). Then L⊗ U is a cpo.

Proof

Let L ⊗ U ∈ Ob(LUcons), and S ⊆ L ⊗ U a chain. We denote by p1 : L ⊗ U → L the

function of sets sending (x, y) to x, and by p2 : L ⊗ U → U the function sending (x, y)

to y. Clearly, p1(S) and p2(S) are chains in ⟨L,≤⟩ and ⟨U,≤⟩, respectively. Since ⟨L,≤⟩
and ⟨U,≤⟩ are lattices, there exist

⊔
L p1(S) =: x ∈ p1(S) and

d
U p2(S) =: y ∈ p2(S).

We now show that (x, y) ∈ L ⊗ U , i.e., x ≤ y. Let r ∈ p1(S) ⊆ L and q ∈ p2(S) ⊆ U .

Then, there exist p ∈ p1(S) and s ∈ p2(S) such that (r, s), (p, q) ∈ S. Since S is a chain,

we either have (r, s) ≤p (p, q) or (p, q) ≤p (r, s). In both cases, s ≤ q. By the arbitrarity

of q and the IGP, s ≤ y. By the arbitrarity of s and the ILP, we have x ≤ y, as desired.
Clearly (x, y) =

⊔
L⊗U S ∈ L⊗ U , so it remains to show that (x, y) ∈ S. Since x ∈ p1(S)

and y ∈ p2(S), there exist x′ ∈ p1(S) and y′ ∈ p2(S) such that (x, y′), (x′, y) ∈ S. By the

definitions of x and y, we must have x′ ≤ x and y′ ≥ y. Suppose x′ < x and y′ > y. Then

(x, y′) and (x, y′) cannot be ordered, which condradicts S being a chain. Hence, either

x = x′ or y = y′. In any case, (x, y) ∈ S, as desired.

21

Corollary 1

LUcons is a full subcategory of CPO.

Proof

Clear from Proposition 6 and the definition of Mor(LUcons).

Proposition 7

LUcons is a Cartesian closed category.

Proof

Since CPO is Cartesian closed, and LUcons is a full-subcategory of CPO (Corollary

1), it is sufficient to show that the terminal object of CPO is an object of LUcons and

that for all A,B ∈ LUcons, the product A × B and the exponential BA, computed in

the category CPO, are also objects of LUcons.

Let A,B ∈ LUcons. Let (LA, UA,≤A) and (LB, UB,≤B) be the approximation tuples

of the approximation spaces A,B ∈ LUcons. We denote the orders on A and B as ≤p,A
and ≤p,B, respectively.

• Terminal object. Let T = ⟨{∗},≤⟩ be the cpo with one element, i.e., the terminal object of

CPO. Clearly, ({∗}, {∗},≤) is an approximation tuple, and T ∼= ⟨{∗} ⊗ {∗},≤⟩ in CPO.

Hence, T ∈ Ob(LUcons).

• Product. This follows from Proposition 2 and Corollary 1.

• Exponential. We have to show that BA ∈ CPO is isomorphic (in CPO) to some C =

LC⊗UC ∈ LUcons. Let LC := homCPO(A, ⟨LB,≤B⟩), UC := homCPO(A, ⟨UB,≥B⟩), and
≤C be the restriction onto LC ∪ UC of the pointwise extension of ≤B, namely for all

f, g ∈ LC ∪ UC ,

f ≤C g ⇐⇒ ∀x ∈ A, f(x) ≤B g(x)

We first show that LC ⊗ UC with the precision order ≤p,C induced by ≤C is an object of

LUcons. In other words, we show that (LC , UC ,≤C) is an approximation tuple.

1. The morphisms ⊥C : x 7→ ⊥B and ⊤C : x 7→ ⊤B are the bottom and top element of

LC ∪ UC , respectively.

2. Clearly, ⊥C ,⊤C ∈ LC ∩ UC .

3. Since ⟨LB,≤B⟩ and ⟨UB,≤B⟩ are complete lattices by definition of approximation

space, and ≤C is the pointwise extension of ≤B, it is straightforward to see that

⟨LC ,≤C⟩ and ⟨UC ,≤C⟩ are also complete lattices.

4. Let g ∈ UC, and let S ⊆ LC such that for all f ∈ S, f ≤C g, i.e., for all x ∈ A we

have f(x) ≤B g(x). We have to show that
⊔

LC
S ≤C g. Since g ∈ UC and f ∈ LC,

for all x ∈ A we have g(x) ∈ UB and Sx := {f(x) | f ∈ S} ⊆ LB. By using the

ILP on B, we get that
⊔

LB
Sx ≤B g(x), for all x ∈ A. It is not difficult to see that⊔

LC
S(x) =

⊔
LB
Sx, for all x ∈ A. Hence,

⊔
LC
S ≤C g, as desired.

