
Symmetric Core Learning for Pseudo-Boolean1

Optimization by Implicit Hitting Sets2

Hannes Ihalainen #3

University of Helsinki, Finland4

Jeremias Berg #5

University of Helsinki, Finland6

Matti Järvisalo #7

University of Helsinki, Finland8

Bart Bogaerts #9

KU Leuven, Leuven, Belgium10

Vrije Universiteit Brussel, Brussels, Belgium11

Abstract12

We propose symmetric core learning (SCL) as a novel approach to making the implicit hitting13

set approach (IHS) to constraint optimization more symmetry-aware. SCL has the potential of14

significantly reducing the number of iterations and, in particular, the number of calls to an NP15

decision solver for extracting individual unsatisfiable cores. As the technique is focused on generating16

symmetric cores to the hitting set component of IHS, SCL is generally applicable in IHS-style17

search for essentially any constraint optimization paradigm. In this work, we focus in particular on18

integrating SCL to IHS for pseudo-Boolean optimization (PBO), as earlier proposed static symmetry19

breaking through lex-leader constraints generated before search turns out to often degrade the20

performance of the IHS approach to PBO. In contrast, we show that SCL can improve the runtime21

performance of a state-of-the-art IHS approach to PBO and generally does not impose significant22

overhead in terms of runtime performance.23

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization; Theory24

of computation → Constraint and logic programming25

Keywords and phrases Implicit hitting sets, symmetries, unsatisfiable cores, pseudo-Boolean26

optimization27

Digital Object Identifier 10.4230/LIPIcs.CP.2025.3328

Supplementary Material Software: https://doi.org/10.5281/zenodo.1563015629

Funding Hannes Ihalainen: Partially funded by Research Council of Finland under grant 35604630

Jeremias Berg: Research Council of Finland under grant 36298731

Matti Järvisalo: Partially funded by Research Council of Finland under grant 35604632

Bart Bogaerts: Partially funded by Fonds Wetenschappelijk Onderzoek – Vlaanderen (project33

G064925N) and by the European Union (ERC, CertiFOX, 101122653). Views and opinions expressed34

are however those of the author(s) only and do not necessarily reflect those of the European Union35

or the European Research Council. Neither the European Union nor the granting authority can be36

held responsible for them.37

1 Introduction38

Symmetries are intrinsically present in various types of computationally hard decision and39

optimization problems, ranging from, e.g., scheduling and timetabling through the resolution40

of mathematical conjectures by automated reasoning to the analysis of systems broadly41

construed. As automated reasoning and constraint optimization solvers constitute the de42

facto approach in such settings, different ways of making solvers more symmetry-aware43

© Hannes Ihalainen, Jeremias Berg, Matti Järvisalo and Bart Bogaerts;
licensed under Creative Commons License CC-BY 4.0

31st International Conference on Principles and Practice of Constraint Programming (CP 2025).
Editor: Maria Garcia de la Banda; Article No. 33; pp. 33:1–33:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hannes.ihalainen@helsinki.fi
https://orcid.org/0000-0002-4608-7549
mailto:jeremias.berg@helsinki.fi
https://orcid.org/0000-0001-7660-8061
mailto:matti.jarvisalo@helsinki.fi
https://orcid.org/0000-0003-2572-063X
mailto:bart.bogaerts@kuleuven.be
https://orcid.org/0000-0003-3460-4251
https://doi.org/10.4230/LIPIcs.CP.2025.33
https://doi.org/10.5281/zenodo.15630156
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Symmetric Core Learning for PBO by IHS

have been developed: techniques that break symmetries in a preprocessing phase [2, 21, 3],44

techniques that learn such breaking constraints on the fly [29, 27, 45], techniques that45

guarantee asymmetric branching inside a solver [35], and techniques that extend the conflict46

learning mechanism applied during search within a solver [7, 20]. All these techniques aim47

to avoid unnecessary exploration of symmetric parts of search spaces underlying declarative48

models of real-world problems.49

In this work, we propose symmetric core learning (SCL) as a novel approach to making the50

implicit hitting set approach (IHS) [33, 34, 30, 38] to constraint optimization more symmetry-51

aware. Our motivation for focusing on IHS is two-fold. Firstly, IHS offers a generic framework52

for developing constraint optimization solvers; IHS has been shown to yield efficient solvers for53

various constraint optimization languages, including maximum satisfiability (MaxSAT) [14,54

15, 16, 36], MaxSAT modulo theories [12, 23], quantified MaxSAT [25, 31] answer set55

programming [37], finite-domain constraint optimization [18, 17, 28], and, among the most56

recent ones, pseudo-Boolean optimization (PBO) [41, 42]. Secondly, what sets IHS apart57

from other typical solving approaches is that IHS iteratively combines two types of constraint58

solvers. The first solver is a decision solver for the constraint language at hand, used for59

identifying so-called unsatisfiable cores expressing inconsistencies in the input formula. The60

second solver is a hitting set optimizer, typically implemented through an integer programming61

(IP) solver, for identifying ways of ruling out the so-far identified cores from consideration62

towards an optimal solution of the original problem. As we will explain, the particular way63

in which IHS search is structured offers a novel way of integrating symmetry-awareness to64

IHS-based approaches to constraint optimization, referred to as symmetric core learning, or65

SCL for short.66

Symmetric core learning employs knowledge of instance-level symmetries extracted before67

search, and can be considered a new type of a dynamic symmetry exploitation technique in68

the style of symmetric explanation learning [20], with the key insight that learning symmetric69

images of cores extracted within IHS iterations can benefit the search process. A key70

difference of SCL compared to lex-leader symmetry breaking (which is in many domains the71

current state-of-the-art symmetry handling technique) is that, whereas lex-leader symmetry72

breaking adds symmetry breaking constraints to an input instance before invoking a solver73

in hope that some of the constraints might prove useful during search, SCL does not bloat74

the input instance with potentially useful symmetry breaking constraints. Instead, SCL75

employs symmetry information on the fly during IHS search to generate likely beneficial76

symmetric cores. As a high number of (symmetric) cores may need to be extracted in the77

worst case for termination, SCL has the potential of speeding up IHS by avoiding a high78

number of potentially time-consuming calls to the core-extracting decision solver, and instead79

can produce symmetric cores with polynomial delay from the cores extracted. Specifically,80

as the subsequently-computed hitting sets over the cores are required to also relax away the81

sources of inconsistencies expressed by the symmetric cores generated with SCL, SCL has82

potential for significantly lowering the number of IHS iterations needed for termination.83

We focus on pseudo-Boolean optimization, also known as 0–1 IP solving, for which IHS is84

a competitive solving approach [42]. As we will empirically show, earlier-proposed static lex-85

leader symmetry breaking applied before search generally degrades the performance of IHS for86

PBO. This also holds for the recently-proposed extension of symmetry breaking to so-called87

weak symmetries broken by enforcing dominance constraints that ensure the preservation of88

optimal solutions [44]. This motivates the study of alternative ways of integrating symmetries89

into IHS search for PBO. Symmetric core learning provides one such alternative approach to90

making use of symmetries in IHS. At the same time, SCL makes use of weak symmetries91