5. Analogous to Item 4.

22 Cambridge Author

Hence, C ∈ LUcons. It remains to show that C is isomorphic to BA in CPO. Notice that

there is an obvious isomorphism of sets

µ : homCPO(A, LB × UB)→ LC × UC

f 7→ (f1, f2),

where f1, f2 are the two components of f . By the definitions of the orders (notice

the inversion of the order ≤B on UB in UC), it is easy to check that µ and µ−1 are

both well-defined, i.e., they send a monotone function to a pair of monotone functions,

and a pair of monotone functions to a monotone function, respectively. Now, let f ∈
homCPO(A, LB × UB). Then

f ∈ homCPO(A,B) ⇐⇒ ∀x ∈ A, f(x) ∈ B
⇐⇒ ∀x ∈ A, µ1(f)(x) = f1(x) ≤B f2(x) = µ2(f)(x)

⇐⇒ µ1(f) ≤C µ2(f)

⇐⇒ µ(f) ∈ LC ⊗ UC .

Analogously, if (g, h) ∈ LC ⊗ UC , then µ
−1(f, g) ∈ homCPO(A,B). Hence, by restricting

domain and codomain of µ, we get another isomorphism of sets ν : homCPO(A,B) →
LC ⊗ UC. It remains to show that ν and ν−1 are monotone. Let f, g ∈ homCPO(A,B)
such that f ≤BA g, i.e., for all x ∈ A, f(x) ≤p,B g(x). By the defintion of the precision

order, this means that ν1(f)(x) ≤B ν1(g)(x) ≤B ν2(g)(x) ≤B ν2(f)(x) for all x ∈ A.
Hence, ν1(f) ≤C ν1(g) and ν2(g) ≤C ν2(f). It follows by definition that ν(f) ≤p,C ν(g),

as desired. The analogous result holds for ν−1 and can be shown similarly. Therefore, the

corresponding morphism ν′ : BA → C between cpo’s is an isomorphism. By Corollary 1,

BA ∈ LUcons, as desired.

5.2 An Approximation System

Thanks to Theorem 2, we can take LUcons as the approximation category for any

application in which we wish to apply the version of AFT of Charalambidis et al. (2018).

Depending on the specific language and semantics at hand, demanded by the application,

we would define a different approximation system with LUcons. In this subsection, we

present the approximation system for the language HOL and the semantics used in

(Charalambidis et al. 2018) to tackle higher-order logic programs.

The language HOL is based on a type hierarchy H with base types o, the boolean type,

and ι, the type of individuals. The composite types are morphism types obtained from o

and ι. In particular, the types are divided into functional types σ := ι | ι→ σ, predicate

types π := o | ρ→ π, and parameter types ρ := ι | π. The semantics of the base types are

defined as usual: Eo := {t, f} with the truth order f ≤t t, and Eι = D with the trivial

order (d1 ≤ d2 iff d1 = d2), where D is some fixed domain for individuals. The semantics

for composite types are defined following the Cartesian closed structure of POSet. For

instance, the semantics of type o→ o is simply the poset of functions from Eo to itself,

i.e., Eo→o := (Eo → Eo).

Since the ultimate goal of this application is studying the well-founded semantics of

higher order logic programs via AFT, we are interested in the approximation space of

Herbrand interpretations. Since Herbrand interpretations fix the value assigned to symbols

23

of functional types, we only need the approximation spaces for the semantics Eπ, for all

predicate types π. In other terms, we can focus on the smallest subset S of Ob(POSet)

containing Eπ for all π, and closed under generalized product.

Now the definition of a suitable approximation system for S is very straightforward: we

just have to define the approximation space App(Eo), the set of exact elements Eo, and
the projection po. All the other elements are defined inductively following the Cartesian

closed structure of LUcons. We define: App(Eo) := Eo ⊗Eo = ⟨{(t, t), (f , t), (f , f)},≤p⟩;
Eo = {(t, t), (f , f)}; and po(t, t) := t and po(f , f) := f . Finally, given a vocabulary V for

HOL containing symbols of predicate type, and a program P over V , the approximation

space of Herbrand interpretations of P is HP := App
(
Πs∈V Et(s)

)
= Πs∈V App(Et(s)) ∈

Ob(Approx), where t(s) is the type of the symbol s.

This greatly simplifies the construction of Charalambidis et al. (2018). In particular,

notice that the pairs of monotonte-antimonotone and antimonotone-monotone functions

they defined are precisely the elements of the exponential objects of LUcons. Moreover,

by changing the base types and their semantics, this approximation system can be readily

adapted to suit other applications.

In conclusion, it is important to stress that we now have a clear concept of exactness: for

the base type o the exact elements are Eo = {(t, t), (f , f)}, and for higher-order types, we

follow Definition 13. The work of Charalambidis et al. (2018) lacked a notion of exactness,

making it impossible to determine whether a model is actually two-valued; they discussed

this question in their future work section. Let us illustrate on their example accompanying

the discussion.

Example 2

Let P be a program with the single rule p(R)← R, where p is a predicate of type o→ o

and R is a variable of type o. The space of interpretations for p is simply App(Eo→o) =

App(Eo)
App(Eo), i.e., all the monotone functions from App(Eo) = {(f , t), (f , f), (t, t)} to

itself, as defined above. By the semantics of Charalambidis et al. (2018), the meaning of this

program is given by the interpretation (I, J), where I(p)(t, t) = J(p)(t, t) = J(p)(f , t) = t,

and I(p)(f , f) = J(p)(f , f) = I(p)(f , t) = f . Since I ≠ J , (I, J) is not exact according

to the classical definition of AFT (Denecker et al. 2000), even though we would expect

to find a 2-valued model, i.e., the one assigning to p the identity function over {f , t}.
Nevertheless, according to our definition, (I, J) is indeed exact: it sends exacts of Eo to

exacts of Eo. Furthermore, by the approximation system we defined in this section, it is

easy to see that (I, J) represents po→o(I, J) = I ∈ Eo→o = (Eo → Eo), where I(t) = t

and I(f) = f , as desired.

5.3 A New Approximator

As presented at the end of Section 2.1, the approximator of Charalambidis et al. (2018)

does not provide the expected well-founded semantics for logic programs when there

is an existential quantifier in the body of a rule. In this subsection, we propose a new

approximator that solves such issue. We achieve this by restricting the set of elements

over which certain variables can range. In particular, variables that are arguments of a

predicate being defined, i.e., in the head of a rule, can range over all the elements of the

approximation spaces of the corresponding types: we want to define the approximation of

a higher order predicate also when the argument is an approximation. On the contrary,

24 Cambridge Author

variables that appear exclusively in the body of a rule do not need to be approximated.

In other words, a variable of type τ that is not argument of any predicate being defined,

will be forced to range only over the set Eτ of exact elements.

Before stating the new definition for the approximator, we briefly recall the full syntax

of HOL. We slightly modify the one presented in (Charalambidis et al. 2018) to make it

less heavy.

The alphabet of HOL consists of the following: predicate variables/constants of every

predicate type π; individual variables/constants of type ι; the equality constant ≈ of

type ι→ ι→ o for comparing individuals of type ι; the conjunction constant ∧ of type

o→ o→ o; the rule operator constant ← of type o→ o→ o; and the negation constant

∼ of type o→ o.

Every predicate variable/constant and every individual variable/constant is a term;

if E1 is a term of type ρ→ π and E2 a term of type ρ then (E1 E2) is a term of type π.

Every term is also an expression; if E is a term of type o then (∼E) is an expression of

type o; if E1 and E2 are terms of type ι, then (E1 ≈ E2) is an expression of type o.

A rule of HOL is a formula p R1 · · ·Rn ← E1 ∧ . . . ∧ Em, where p is a predicate

constant of type ρ1 → · · · → ρn → o, R1, . . . ,Rn are distinct variables of types ρ1, . . . , ρn
respectively and the Ei are expressions of type o. The term p R1 · · ·Rn is the head of the

rule and E1 ∧ . . . ∧ Em is the body of the rule. For the sake of simplicity, we often write

E1, . . . ,Em, in place of E1 ∧ . . .∧ Em. A program P of HOL is a finite set of rules. A state

s of a program P is a function that assigns to each variable R of type ρ, an element of

App(Eρ), if ρ ̸= ι, or an element of Eι = D, if ρ = ι. We denote by s[R1/d1, . . . ,Rn/dn]

a state that assigns to each Ri the corresponding value di, and coincides with s on the

other variables.

Finally, we provide the definition for the three-valued semantics of Charalambidis et al.

(2018) adapted to the above, slightly-modified definitions.

Definition 17

Let P be a program, I an interpretation of P, and s a state. The three-valued semantics

of expressions and bodies is defined as follows:

1. JcKs(I) = c, for every individual constant c,

2. JpKs(I) = I(p), for every predicate constant p,

3. JRKs(I) = s(R), for every variable R,

4. J(E1 E2)Ks(I) = JE1Ks(I) (JE2Ks(I)),
5. J(E1

∧
E2)Ks(I) =

d
≤t
{JE1Ks(I), JE2Ks(I)},

6. J(∼ E)Ks(I) = (JEKs(I))−1, with (t, t)−1=(f , f), (f , f)−1=(t, t) and (f , t)−1=(f , t),

7. J(E1 ≈ E2)Ks(I) =

{
(t, t), if JE1Ks(I) = JE2Ks(I)
(f , f), otherwise

.

where ≤t is the truth order defined by f ≤t u ≤t t.

As already explained, we want to restrict a variable appearing only in the body of a

rule to range over the elements of Eτ , with τ being the type of the variable. We call a

state s exact if for all variables R of type τ ̸= ι, it holds that s(R) ∈ Eτ . We denote by S
the set of exact states.

25

We have now all the elements to introduce the new approximator, i.e. the three-valued

immediate consequence operator. For the sake of simplicity, in the following we define

App(Eι) := Eι = D, even though Eι /∈ S and has no associated approximation space.

Definition 18

Let P be a program. The three-valued immediate consequence operator ΨP : HP → HP

is defined for every predicate constant p : ρ1 → · · · → ρn → o in P, and for all

d1 ∈ App(Eρ1
), . . . , dn ∈ App(Eρn

), as: ΨP(I)(p) d1 · · · dn =
⊔

≤t
{JEKs[R1/d1,...,Rn/dn](I) |

s ∈ S and (p R1 · · ·Rn ← E) in P}.