Ihalainen et al. 33:3

which discount the impact of the objective function at hand without needing dominance92

constraints. Beyond explicitly generating symmetric cores, we also investigate a compact93

representation of symmetric cores that has the potential of representing an exponential set94

of symmetric cores as a single abstract core [8] over a set of extension variables by making95

use of linear constraints native to the IP solver. In contrast to lex-leader symmetry breaking,96

we show that SCL can improve the runtime performance of a state-of-the-art IHS approach97

to PBO, and generally does not impose significant runtime overheads. Complementing98

the empirical results, we also point out fundamental differences in the effects of lex-leader99

symmetry breaking and SCL on IHS.100

2 Preliminaries101

2.1 Pseudo-Boolean Optimization102

A literal ℓ is a Boolean variable x or its negation x = 1− x, where variables take values 0103

(false) or 1 (true). A pseudo-Boolean (PB) constraint C is a 0–1 linear inequality
∑

iaiℓi ≥ A,104

where ai and A are integers. Without loss of generality, we often assume PB constraints to105

be in normal form, meaning that the literals ℓi are over distinct variables, each coefficient ai106

is positive and the degree (of falsity) A is non-negative. A pseudo-Boolean formula F is a107

conjunction
∧

j Cj of PB constraints. When convenient, we view F as a set of constraints.108

For a constraint C, lit(C) is the set of literals that appear in C. For a pseudo-Boolean109

formula F , lit(F) =
⋃

C∈F lit(C). An objective O is an expression
∑

i wiℓi + lb where the110

coefficients wi and the constant lb are integers (lb stands for “lower bound”: when the wi111

are all possible, this constant term is indeed a lower bound on the cost).112

A substitution (sometimes also called a witness) ω is a mapping of variables to 0, 1 and113

literals. An assignment α is a substitution that maps each variable in its domain into {0, 1}.114

An assignment is complete for F if it assigns a value to each variable of interest (where the115

set of variables should be clear from the context). We write ω(C) for the constraint obtained116

from C by replacing each variable x in the domain of ω by ω(x) (and implicitly normalizing);117

ω(O), ω(ℓ), ω(F) are defined analogously.118

A (normalized) PB constraint C =
∑

iaiℓi ≥ A is trivial if A = 0 and contradictory if119 ∑
i ai < A. The constraint C is satisfied by α (denoted α |= C) if α(C) is trivial. A PB120

formula is satisfied if all of its constraints are satisfied. An instance of the pseudo-Boolean121

optimization problem is a tuple (F, O) with F a PB formula and O an objective to minimize.122

A complete assignment α is a solution of (F, O) if α |= F and is optimal if also α(O) ≤ β(O)123

for each solution β of (F, O). The optimal cost of (F, O) is α(O) for an optimal solution of124

(F, O).125

Following [41], a constraint C is an unsatisfiable core of (F, O) if the following conditions126

hold: (i) the literals in C are objective literals or their negations and (ii) all assignments α127

that satisfy F also satisfy C (denoted by F |= C). In other words, an unsatisfiable core is an128

implied constraint that only mentions objective literals.129

▶ Remark 1. This definition of unsatisfiable core might sound somewhat unconventional; its130

naming has grown historically as follows. Originally an “unsatisfiable core” was defined a131

subset of the original formula that is unsatisfiable. In the context of assumption-based SAT132

solving (also employed for SAT-based optimization) fresh variables are used to represent133

constraints in the input formula and such a core became “a subset of the assumptions that134

cannot jointly be set to a specific value” (or alternatively, a clause over assumption variables135

learned by the solver). In the PBO setting, this was then further generalized to be any PB136

constraint over assumptions (objective variables) learned by the PB solver.137

CP 2025

33:4 Symmetric Core Learning for PBO by IHS

The following proposition forms the basis for how the IHS approach to PBO uses cores138

to compute optimal solutions.139

▶ Proposition 2 (e.g. [41]). Let (F, O) be a PBO instance, αbest an optimal solution to (F, O),140

K a set of cores of (F, O), and γ an optimal solution to (K, O). Then γ(O) ≤ αbest(O).141

In words, Proposition 2 states that the cost of the optimal (minimum-cost) solutions to142

any set of cores is a lower bound on the optimal cost of the instance.143

2.2 Symmetries in Pseudo-Boolean Optimization144

A substitution σ is called a (syntactic) weak symmetry of (F, O) if σ(F) = F . If σ(O) = O145

further holds, σ is a (strong) symmetry. For strong symmetries, α is an optimal solution of146

(F, O) if and only if α ◦ σ is an optimal solution of (F, O). We also consider a subset of weak147

symmetries that we call core-preserving symmetries. A weak symmetry σ is core-preserving if148

σ(ℓ) is an objective literal if and only if ℓ is. Similarly to weak symmetries, and in contrast to149

strong ones, a core-preserving symmetry σ is not guaranteed to preserve the cost of solutions,150

i.e., α(O) need not equal α ◦ σ(O). In contrast to weak symmetries, however, core-preserving151

symmetries are guaranteed to map cores to cores, i.e., σ(C) is a core of (F, O) if and only if152

C is. If Σ is a set of symmetries, we write ⟨Σ⟩ for the group generated by Σ. If Σ is a set of153

symmetries acting on a set S (e.g., acting on the set of cores as just defined), the orbit of154

s ∈ S under Σ, denoted O(s, Σ), is the set {σ(s) | σ ∈ ⟨Σ⟩}.155

When symmetries are present, they can slow down search of a PBO solver, causing the156

solver to explore many symmetric subareas of the search space of solutions. One way to deal157

with symmetric search spaces is to add symmetry-breaking constraints. Specifically, given a158

(strong) symmetry σ, a common approach is to add a (set of) constraint(s) that is satisfied159

by an assignment α if and only if α is lexicographically smaller than (or equal to) α ◦ σ160

[1]. This can be achieved with a single pseudo-Boolean constraint LLσ (called a lex-leader161

constraint) of the form162 ∑
i

2i · xi ≤
∑

i

2i · σ(xi)163

or by expressing the constraint as a set of constraints with smaller coefficients using auxiliary164

variables (see for instance [21]). Since weak symmetries do not preserve the costs of solutions,165

lex-leader constraints over a weak symmetry might change the optimal cost of a PBO instance.166

Van Caudenberg and Bogaerts [44] generalized the lex-leader constraint to weak symmetries,167

which then becomes a dominance constraint168

2n+1 ·O +
n∑

i=1
2i · xi ≤ 2n+1 · σ(O) +

n∑
i=1

2i · σ(xi),169

which states that the objective value must be smaller than or equal to the objective of the170

symmetric assignment, and, furthermore, if the objective values are equal, the assignment171

must be lexicographically smaller than its symmetric counterpart.172

An alternative to defining symmetries as substitutions is to define symmetries as per-173

mutations of literals respecting negation, i.e., via a permutation π of the literals such that174

π(x) = π(x) for each x. We will use disjoint cycle notation and write, for instance, (xyz) (or175

(xyz)(xyz) if we also want to spell out the redundant information) for the symmetry that176

maps x to y, y to z and z to x and all other variables to themselves.177

Ihalainen et al. 33:5

1 PBO-IHS(F, O)
Input: A PBO instance (F, O)
Output: An optimal solution αbest

2 (αbest , sat?)← PB-Solve(F);
3 if not sat? then
4 return “no feasible solutions”;
5 ub← αbest(O); lb← −∞; K ← ∅;
6 Σ← Compute-Symmetries(F) ;
7 while true do
8 γ ← Min-Sol(K, O);
9 lb← γ(O);

10 if ub = lb then break;
11 (C, α′, ub′)← Extract-Core(γ, F, O);
12 if ub′ < ub then ub← ub′; αbest ← α;
13 if ub = lb then break;
14 K← SCL(C,K, Σ) ;

15 K ← K ∪ {C} ∪ K ;
16 return αbest ;

Algorithm 1 PBO-IHS. Text highlighted in yellow marks
the symmetric core learning extension.