With Definition 18, we solve the issue linked to existential quantifiers. Let us review

the example presented in Subsection 2.1. We considered a program P with just one rule

p ← R∧ ∼ R, where p is a predicate constant of type o, and R is a variable of type o.

Observe that in this case the space of Herbrand interpretations is just HP := App(Eo) ∈
Ob(Approx), as we are only interested in the interpretation of the predicate p. For all

interpretations I ∈ HP , we have

ΨP(I)(p) =
⊔
≤t

{JEKs(I) | s ∈ S and (p← E) in P} =

=
⊔
≤t

{JR∧ ∼ RKs(I) | s ∈ S} =
⊔
≤t

{s(R) ∧ s(R)−1 | s ∈ S} =

=
⊔
≤t

{(f , f) ∧ (t, t), (t, t) ∧ (f , f)} = (f , f).

(2)

Notice that for this specific program P, both the approximator ΨP and the old version

from (Charalambidis et al. 2018) do not depend on the interpretation I, but only on the

states. While the approximator of Charalambidis et al. (2018) considered any possible

state, even the one sending R to (f , t), ΨP takes into account only exact states, i.e. R can

only be sent to an element of Eo = {(f , f), (t, t)}. This limitation removes the formula

(f , t) ∧ (f , t) = (f , t) from the least upper bound computation in (2), which was the

one causing the evaluation of p being (f , t) for the approximator of Charalambidis et al.

(2018).

Since the approximator ΨP does not depend on the interpretation, it is immediate

to see that the well-founded operator SΨP
coincides with the approximator ΨP for all

(I, J) ∈ HP:

SΨP
(I, J) =

(
lfp(ΨP(·, J)1), lfp(ΨP(I, ·)2)

)
=

(
ΨP(·, J)1,ΨP(I, ·)2

)
= ΨP(I, J).

It follows that SΨP
does not depend on the interpretation either. Thus, the least fixpoint

of SΨP
, which corresponds to the well-founded model of P, is just the interpretation sending

p to (f , f), resulting in a sensible account for the well-founded sementics. Moreover, observe

that this interpretation is also exact by our new definition, and it corresponds to the

unique exact stable model of the program P.

In the remainder of this section, we present two examples that highlight the importance

of enabling the application of approximate objects to approximate objects.

Example 3

26 Cambridge Author

Consider an undirected graph given by a predicate node : ι→ o, containing all the nodes

of the graph, and a predicate edge : ι → ι → o defining the edge relation, which we

assume to be symmetric. Some nodes of the graph are marked. We call a set of nodes S

a covering if for every marked node n there exists a node in S with an edge to n. Now,

suppose that a Player can modify the set of marked nodes by swapping a marked node

with a neighbouring, unmarked node. The goal of the Player is reached when the set of

marked nodes is a covering. At that point, the game is over and the Player cannot swap

nodes anymore.

The key predicates of our example are contained in Listing 1. We have defined them in

terms of a time parameter T of type ι, assuming that the Player can only do one swap

at a time. In particular, here are the signatures and meanings of the main predicates

of Listing 1: swap : ι → ι → ι → o indicates whether at a certain time, two nodes are

swapped; marked : ι→ ι→ o represents the set of marked nodes at a specific time (Lines

6 to 8); covering : ι → (ι → o) → o tells whether at a certain time a set of nodes is a

covering (Lines 14, and 15); and gameOver : ι expresses whether the game is over at a

certain time (Line 18).

Listing 1. Graph Game.
1 % We d e f i n e p r e d i c a t e s to add/ remove nodes to / from marked s e t .

↪→
2 add T X ← swap T X Y
3 remove T Y ← swap T X Y
4

5 % We d e f i n e the s e t o f marked nodes based on the marked nodes at
↪→ the p r e v i o u s t ime po i n t and the l a s t swap .

6 marked T X ← succ T’ T, ∼(gameOver T), marked T’ X,
↪→ ∼(remove T’ X).

7 marked T X ← succ T’ T, ∼(gameOver T), add T’ X.
8 marked T X ← succ T’ T, gameOver T’, marked T’ X.
9

10 % We d e f i n e what a c o v e r i n g o f a s e t o f nodes i s .
11 nextTo S X ← S Y, edge Y X.
12 nonsubset S Q ← S X, ∼(Q X).
13 subset S Q ← ∼(nonsubset S Q).
14 ncovering T S ← marked T X, ∼(nextTo S X).
15 covering T S ← subset S node , ∼(ncovering T S).
16

17 % We d e f i n e when the game ends .
18 gameOver T ← covering T (marked T).

In the formalization of Charalambidis et al. (2018), natural numbers are not taken into

account. Thus, we regard the time variable T as an individual variable of type ι and we

limit our example to only three time points, expressed by the individual constants a, b,

and c, related by the successor relation succ : ι → ι → o, as expressed in Listing 2. In

the same Listing, we also instantiate the nodes and edges of the graph that we chose for

this example, and the initial set of marked nodes, i.e. marked a.