Min-Sol(K, O):
minimize: O

subject to:

C ∀C ∈ K

ℓ ∈ {0, 1} ∀ℓ ∈ lit(K)

return:
{ℓ | ℓ = 1 in opt. soln}∪
{ℓ | ℓ = 0 in opt. soln}

Figure 1 Hitting set IP.

▶ Example 3. Let F = {x + y ≥ 1, 2x + y + z ≥ 2, 2y + x + z ≥ 1} and O = x + y. Then178

σ = (xy) is a weak symmetry of (F, O) since applying σ to F swaps the last two constraints; σ179

is neither a core-preserving symmetry since σ maps the objective literal x to the non-objective180

literal y, nor a strong symmetry since σ(O) = y + x which is not x + y.181

In practice, there can be exponentially many symmetries and hence breaking all of them,182

e.g., via lex-leader constraints, is in general infeasible. The most common way of dealing183

with this is to simply break a set of generators of the symmetry group, without formal184

guarantees on completeness, i.e., on that all symmetries would be broken. A set of generators185

is typically detected via a graph representing a simplification of the syntax tree of the formula186

and computing automorphisms of this graph [2]. Some tools go further then detecting an187

arbitrary set of generators, aiming to identify structure in the symmetry group [21, 4, 3]. As188

an example, these tools aim to detect row interchangeability [19], representing a symmetry as189

a matrix M of literals such that each two rows of the matrix are interchangeable in the sense190

that σij maps every literal Mik to Mjk, each Mjk to Mik, and other literals to themselves.191

If one uses the “right” set of generators, and the “right” order of the variables at hand, the192

entire group generated by such a matrix can be broken with a polynomially-sized set of193

symmetry breaking constraints.194

2.3 The Implicit Hitting Set Approach to PBO195

Algorithm 1 details PBO-IHS, the implicit hitting set algorithm for pseudo-Boolean optimiza-196

tion [41, 42]. The highlighted lines correspond to the symmetric core learning extension we197

detail in Section 3 and should be ignored in this section.198

Given a PBO instance (F, O), PBO-IHS begins by checking the existence of solutions199

of (F, O) by invoking PB decision procedure PB-Solve on F (Line 2). The call returns an200

CP 2025

33:6 Symmetric Core Learning for PBO by IHS

indicator sat? for satisfiability and a solution αbest in the positive case. Given αbest, an201

upper bound ub and a lower bound lb on the optimal cost of the instance are initialized to202

αbest(O) and −∞, respectively, on line 5. During the search, αbest will always contain the203

currently best-known solution for which αbest(O) = ub. A set K of cores of the instance is204

initialized to ∅ and the main search loop (lines 7-15) entered. The main search loop iterates205

until lb = ub, at which point αbest is known to be optimal. Each iteration begins with the206

computation of an optimal solution γ of the instance (K, O) consisting of the cores found so207

far and the objective (Line 9). In practice, γ is computed by solving the hitting set IP in208

Figure 1 with an integer programming (IP) solver. By Proposition 2, γ(O) will be a lower209

bound on the optimal cost of the instance. Since no cores are ever removed from K, the210

values of γ(O) will be non-decreasing over the iterations, so lb can always be updated on211

Line 9. If the algorithm does not terminate on Line 10, the procedure Extract-Core next212

computes a new core C of (F, O) not satisfied by γ. This is achieved by invoking a decision213

procedure for PB constraints of F under the assumptions γ. The result of this call will either214

be a solution that extends γ, or a constraint C (learned using standard conflict analysis)215

falsified by γ but for which F |= C.216

Each extracted core in IHS witnesses that the current γ cannot be extended to an optimal217

solution of the original instance. As a byproduct, Extract-Core also often obtains a solution218

α′ of cost α′(O) = ub′, which it also returns. The cost of α′ can (but need not) be lower219

than the current upper bound; hence, termination is checked on Line 13. If the algorithm220

does not terminate, the new core is added to K, and IHS reiterates.221

3 Symmetric Core Learning for IHS222

We detail symmetric core learning (SCL) for IHS-based PBO solving as our main contribution.223

3.1 The Basic Idea224

SCL is based on the observation that given a PBO instance (F, O), a core C, and a core-225

preserving symmetry σ, the constraint σ(C) obtained by applying σ to C is also a core226

of (F, O). Symmetric core learning uses core-preserving symmetries of a PBO instance to227

generate new cores dynamically during search, with the key aims of decreasing the number228

of calls to the Extract-Core and Min-Sol procedures of PBO-IHS, while at the same time229

avoiding the generation of (a potentially large number) of lex-leader constraints before search.230

▶ Example 4. Consider the PBO instance (F, O) with F = {xi + yj ≥ 1 | i = 1, . . . , n, j =231

1, . . . , m}, O =
∑n

i=1 xi +
∑m

j=1 yj and n ≤ m. Examples of core-preserving symmetries232

of (F, O) are σ1 = (x1x2 . . . xn) and σ2 = (y1y2 . . . yn). The core C = x1 + y1 ≥ 1 and the233

symmetry σ1 together imply the cores σ1(C) = x2 +y1 ≥ 1, σ2
1(C) = σ1(σ1(C)) = x3 +y1 ≥ 1,234

. . ., σn−1
1 (C) = xn + y1 ≥ 1.235

The IHS approach to PBO extended with symmetric core learning is obtained by including236

the highlighted lines of Algorithm 1. During the initialization phase, the algorithm computes237

a set of core-preserving symmetries of the PBO instance to be solved on Line 6. The238

symmetries are used during each iteration of the search loop by the SCL procedure on Line 14239

to generate a set K of cores that are symmetric to the core C computed by Extract-Core,240

with the aim of increasing the number of cores added to K in each iteration of IHS search.241

An intuition underlying symmetric core learning is that if we have a symmetry σ and a242

core C, then computing a symmetric core σ(C) is very fast. In contrast, extracting cores243

with the subroutine Extract-Core invokes a decision procedure for an NP-hard constraint244

Ihalainen et al. 33:7

1 Explicit-SCL(C,K, Σ)
Input: A core C, a set of all so-far extracted cores K, and a set of symmetries Σ.
Output: Set S of cores implied by C and the symmetries in Σ.

2 S ← {C}; coreQueue.init(C);
3 while coreQueue.size()>0 do
4 C ← coreQueue.pop();
5 for σ ∈ Σ do
6 if σ(C) /∈ K ∪ S then
7 S ← S ∪ {σ(C)}; coreQueue.push(σ(C));
8 if |S| ≥ constrLim or

∑
C∈S |lit(C)| ≥ litLim then return S;

9 return S;
Algorithm 2 Explicit symmetric core learning

language, which could require a significant amount of time. Furthermore, in theory, a245

single symmetry can be used to generate many different symmetric cores. Thus, we expect246

symmetric core learning to be efficient for solving instances where the time required to247

compute core-preserving symmetries and invoking SCL is lower than the time needed to248

extract enough cores to terminate using only Extract-Core.249

We detail two variants of symmetric core learning, i.e., instantiations of the SCL procedure250

of Algorithm 1. In explicit symmetric core learning, detailed in Section 3.2, the generated251

cores are explicitly added to the accumulated set of cores and thus as individual constraints to252

the hitting set IP. In compact symmetric core learning, detailed in Section 3.3, the generated253

cores are instead more compactly encoded with a small number of linear constraints that are254

then added to the hitting set IP instead of the cores themselves.255

3.2 Explicit Symmetric Core Learning256

In explicit symmetric core learning, the cores generated via symmetries are directly (or257

explicitly) added to the hitting set IP as individual constraints. Algorithm 2 details our258

breadth-first style implementation of explicit symmetric core learning. Given a core C259

computed by Extract-Core in the current iteration of IHS search, the set K of all cores260

found during search and a set Σ of core-preserving symmetries, Explicit-SCL first initialises261

a set S of cores that are symmetric to C, and a queue coreQueue of cores to be processed262

on Line 2. Then, the algorithm enters the while-loop between Lines 3 and 8, during which263

the cores in coreQueue are processed in breadth-first order as follows. For a core C, the264

algorithm iterates through each symmetry σ ∈ Σ. If σ(C) is a previously unseen core, σ(C)265

is added to the set S and pushed into coreQueue to be processed later. After adding a new266

core to S the algorithm checks for two termination criteria: whether |S|, the number of new267

symmetric cores that have been generated, exceeds a user-defined parameter constrLim,268

and whether
∑

C∈S |lit(C)|, the sum of the number of literals in the new symmetric cores,269

exceeds the parameter litLim. As detailed in the following, these early termination criteria270

are employed to escape situations in which Algorithm 2 would otherwise produce an excessive271

number of symmetric cores to the point that overall search performance could suffer.272

A central challenge in realizing explicit symmetric core learning is that naively applying273

symmetries to cores may result in a very large set of cores that do not help the IHS search274

terminate faster. More precisely, while a single core with n literals can, in theory, generate a275

number of symmetric cores exponential in n (e.g., in a degenerate case where any permutation276

of variables is a symmetry), the following observations demonstrate that the effect of explicit277

CP 2025

33:8 Symmetric Core Learning for PBO by IHS

symmetric core learning on IHS search depends on the PBO instance. The first observation278

demonstrates how explicit symmetric core learning can reduce the number of iterations of279

the IHS main loop.280

▶ Observation 5. Consider the PBO instance (F, O), the symmetries σ1 and σ2 from Ex-281

ample 4, and assume for the example that Extract-Core only returns at-least-one constraints282

(i.e., propositional clauses) as cores. An optimal solution α to (F, O) assigns exactly the n283

variables xi to 1. As every at-least-one core extracted results in at most one new variable being284

assigned to 1 by solutions returned by Min-Sol, PBO-IHS without symmetric core learning (i.e.285

Algorithm 1 without the highlighted parts) invokes the Extract-Core and Min-Sol subroutine286

at least n times before termination. In contrast, given the symmetries σ1, σ2, and a single287

core of form xi + yj ≥ 1 for some i and j, Algorithm 2 can generate n×m symmetric cores,288

allowing PBO-IHS with symmetric core learning (i.e. Algorithm 1 with the highlighted parts)289

to terminate after a single invocation of Extract-Core and two invocations of Min-Sol.290

The next observation demonstrates that IHS with unrestricted explicit symmetric core291

learning can lead to the extraction of unnecessarily many cores during IHS search.292

▶ Observation 6. Assume that, invoked on the PBO instance (F, O) from Example 4, the293

IHS algorithm has extracted the n cores xi + yi ≥ 1 for i = 1, . . . , n. In the next call to294

Min-Sol, one of the minimum-cost solutions that can be returned assigns all xi variables295

to 1 and all yj variables to 0. Given this solution, the next call to Extract-Core will not296

find a core, and hence IHS terminates after extracting n cores. In contrast, as detailed in297

Observation 5, IHS with unrestricted explicit SCL and the symmetries σ1 = (x1 . . . xn) and298

σ2 = (y1 . . . ym) is guaranteed to add n×m cores to K before termination.299

In contrast to the simple instance in Observation 6, in practical settings adding too many300

constraints to the hitting set IP can significantly increase the time needed to compute a301

minimum-cost solution. Identifying which cores allow IHS to make fast progress towards302

termination is an open research challenge. We limit explicit SCL in attempt to balance303

between harnessing the potential of symmetric cores to speed up search (Observation 5) and304

mitigating the risk of having to spent unnecessary effort to extract cores (Observation 6).305

3.3 Compact Symmetric Core Learning306

Compact symmetric core learning aims to express a large number of symmetric cores with a307

smaller number of constraints in the hitting set IP, making use of linear constraints native to308

IP. The following examples provide intuition for the approach.309

▶ Example 7. Consider again the PBO instance (F, O), the core C = x1 + y1 ≥ 1, and the310

symmetries σ1 and σ2 from Example 4. Using two fresh auxiliary Boolean variables sx and311

sy all of the n ×m cores implied by C and σ1 and σ2 can be captured by the constraints312

n · sx ≤ x1 + · · ·+ xn, m · sy ≤ y1 + · · ·+ ym (which enforces sx (sy) to be smaller than each313

of the xi (yi)), and sx + sy ≥ 1.314

As the minimum-cost solutions to the extracted cores are computed with an IP solver,315

we are not restricted to using binary variables for expressing a set of cores. Indeed, integer316

variables can be employed for representing sets of symmetric cores more compactly.317

▶ Example 8. Consider a PBO instance with two symmetries σ1 = (x1x2x3)(y1y2y3) and318

σ2 = (z1z2z3)(w1w2w3). Given the core C = x1 +2y1 +z1 +w1 ≥ 3, the group generated by σ1319

and σ2 yields the symmetric cores xi + 2yi + zj + wj ≥ 3 for i = 1, . . . , 3 and j = 1, . . . , 3. All320

Ihalainen et al. 33:9

these cores can be represented compactly with the constraints sxy ≤ xi + 2yi (for 1 ≤ i ≤ 3),321

szw ≤ wi + zi (for 1 ≤ i ≤ 3), and sxy + szw ≥ 3, where sxy and szw are (non-binary) integer322

variables.323

We continue with a high-level description of compact SCL. Assume that we partition324

a core C =
∑

ℓa
ℓℓ ≥ B as

∑
ℓ∈Saℓℓ +

∑
ℓ/∈Saℓℓ ≥ B for a subset S of its literals. Now325

assume a set Σ of symmetries for which σ(
∑

ℓ/∈Saℓℓ) =
∑

ℓ/∈Saℓℓ for each σ ∈ Σ. Consider326

the orbit O(
∑

ℓ∈Saℓℓ, Σ) of the partition of the constraint containing the literals in S.327

Compact symmetric core learning generates a compact representation for a set of cores328

implied by C and Σ by replacing
∑

ℓ∈Saℓℓ with an integer variable sS and the definition329

sS ≤ min(O(
∑

ℓ∈Saℓℓ, Σ)). In the rest of this section, we fill in the details of this high-level330

description of compact SCL.331

As illustrated in Examples 7 and 8, compact SCL can substitute several subsets of a core332

with new variables and in doing so represent many symmetric cores more compactly. What333

is happening in these examples is that (certain) subgroups of the group of all symmetries334

act independently on parts of the core rather than on the whole core. However, as the335

following observation shows, independent rewriting of parts of the cores is not sound in case336

symmetries interact too much. In the rest of this section, we will formalize conditions that337

guarantee the soundness of rewriting parts of the core.338

▶ Observation 9. Assume that a PBO instance has the symmetries σ1 = (x1x2x3)(y4y2y3),339