Listing 2. Instantiation of time points, graph’s nodes and edges, and initial set of marked

nodes.
1 % Time po i n t s a , b , and c : b s u c c e s s o r o f a , and c o f b .
2 time a.
3 time b.
4 time c.
5 succ b a.
6 succ c b.

27

7 % Nodes .
8 node x.
9 node y.

10 node z.
11 node u.
12 node v.
13 % Edges .
14 edge x y.
15 edge x z.
16 edge x u.
17 edge z v.
18 edge u v.
19 % Marked nodes at the s t a r t o f the game (t ime po i n t a) .
20 marked a y.
21 marked a u.

We are only missing the swaps the Player makes at each of the three time points. For

example, we could have those listed in Listing 3.

Listing 3. Swaps.
1 % Nodes x , y , z , u , and v , and swaps at the t ime p o i n t s a , b , and

↪→ c .
2 swap a v u.
3 swap b x y.
4 swap c z x.

By joining Listings 1, 2, and 3, we obtain a program P encoding a specific run of the

game.

Using the machinery of AFT, we can easily find the well-founded, the stable, the Kripke-

Kleene, and the supported models of P. To obtain the well-founded operator, we compute

the least fixpoint of the well-founded operator of the approximator contained in Definition

18, i.e., the least fixpoint of SΨP
: (x, y) 7→ (SΨP

(y), SΨP
(x)), where SΨP

: x 7→ lfp(ΨP1(·, x))
is the stable operator1. Since the well-founded operator is monotone, to find its least

fixpoint it is sufficient to repeatedely apply the operator starting from the bottom

element of its domain, namely the interpretation sending every predicate constant to

the bottom element of the respective approximation space. Notice that during the first

iterative applications of the well-founded operator, the predicates marked, covering, and

gameOver are being defined only for the first time points, i.e., they are partially defined. In

other words, the three-valued interpretations that we obtain from the first computations

leading to the well-founded fixpoint, send the aforementioned predicates to approximate

objects of the respective approximation spaces. Since marked, covering, and gameOver

are all defined by mutual induction, we are forced to apply an approximate object on

another approximate object. In particular, in Line 18 of Listing 1, for the definition

of gameOver, the predicate covering is applied on marked. Only when the fixpoint is

reached, all the predicates being defined will be exact, i.e. two-valued.

In Listing 3, we have provided a specific set of swaps the Player makes. We can obtain a

more general setup by using choice rules to define the predicate swap, as we do in Listing

4.

Listing 4. Choice Rules.

1 The well-founded, and the stable operator have been briefly introduced in Section 2.1 of the Preliminaries.

28 Cambridge Author

1 % Choice r u l e s : the u s e r can swap one edge wi th a ne i ghbou r at
↪→ each t ime .

2 swap T X Y ← node X, node Y, time T, ∼(nswap T X Y).
3 nswap T X Y ← node X, node Y, time T, ∼(swap T X Y).
4 % F i r s t e l ement must be i n the marked se t , second cannot
5 ← swap T X Y, ∼(marked T X).
6 ← swap T X Y, marked T Y.
7 % At most one swap at a t ime .
8 ← swap T X Y, swap T X’ Y’, ∼(X’ ≈ X).
9 ← swap T X Y, swap T X’ Y’, ∼(Y’ ≈ Y).

10 % Can on l y swap n e i g hbo r s .
11 ← swap T X Y, ∼(edge X Y).

By joining Listings 1, 2, and 4, we obtain another program P′, and we can again

compute the models of interest via AFT. In particular, now each stable model corresponds

to a possible run of the game with starting set of marked nodes marked a. Notice that,

because of the choice rules in Listing 4, the well-founded model of P′ leaves most of the

predicates undefined.

Example 4

Let us consider a manufacturing company that aims at growing and diversifying its

production. We represent raw materials with individual constants of type ι, and finished

products with predicate constants of type ι→ o, such that if P is any finished product,

and M is any raw material, then P M is true if and only if M is necessary to craft P. We

denote by materials : ι→ o the predicate corresponding to the set of all raw materials,

and by products : (ι → o) → o the predicate corresponding to the set of all finished

products.

We want to define a predicate production : ι → ι → o (Lines 24 and 26 of Listing

5) that indicates which raw materials the company has to acquire for production at a

certain time: production T M is true if and only if the company acquires the material M

at time T. As in Example 3, we regard the time variable T as an individual variable of

type ι and we limit our program in Listing 5 to only three time points, related by the

successor relation (Lines 2 to 6). We fix the initial set production a : ι→ o of materials

the company starts with. At each time point, the company decides which new materials

to acquire: we encode the information about these potential new ingredients with the

predicate candidates : ι → (ι → o) → o (Lines 18 and 20), which takes as argument a

time point, i.e., an individual variable, and a set of materials, i.e., a predicate of type

ι→ o. The selection of new materials the company takes into consideration obeys a few

criteria:

1. Maximize profit: products necessitating more raw materials to be crafted require more

expertise and more capital to invest, but they provide more profit. Hence, as time

progresses, the company aims at products more and more complex: at time T, a set

P of raw materials is a candidate if it can be covered by sets corresponding to some

finished products of complexity T (Lines 14, 16, and 18). We assume a constant predicate

complexity : (ι→ o)→ ι→ o indicating the complexity of a product is given.