σ2 = (y1y2y3)(x4x2x3) and the core C = x1 + y1 ≥ 1. The orbit of x1 under {σ1} is340

{x1, x2, x3} and the orbit of y1 under {σ2} is {y1, y2, y3}. Compact SCL could introduce both341

sx + y1 ≥ 1, sx ≤ min({x1, x2, x3}) and x1 + sy ≥ 1, sy ≤ min({y1, y2, y3}). Introducing342

sx + sy ≥ 1 with sx ≤ min({x1, x2, x3}) and sy ≤ min({y1, y2, y3}), however, is not correct343

since these would also represent the constraint x2 + y2 ≥ 1 that is not a core implied by C,344

σ1 and σ2.345

Observation 9 demonstrates that the choice of symmetries under which to compute orbits can346

not be done independently for all subsets to be replaced. One way to interpret Observation 9347

is that if we wish to introduce a new variable defined by the orbit O2 into a core that already348

has another new variable defined by the orbit O1, we need to ensure that the symmetries349

used to compute the orbit O2 “behave well” together with those used to compute O1. The350

following definition formalizes this notion of well-behavedness.351

▶ Definition 10. Let C be a core and assume that Σi is a set of symmetries for each352

i ≤ k. We call ⟨Σi | 1 ≤ i ≤ k⟩ a symmetry decomposition of C if C can be written as353

L1 + · · ·+ Lk ≥ A and the following conditions hold:354

1. For each σi ∈ Σi, σi(
∑

j>i Lj) =
∑

j>i Lj.355

2. For each σi ∈ Σi, each j < i, and each L′
j ∈ O(Lj , Σj), it holds that σi(L′

j) ∈ O(Lj , Σj).356

For intuition on Definition 10, assume that we are computing a compact representation for a357

set of cores symmetric to C partitioned as L1 + · · ·+ Lk ≥ A. If we process the partitions in358

the order of L1, L2, . . . , Lk, then a symmetry decomposition of C defines which symmetries359

we apply to generate the orbit Oi for each Li. To be a symmetry decomposition, we should360

be able to split our core so that each symmetry in the ith set stabilizes the parts of the core361

beyond i as well as the orbits in all of the earlier parts of the core. These conditions together362

guarantee that every constraint represented by the compact representation is a core.363

▶ Proposition 11. Let ⟨Σi | 1 ≤ i ≤ k⟩ be a symmetry decomposition of C = L1+· · ·+Lk ≥ A.364

If L′
i ∈ O(Li, Σi) for all i, then L′

1 + · · ·+ L′
k ≥ A is a core.365

CP 2025

33:10 Symmetric Core Learning for PBO by IHS

Proof Sketch. This core can be constructed iteratively from k to 1 as follows. Since L′
k ∈366

O(Lk, Σk), there is a symmetry σk such that σk(Lk) = L′
k and hence σk(L1) + · · · +367

σk(Lk−1) + L′
k is a core. The second item of Definition 10 guarantees that there exists a368

symmetry σk−1 that stabilizes Lk and such that σk−1(Lk−1) = σ−1
k (L′

k−1). As a consequence,369

σk ◦σk−1(C) = σk ◦σk−1(L1 + · · ·+Lk−2)+L′
k−1 +L′

k. Iteratively applying this construction370

yields the desired core. ◀371

In order to use a symmetry decomposition, we will replace each Li by new variables372

intuitively to represent all its symmetric images at once. Before giving the formal definition,373

we give one more example of how to get even more compact encodings.374

▶ Example 12. Consider a PBO instance where x1, . . . , xn are interchangeable without375

touching the term y1 + 2y2 + 3y3. In other words, assume that the group of stabilizers of376

y1 + 2y2 + 3y3 acts symmetrically on {x1, . . . , xn} (meaning that for each i, j, it contains a377

permutation that swaps xi and xj and maps each other xk to itself). Additionally, assume378

that x1 + 2x2 + 3x3 + y1 + 2y2 + 3y3 ≥ 5 is a core. In that case, there are cubically many379

cores: for each triple of different values of i, j and k, xi + 2xj + 3xk + y1 + 2y2 + 3y3 ≥ 5 is a380

core. We can introduce three counter variables: v1, v2, and v3 such that vi is false if at least i381

of the x variables are false using (n− i + 1)vi ≤ x1 + x2 · · ·+ xn. Given these three counting382

constraints, all the cores are captured by the single core v3 + 2v2 + 3v1 + y1 + 2y2 + 3y3 ≥ 5.383

We are now ready to formally define the compact encoding of cores that we use.384

▶ Definition 13. Let ⟨Σi | 1 ≤ i ≤ k⟩ be a symmetry decomposition of C = L1 + · · ·+Lk ≥ A.385

Assume that Li =
∑

j wjℓj (where the coefficients wj are wlog assumed to be decreasing).386

The compact encoding of Li consists of:387

Case 1: if ⟨Σi⟩ acts symmetrically on a set L that includes all ℓj . (1) constraints (|Li|−388

j+1)ci,j ≤
∑

j ℓj defining fresh counting variables ci,j (for 1 ≤ j ≤ |Li|): and (2) replacing389

Li by
∑

j wjci,j in C;390

Case 2: otherwise (1) constraints Vi ≤ L′
i introducing a fresh integer variables Vi for each391

L′
i ∈ O(Li, Σi), and (2) replacing Li by Vi in C.392

Case 1 of Definition 13 was shown in Example 7, Case 2 in Example 8. In the worst393

case, i.e., when the Case 1 optimization is not used, compact SCL uses 1 +
∑

i |O(Li, Σi)|394

constraints to represent
∏

i |O(Li, Σi)| cores. (In the special case |Li| = 1, we use 1 constraint395

instead of |O(Li, Σi)| constraints to encode the semantics of Vi.)396

Implementing compact SCL requires care and various heuristic choices. As a first way397

of realize compact SCL, we implemented a procedure which, given a core C and a set Σ of398

symmetries, heuristically computes different partitions of C and subsets of Σ as candidate399

symmetry decomposition of C. The procedure prioritizes finding symmetry groups that400

act symmetrically on a set of literals (to enable the Case 1 optimization of Definition 13).401

Our procedure for computing a symmetry decomposition of C and the orbits of a partition402

under it resemble explicit SCL as detailed in Algorithm 2. When orbits containing more403

than the proposed partition itself are found, C is modified by replacing the partition under404

consideration with a new variable defined based on the orbit. Technical details on our current405

implementation of this approach to implementing compact SCL are provided in Appendix A.406

In contrast to explicit SCL, compact SCL can decrease the best-case number of constraints407

needed in the hitting set IP solved by Min-Sol during IHS search.408

▶ Observation 14. Consider the PBO instance (F, O) and the symmetries σ1 and σ2 from409

Example 4. Observation 6 illustrated that IHS search can terminate after having extracted410

Ihalainen et al. 33:11

n cores of form xi + yi ≥ 1 for i = 1, . . . , n. However, any assignment that sets exactly411

one from each pair xi, yi to 1 and all other variables to 0 is a minimum cost solution to412

the integer program formed over these n cores that Min-Sol solves. Only one of these413

2n minimum-cost solutions will results in termination of IHS search, namely the one that414

assigns all xi to 1 and all yi to 0. To guarantee termination using only cores of form415

xi + yj ≥ 1 (i.e., the at-least-one cores of (F, O) that have a minimum number of literals),416

IHS (with or without explicit SCL) needs to add at least 2n of them to K since with any417

fewer, there is at least one xi that appears only in one core xi + yj ≥ 1, meaning that there418

is a minimum-cost hitting set that assigns xi to 0 and yj to 1. On the other hand, the set419

{xi +yi ≥ 1 | 1 ≤ i ≤ n}∪{xi +yi+1 ≥ 1 | 1 ≤ i ≤ n} of 2n cores only has one minimum-cost420

hitting set, assigning all xi to 1.421

In contrast, as detailed in Example 7, assuming the first core extracted is x1 + y1 ≥ 1,422

compact SCL will result in the constraints sx ≤ min({xi | i = 1, . . . , n}), sy ≤ min({yi | i =423

1, . . . , m}) and sx + sy ≥ 1, where sx and sy are fresh binary variables. In total, compact424

SCL will in this case add 3 constraints to K: (1) nsx ≤
∑n

i=1xi, (2) msy ≤
∑m

i=1yi and425

(3) sx + sy ≥ 1. In the next iteration, the only minimum-cost solution that Min-Sol can426

return sets all xi and sx to 1, and the other variables to 0. With this solution, IHS with427

compact SCL terminates with 3 constraints (that represent n×m cores) in K.428

Compact SCL and Abstract Cores. Finally, we note that compact SCL has a similar429

flavor to a technique called abstract cores proposed for IHS in the context of maximum430

satisfiability [8]. An IHS solver using abstract cores will (i) heuristically select a subset S of431

objective literals, (ii) introduce new count variables ok with the definition ok ↔
∑

ℓ∈S ℓ ≥ k,432

and (iii) use the Extract-Core subroutine to extract so-called abstract cores, i.e., core433

constraints that contain both original objective literals and the new count variables. A central434

difference between abstract cores and compact SCL is that rather than using Extract-Core435

to prove that the new variables appear in cores, the way in which compact SCL chooses436

which objective literals should be grouped together is guaranteed to cover a large number of437

symmetric cores of the PBO instance.438

3.4 SCL and Heuristic Optimizations in IHS439

Practical implementations of IHS employ various additional heuristic optimizations which440

are central for runtime efficiency. This is also the case for PBO-IHS. The two heuristics that441

affect our implementation of SCL are forms of hardening, including reduced cost fixing [5]442

and weight-aware core extraction (WCE) [16, 9].443

Hardening refers to fixing the value of an objective literal ℓ during search. There are two444

ways in which that can happen: (i) if the coefficient of ℓ is strictly greater than the current445

upper-bound ub, then the literal is fixed to 0 since setting it to 1 would lead to a worse446

solution than the current best known; or (ii) via reduced cost fixing [5], i.e., if the reduced447

cost of ℓ in the LP relaxation of the hitting set IP detailed in Figure 1 imply that ℓ is set448

either to 0 or 1 in the optimal solutions. Hardening affects SCL in that symmetries that map449

non-fixed literals to fixed ones are removed from Σ when symmetric cores are generated.450

Weight-aware core extraction aims to delay calls to Min-Sol by extracting multiple cores451

falsified by a solution γ in each iteration. Intuitively this decreases the number of times that452

the hitting set IP needs to be solved [42, 41]. With SCL, we interleave the calls to the SCL453

procedure between the core-extraction steps: after Extract-Core obtains each new core C,454

we compute symmetric cores to it and then invoke Extract-Core again, asking for a core455

that is falsified by γ and not any of the cores that have been computed in this iteration. In456

CP 2025

33:12 Symmetric Core Learning for PBO by IHS

practice, this is achieved by removing at least one literal from every obtained core from the457

assumptions posed in the next query to Extract-Core. The Min-Sol procedure is invoked458

only when Extract-Core does not find more cores.459

3.5 SCL and Symmetry Breaking460

We end this section with a short observation comparing SCL and symmetry breaking with461

lex-leader constraints in the context of IHS. In contrast to SCL, symmetry breaking with462

lex-leader constraints does not result in the IHS search extracting more of the original cores463

of the PBO instance, but rather introduces new cores that change the search.464

▶ Observation 15. Consider the PBO instance (F, O) and the symmetry σ1 detailed in465

Example 4 as a strong symmetry of (F, O). Applying lex-leader symmetry breaking on (F, O)466

adds the constraint LLx =
∑n

i=12ixi ≤
∑n−1

i=1 2ixi+1 + 2nx1. The constraints x1 + xi ≥ 1 for467

2 ≤ i ≤ n are examples of cores of (F ∪ {LLx}, O) that are not cores of (F, O). In other468

words, symmetry breaking can (implicitly) introduce new cores to the original instance.469

4 Experiments470

To evaluate the impact of SCL, we implemented the PBO-IHS algorithm from scratch in C++,471

using RoundingSat 2 [22] as the PB core extractor, Gurobi 9.5.2 as the IP solver for hitting472

set computation, and BreakID [21] to compute symmetries and lex-leader constraints. Our473

PBO-IHS re-implementation (without symmetry breaking) outperforms the original PBO-IHS474

implementation [41, 42] on the benchmark set used in [41, 42], solving 948 instances against475

920 for the implementation by the original authors. (For a comparison of PBO-IHS with other476

approaches, see [41, 42].) Our PBO-IHS implementation includes the optimizations described477

in [41, 42], including assumption shuffling, weight-aware core extraction (WCE) [5], solution-478

improving search at stagnation [42], reduced cost fixing [5], and hardening. Most relevant in479

terms of SCL are assumption shuffling and WCE which both concern core extraction: SCL480

(when used) is applied after assumption shuffling, and within the WCE loop, i.e., after each481

core extraction step. We evaluate the following variants of PBO-IHS.482

Baseline: our PBO-IHS implementation without symmetry techniques.483

LL: Baseline extended with lex-leader symmetry breaking.484

LLS: LL restricted to only break strong symmetries (see [44]).485

ExplicitSCL: Baseline extended with explicit SCL.486

CompactSCL: ExplicitSCL extended with compact SCL.487

We use 100-second time limit for BreakID in the LL and SCL variants for computing symmet-488

ries, and 1 h for the overall runtime; reported runtimes include symmetry computation. For489