2. Cautiousness: producing items using only new materials may be risky and time consuming,

as the manifacturing team has to acquire novel knowledge, and new suppliers for the raw

materials need to be found. Hence, the newly accepted products are required to share at

29

least one raw material with a product in production at the prevous time point (Lines 8,

14, 16, and 18).

3. Efficient growth: as time passes and the company produces more complex items, older,

simpler products can be put out of production. This is done gradually: if in production T

there is still some material that is not needed to craft any product of size T or succ T,

then such material will not be in production at the following time point; otherwise, all

materials that are not needed to craft any product of size succ T are dropped out of

production at time succ T (Lines 20). In other words, all the products with the lowest

complexity are dropped.

Finally, production is just the union of all the candidates (Line 24). If there are no

candidates at a certain time point, the production does not vary at the next time point,

and the company ends its expansion (Lines 22, and 26).

Listing 5. The growth of the manifacturing company.
1 % a , b , and c a r e t ime po i n t s , b i s the s u c c e s s o r o f a , and c o f

↪→ b .
2 time a.
3 time b.
4 time c.
5 succ b a.
6 succ c b.
7 % i n t e r s e c t Q R i s t r u e i f the i n t e r s e c t i o n between Q and R i s

↪→ non−empty .
8 intersects Q R ← Q X, R X.
9 % sub s e t Q R i s t r u e (nonsubse t Q R i s t r u e) i f R i s (i s not) a

↪→ s ub s e t o f Q.
10 nonsubset Q R ← Q X, ∼(R X).
11 subset Q R ← ∼(nonsubset Q R).
12

13 % There e x i s t s a p roduc t P made o f T raw ma t e r i a l s , a l l
↪→ be l o ng i n g to S , some be l o ng i n g to p r oduc t i o n T’ , and
↪→ i n c l u d i n g M.

14 existsubprod T S M ← products P, complexity P T, subset P S,
↪→ P M, intersects P (production T’), succ T T’.

15 % S cannot be cove r ed by p roduc t s o f s i z e T i f t h e r e e x i s t s a
↪→ ma t e r i a l M i n S tha t i s neve r pa r t o f a subproduc t o f S .

16 notcovered T S ← S M, ∼(existsubprod T S M), time T.
17 % S i s a c and i d a t e at t ime T i f i t can be cove r ed and i t i s a

↪→ s e t o f m a t e r i a l s (maximize p r o f i t , and c a u t i o u s n e s s) .
18 candidates T S ← ∼notcovered T S, time T, subset S materials.
19 % S i s a c and i d a t e i f i t i s a p roduc t o f s i z e T’ , i n p r oduc t i o n

↪→ at t ime T’ , and i f i n p r oduc t i o n T’ t h e r e were s t i l l raw
↪→ ma t e r i a l s on l y needed f o r p r oduc t s o f s i z e d i f f e r e n t than
↪→ T’ (e f f i c i e n t growth) .

20 candidates T S ← ∼(candidates T’ (production T’)), products P,
↪→ subset P (production T’), complexity P T’, succ T T’.

21 % There e x i s t s a c and i d a t e at t ime T.
22 existcandidate T ← candidates T S.
23 % A ma t e r i a l i s needed f o r p r oduc t i o n at t ime T i f i t i s i n one

↪→ o f the c and i d a t e s e t s a t t ime T.
24 production T M ← candidates T S, S M.
25 % I f t h e r e a r e no c and i d a t e s at t ime T, then the p r oduc t i o n

↪→ r ema ins the same .
26 production T M ← ∼(existcandidate T), production T’ M,

↪→ succ T T’.

Note that the symbols Q, R, and S, highlighted in red, are predicate variables of type

ι→ o that are used in a higher-order style in the rules in Lines 8, 10, 16, and 24.

30 Cambridge Author

Similarly to what happens for Example 3, since the predicates candidates and

production are defined by mutual induction, they will be fully defined only at the

end of the least fixpoint construction. However, in order to define candidates we need to

apply it to production (Line 20). In particular, before reaching the fixpoint, we will need

to apply an approximate object, namely candidates, on another approximate object,

i.e., production.

6 Conclusion

We introduced a novel theoretical framework that provides a mathematical foundation

for using the machinery of AFT on higher-order objects. In particular, we defined

approximation categories and approximation systems : they employ the notion of Cartesian

closedness to inductively construct a hierarchy of approximation spaces for each semantics

of the types of a given (higher-order) language. This approach solves the issue of applying

approximate objects onto approximate objects and ensures that the approximation

spaces have the same mathematical structure at any order of the hierarchy, enabling

the application of the same AFT techniques at all levels. Moreover, we defined exact

elements of a higher-order approximation space, together with a projection function. This

is a non-trivial definition and it is fundamental to obtain a sensible AFT framework, i.e.,

a framework in which we can determine when an object, and in particular a model, is

two-valued, and retrieve the elements that are being approximated.