LL, we run BreakID with the same parameters as in of the original work on weak symmetries490

for lex-leader symmetry breaking for PBO [44] (the detection of row interchangeability and491

weak symmetry breaking are enabled). For LLS, weak symmetries are disabled. Based on492

preliminary experimentation, with ExplicitSCL and CompactSCL detection of row inter-493

changeability is disabled. For the early termination heuristics, we use constrLim = 100494

and litLim = 6000. These value choices were not rigorously tuned, but the parameters are495

important to cap the symmetric core generation, since in general there may be exponentially496

many symmetric cores. (It should be noted that LL also has similar limiting parameters497

to avoid overloading the solver with symmetry breaking constraints.) Our implementation498

applies compact SCL only when the estimated number of cores covered is greater than the499

estimated number of auxiliary constraints needed. Explicit SCL is applied in each iteration500

Ihalainen et al. 33:13

after first applying compact SCL; when explicit SCL is applied to a compacted core, we only501

use symmetries that do not change the definitions of the count variables in the core.502

The experiments reported on were run on 2.40-GHz Intel Xeon Gold 6148 machines with503

381-GB RAM in RHEL under a 32-GB memory limit. Implementation code, data and bench-504

mark generation scripts are available at https://doi.org/10.5281/zenodo.15630156.505

4.1 Experiments on Highly Symmetric Benchmarks506

We start by considering two examples of problem domains known to have a high number507

of symmetries intrinsically. The first, which we will refer to as the CC problem, asks to508

maximize the size of the largest clique over all graphs with n nodes that admit a k-coloring509

where n and k are given parameters. Additionally, we consider a variant of the problem510

in which all nodes are given a distinct weight from 1, . . . , n, and the task is to maximize511

sum-of-weights of the nodes in the clique. We will refer to this variant as “weighted CC”512

and talk about “unweighted CC” when the task is to maximize the size of the clique. In our513

experiments, we use an extension of the encoding from [32] to optimization, the full details514

of the encoding are in Appendix B. Beyond being highly symmetric (as explained in short),515

the CC problem draws motivations from proof complexity: tautologies of the type “a graph516

either does not contain a clique of size m, or is not (m− 1)-colorable”, expressed similarly to517

the encoding we use, are exponentially hard for cutting planes [32].518

Note that the size of the largest clique in the graphs that admit a k-coloring is k. There519

are many symmetric variants of graphs with n nodes that admit both a k-coloring and520

a clique of size k. The encoding of CC results in PBO instances in which the objective521

contains n variables that are indicators for a node not being included in the clique. With522

this intuition, any at-least-one core corresponds to a subset of nodes that cannot all be523

included in the clique. Since the maximum size of the clique is k, it follows that any subset524

of nodes that contains k + 1 nodes corresponds to a (subset-minimal) core. Termination of525

IHS using only cores of this form requires in total
(

n
k+1

)
cores that rule out all such subsets526

from consideration.527

The CC instances contain two types of easy-to-grasp symmetries: “node-symmetries”528

over the node indices, and “color-symmetries” over color indices. Both types are present529

in weighted and unweighted CC, but very notably, the node-symmetries that, informally530

speaking, map nodes to other nodes are strong only in the unweighted variant. To see531

this, observe that mapping nodes to other nodes preserves the cost of solutions only in the532

unweighted case. When invoked on the PB encoding of the CC problem (unweighted or533

weighted) explicit SCL, using the node-symmetries and a single minimal at-least-one core of534

size k + 1, can generate
(

n
k+1

)
− 1 other cores corresponding to all other

(
n

k+1
)
− 1 subsets535

of size k + 1. As such, IHS with explicit SCL can terminate after extracting a single core536

from Extract-Core, but enumerates an exponential number of symmetric cores and adds537

them to the hitting set IP. In contrast, given one core of size k + 1, and the node-symmetries,538

compact SCL can generate a single cardinality constraint that limits the maximum number539

of nodes in any clique to k, resulting in termination of IHS in the next iteration with only a540

single constraint added to the hitting set IP.541

Regarding lex-leader-based symmetry breaking on unweighted CC instances, if the node-542

symmetries are broken completely (which is not guaranteed to be the case, but is a best-case543

scenario that LL heuristically aims to achieve), the additional constraints added to the PBO544

instance essentially enforce that the maximum clique consists of k specific nodes instead of545

any k nodes. Then the instance extended with lex-leader constraints has n− k unit cores546

that directly enforce that the other nodes can not be in the maximum clique. When invoked547

CP 2025

https://doi.org/10.5281/zenodo.15630156

33:14 Symmetric Core Learning for PBO by IHS

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

N
u
m

b
e
r

o
f

so
lv

e
d
 i
n
st

a
n
ce

s

Time (s)

LLS (104)
CompactSCL (75)

ExplicitSCL (69)
LL (68)

Baseline (53)
 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500

N
u
m

b
e
r

o
f

so
lv

e
d
 i
n
st

a
n
ce

s

Time (s)

CompactSCL (77)
ExplicitSCL (73)

LL (71)
LLS (62)

Baseline (60)
 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500

N
u
m

b
e
r

o
f

so
lv

e
d
 i
n
st

a
n
ce

s

Time (s)

CompactSCL (76)
ExplicitSCL (74)

LL (68)
LLS (68)

Baseline (66)

Figure 2 Impact of symmetry techniques on number of instances solved. Left: unweighted CC,
Middle: weighted CC, Right: Haplotype inference.

on the extended instance, IHS can terminate after extracting n− k of these (short) cores.548

(On weighted CC instances, the node-symmetries can be broken quite similarly when weak549

symmetry detection and dominance constraints are used: then the constraints enforce that550

the maximum clique consists of the k nodes with largest weights.) Further, in contrast to551

SCL, the fact that lex-leader symmetry breaking adds constraints to core-extractor can552

decrease core-extraction times. Thus we expect symmetry breaking to be very effective in553

these instances. The main question is how close IHS with (explicit/compact) SCL comes to554

the performance of IHS with lex-leader symmetry breaking.555

To experiment with CC, we generated instances with all combinations of n = 5..29 and556

k = 2..n, yielding a total of 400 unweighted and 400 weighted benchmarks. On unweighted557

CC (see Figure 2 left), explicit SCL solves 16 more instances than the Baseline (IHS without558

symmetry techniques) with 69 vs 53 solved benchmarks. Compact SCL is even more effective,559

solving 6 more instances than explicit SCL (75 vs 69 instances). Using lex-leader with560

the full set of weak symmetries (LL) leads to 68 instances solved, which is less than either561

variant of SCL. Interestingly, restricting lex-leader-based symmetry breaking to the set of562

strong symmetries (LLS in the figure) leads to the overall best performance on unweighted563

CC and 104 instances solved. The results suggest that restricting the types of symmetries564

that BreakID can find (in this case to symmetries that map objective variables to objective565

variables), allows for better recognition of the relevant structure of the instance.566