Despite seeming complicated at first, the use of CT not only provides a solid, formal

mathematical foundation to work with, but also allows to reduce the complexity of proofs.

The inductive nature and generality of the definition of an approximation system make

it extremely easy to adapt the framework to different languages, types, and semantics,

as we only have to modify the base elements of the induction. Such generality enables

extending different existing versions of AFT while capturing their common underlying

characteristics, as we have shown for standard AFT and the extension of consistent AFT

of Charalambidis et al. (2018). Moreover, concerning the latter version of AFT mentioned,

we have resolved its problematic features. In particular, we provided a novel approximator

which behaves properly, even on programs with existential quantifiers in the body of rules,

and we defined the concept of exactness, previously missing in the work of Charalambidis

et al. (2018), allowing to consider exact stable models.

As far as future work and developments are concerned, it is paramount to notice

that by systematically extending present (and possibly future) versions of AFT to the

higher-order setting, this paper further enriches the vast body of algebraic results on AFT.

In particular, this allows us to make all the already-existing formal results regarding AFT

readily available in a higher-order AFT context. This includes, but it is not limited to,

stratification results (Vennekens et al. 2006; Bogaerts and Cruz-Filipe 2021), grounded

fixpoints (Bogaerts et al. 2015), well-founded induction (Denecker and Vennekens 2007),

and strong equivalence (Truszczynski 2006). Moreover, in light of this newly established

bridge to the higher-order environment, one could explore the possibilities within the

application fields where AFT previously succeeded, such as abstract argumentation

(Strass 2013; Bogaerts 2019), active integrity constraints (Bogaerts and Cruz-Filipe 2018),

stream reasoning (Antic 2020), integrity constraints for the semantic web (Bogaerts and

Jakubowski 2021), and Datalog (Pollaci 2025).

31

Lastly, it may be of interest to research how the developed higher-order semantics and

language HOL presented in Section 5 relate to Hilog and Prolog with meta-predicates

(Chen et al. 1993). In particular, HOL and Prolog show two rather different natures:

while Prolog is procedural and intensional, the language HOL provides a declarative and

extensional approach. This is indeed not trivial to obtain for the higher-order setting, as

it was also pointed out by Rondogiannis and Symeonidou (2018).

Competing Interests

The authors declare none.

References

Antic, C. 2020. Fixed point semantics for stream reasoning. Artif. Intell., 288, 103370.

Bogaerts, B. Weighted abstract dialectical frameworks through the lens of approximation
fixpoint theory. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019,
The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019 2019, pp. 2686–2693. AAAI Press.

Bogaerts, B., Charalambidis, A., Chatziagapis, G., Kostopoulos, B., Pollaci, S., and
Rondogiannis, P. 2024. The stable model semantics for higher-order logic programming.
Theory Pract. Log. Program., 24, 4, 737–754.

Bogaerts, B. and Cruz-Filipe, L. 2018. Fixpoint semantics for active integrity constraints.
Artif. Intell., 255, 43–70.

Bogaerts, B. and Cruz-Filipe, L. 2021. Stratification in approximation fixpoint theory and
its application to active integrity constraints. ACM Trans. Comput. Log., 22, 1, 6:1–6:19.

Bogaerts, B. and Jakubowski, M. Fixpoint semantics for recursive SHACL. In Formisano,
A., Liu, Y. A., Bogaerts, B., Brik, A., Dahl, V., Dodaro, C., Fodor, P., Pozzato,
G. L., Vennekens, J., and Zhou, N., editors, Proceedings 37th International Conference
on Logic Programming (Technical Communications), ICLP Technical Communications 2021,
Porto (virtual event), 20-27th September 2021 2021, volume 345 of EPTCS, pp. 41–47.

Bogaerts, B., Vennekens, J., and Denecker, M. 2015. Grounded fixpoints and their
applications in knowledge representation. Artif. Intell., 224, 51–71.

Charalambidis, A. and Rondogiannis, P. Categorical approximation fixpoint theory. In
Gaggl, S. A.,Martinez, M. V., and Ortiz, M., editors, Logics in Artificial Intelligence - 18th
European Conference, JELIA 2023, Dresden, Germany, September 20-22, 2023, Proceedings
2023, volume 14281 of Lecture Notes in Computer Science, pp. 515–530. Springer.

Charalambidis, A., Rondogiannis, P., and Symeonidou, I. 2018. Approximation fixpoint
theory and the well-founded semantics of higher-order logic programs. Theory Pract. Log.
Program., 18, 3-4, 421–437.

Chen, W., Kifer, M., and Warren, D. S. 1993. HILOG: A foundation for higher-order logic
programming. J. Log. Program., 15, 3, 187–230.

Clark, K. L. Negation as failure. In Gallaire, H. and Minker, J., editors, Logic and Data
Bases, Symposium on Logic and Data Bases, Centre d’études et de recherches de Toulouse,
France, 1977 1977, Advances in Data Base Theory, pp. 293–322, New York. Plemum Press.

Dasseville, I., van der Hallen, M., Bogaerts, B., Janssens, G., and Denecker, M. A
compositional typed higher-order logic with definitions. In Carro, M., King, A., Saeedloei,
N., and Vos, M. D., editors, Technical Communications of the 32nd International Conference
on Logic Programming, ICLP 2016 TCs, October 16-21, 2016, New York City, USA 2016,
volume 52 of OASIcs, pp. 14:1–14:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

32 Cambridge Author

Dasseville, I., van der Hallen, M., Janssens, G., and Denecker, M. 2015. Semantics of
templates in a compositional framework for building logics. Theory Pract. Log. Program., 15,
4-5, 681–695.

Denecker, M., Bruynooghe, M., and Vennekens, J. Approximation fixpoint theory and
the semantics of logic and answers set programs. In Erdem, E., Lee, J., Lierler, Y., and
Pearce, D., editors, Correct Reasoning - Essays on Logic-Based AI in Honour of Vladimir
Lifschitz 2012, volume 7265 of Lecture Notes in Computer Science, pp. 178–194. Springer.

Denecker, M., Marek, V., and Truszczyński, M. Approximations, stable operators, well-
founded fixpoints and applications in nonmonotonic reasoning. In Minker, J., editor, Logic-
Based Artificial Intelligence 2000, volume 597 of The Springer International Series in Engi-
neering and Computer Science, pp. 127–144. Springer US.

Denecker, M., Marek, V., and Truszczyński, M. Reiter’s default logic is a logic of autoepis-
temic reasoning and a good one, too. In Brewka, G., Marek, V., and Truszczyński, M.,
editors, Nonmonotonic Reasoning – Essays Celebrating Its 30th Anniversary 2011, pp. 111–144.
College Publications.

Denecker, M., Marek, V. W., and Truszczynski, M. 2003. Uniform semantic treatment of
default and autoepistemic logics. Artif. Intell., 143, 1, 79–122.

Denecker, M., Marek, V. W., and Truszczynski, M. 2004. Ultimate approximation and its
application in nonmonotonic knowledge representation systems. Inf. Comput., 192, 1, 84–121.

Denecker, M. and Vennekens, J. Well-founded semantics and the algebraic theory of non-
monotone inductive definitions. In Baral, C., Brewka, G., and Schlipf, J. S., editors,
Logic Programming and Nonmonotonic Reasoning, 9th International Conference, LPNMR
2007, Tempe, AZ, USA, May 15-17, 2007, Proceedings 2007, volume 4483 of Lecture Notes in
Computer Science, pp. 84–96. Springer.

Fitting, M. 1985. A Kripke-Kleene semantics for logic programs. J. Log. Program., 2, 4, 295–312.

Fitting, M. 2002. Fixpoint semantics for logic programming a survey. Theor. Comput. Sci.,
278, 1-2, 25–51.

Gelfond, M. and Lifschitz, V. The stable model semantics for logic programming. In
Kowalski, R. A. and Bowen, K. A., editors, Logic Programming, Proceedings of the Fifth
International Conference and Symposium, Seattle, Washington, USA, August 15-19, 1988 (2
Volumes) 1988, pp. 1070–1080. MIT Press.

Heyninck, J., Arieli, O., and Bogaerts, B. 2024. Non-deterministic approximation fixpoint
theory and its application in disjunctive logic programming. Artif. Intell., 331, 104110.

Pelov, N., Denecker, M., and Bruynooghe, M. 2007. Well-founded and stable semantics of
logic programs with aggregates. Theory Pract. Log. Program., 7, 3, 301–353.

Pollaci, S. 2025. Fixpoint semantics for datalogmtl with negation.

Riehl, E. 2017. Category theory in context. Aurora: Dover modern math originals. Dover
Publications.

Rondogiannis, P. and Symeonidou, I. 2018. Extensional semantics for higher-order logic
programs with negation. Log. Methods Comput. Sci., 14, 2.

Strass, H. 2013. Approximating operators and semantics for abstract dialectical frameworks.
Artif. Intell., 205, 39–70.

Truszczynski, M. 2006. Strong and uniform equivalence of nonmonotonic theories - an algebraic
approach. Ann. Math. Artif. Intell., 48, 3-4, 245–265.

van Emden, M. H. and Kowalski, R. A. 1976. The semantics of predicate logic as a program-
ming language. J. ACM, 23, 4, 733–742.

Van Gelder, A., Ross, K. A., and Schlipf, J. S. 1991. The well-founded semantics for general
logic programs. J. ACM, 38, 3, 620–650.

Vennekens, J., Gilis, D., and Denecker, M. 2006. Splitting an operator: Algebraic modularity
results for logics with fixpoint semantics. ACM Trans. Comput. Log., 7, 4, 765–797.