On the weighted CC instances (Figure 2 middle) the baseline solves 60 instances and567

lex-leader symmetry breaking restricted to strong symmetries only marginally improves568

with 62. When allowed to use all weak symmetries, IHS with lex-leader symmetry breaking569

improves to 71 solved instances. Our SCL approaches obtain the best performance and570

notable improvements over lex-leader-based breaking; explicit SCL solves 73 instances and571

compact SCL an impressive 77. A potential explanation for the big difference in performance572

of LLS between the unweighted and the weighted case is that node-symmetries are not strong573

in the weighted variant (whereas they are in the unweighted).574

As a second, more practically oriented highly symmetric problem domain, we consider575

haplotype inference pedigrees problem [24], and in particular the task of finding a set of576

haplotypes that best explains given set of genotypes. For experimenting with this problem577

domain, we used the 100 instances submitted to Pseudo-Boolean competition 2011. It should578

be noted that, as explained in [24], these instances already include domain-specific symmetry579

breaking constraints added by hand for increased performance, enforcing a predefined order580

for the two haplotypes that produce a genotype. Hence an interesting question is whether581

Ihalainen et al. 33:15

 1

 10

 100

 1000

 1 10 100 1000

LL
S
 t

im
e
 (

s)

Baseline time (s)

 1

 10

 100

 1000

 1 10 100 1000

E
x
p
lic

it
S
C

L
ti

m
e
 (

s)
Baseline time (s)

 1

 10

 100

 1000

 1 10 100 1000

E
x
p
lic

it
S
C

L
ti

m
e
 (

s)

LLS time (s)

 1

 10

 100

 1000

 1 10 100 1000

C
o
m

p
a
ct

S
C

L
ti

m
e
 (

s)

ExplicitSCL time (s)

mod-B
market-spl

decomp
BA

opb:graphp
ttp

areaDelay
EmployeeSc

course-ass
featureSub

heinz
kullmann

opb:sportt
opb:pb

csit.fsu.e
primes:aim

MANETs
frb

opb:autoco
golomb
vtxcov

haplotype:
area *

NG
lion9-sing

routing
haplotype:

testset
Keeloq-TAS

trarea *
logic-synt

garden

Metro
Timetablin
primes:jnh

primes:ii
miplib:oth

hw
unibo
fome

BioRepair
opb:faclay
primes:oth
primes:par

domset
aries-da n
mis+mds

dt-problem
bsg
fctp

opb:edgecr
caixa
radar

flexray
factorizat
opb:other
PSPLib-job

wnq
ShiftDesig

10orplus+9
synthesis-
rand.*list

data

Figure 3 Runtime comparisons. Top left: Baseline vs. LLS, top right: Baseline vs. ExplicitSCL,
bottom left: LLS vs. ExplicitSCL, bottom right: ExplicitSCL vs. CompactSCL

the different symmetry techniques can improve IHS performance further on these instances.582

Again, (compact) SCL provides the greatest performance improvements (see Figure 2 right):583

Baseline without symmetry breaking solves 66 instances, which is improved by lex-leader584

symmetry breaking to 68 instances by both variants, LL and LLS—however, with explicit585

SCL the number of solved instances goes up to 74, and with compact SCL further to 76.586

4.2 Experiments on a Wider Set of Benchmarks587

We also investigate the relative impact of lex-leader symmetry breaking and SCL more588

generally on a wide set of PBO benchmarks including instances from over 60 domains as used589

in the the original papers presenting PBO-IHS [41, 42]. Our main interest here is whether the590

different types of symmetry techniques are viable to use by default even when there are no591

guarantees that the input instances would be highly symmetric. The benchmark set consists592

of 1786 instances across tens of different benchmark domains; see [40] for more details. We593

disregard LL here since LLS turned out to perform better than LL (see Appendix C).594

A pairwise per-instance runtime comparison of Baseline, LLS and ExplicitSCL is shown595

in Figure 3. The total number of instances solved is: Baseline 948, LLS 947, ExplicitSCL 954,596

and CompactSCL 947. LLS results in significant runtime degradation compared to Baseline597

(Figure 3 top left). Indeed, the impact lex-leader symmetry breaking has on PBO-IHS appears598

very different to results presented in [44] on the runtime impact of lex-leader symmetry599

breaking on other PBO solving approaches, where (mild) runtime improvements were reported.600

ExplicitSCL consistently and most often significantly outperforms LLS (Figure 3 bottom left).601

A reason for this is that the PB solver used for core extraction tends to use significantly more602

time when invoked on a satisfiable instance. This follows the intuition that, in contrast to the603

dynamically applied SCL, the lex-leader constraints all added in the beginning of IHS search604

CP 2025

33:16 Symmetric Core Learning for PBO by IHS

 1

 10

 100

 1 10 100

It
e
ra

ti
o
n
s

E
x
p

lic
it

S
C

L

Iterations Baseline

 1

 10

 100

 1 10 100

It
e
ra

ti
o
n
s

C
o
m

p
a
ct

S
C

L

Iterations ExplicitSCL

 1

 10

 100

 1 10 100

It
e
ra

ti
o
n
s

LL
S

Iterations Baseline

 1

 10

 100

 1 10 100

It
e
ra

ti
o
n
s

E
x
p

lic
it

S
C

L

Iterations LLS

Figure 4 Number of IHS iterations. Left: Baseline vs. ExplicitSCL, Middle left: ExplicitSCL vs.
CompactSCL, Middle right: Baseline vs. LLS, Right: LLS vs. ExplicitSCL.

rule out symmetric solutions and hence may make finding solutions more difficult; more605

details on the runtime differences are provided in Appendix D. Similarly, ExplicitSCL on606

most instances significantly outperforms LLS (Figure 3 bottom left). ExplicitSCL also tends607

to have a performance-improvement impact on PBO-IHS, as observed in Figure 3 (top right),608

despite the symmetry computation overhead (up to 100 s). In contrast, despite CompactSCL609

performing very well on selected highly symmetric domains (recall Section 4.1), on this610

wider heterogenous set of benchmarks, CompactSCL performs slightly worse compared to611

ExplicitSCL (Figure 3 bottom right).612

ExplicitSCL tends to terminate with fewer IHS main loop iterations than Baseline (Figure 4613

left), suggesting that symmetric cores added by SCL are indeed helpful in decreasing required614

number of core extraction steps. Between ExplicitSCL and CompactSCL, there appear to615

be only more minor differences both ways (Figure 4 middle left). The relative number of616

iterations between LLS and ExplicitSCL (Figure 4 middle right) and LLS and Baseline617

(Figure 4 top left) do not fully explain the runtime degradation caused by LLS (recall Figure 3618

right), which suggests that lex-leader constraints indeed significantly slow down the IHS619

iterations on average.620

5 Conclusions621

We presented symmetric core learning, SCL, as a dynamic approach to symmetry-aware622

IHS search. The approach works by generating symmetric unsatisfiable cores on-the-fly,623

thereby strengthen the hitting set IP. SCL has the potential for quickly improving bounds624

and, especially, avoiding unnecessary costly calls to the core extractor. Beyond explicitly625

enumerating symmetric cores, we proposed a compact way of representing a set of symmetric626

cores, with potential for compacting the hitting set IP. Empirically, SCL can improve the627

runtime of IHS for PBO especially on highly symmetric problem domains and, in contrast to628

lex-leader symmetry breaking, is not generally detrimental to IHS performance. For future629

work, SCL mainly assumes that the hitting set problems in IHS are computed using an IP630

solver; hence SCL could be applied in IHS instantiations for other constraint languages as well.631

In fact, a technique similar to (explicit) SCL has been added recently to IHS-based generation632

of MUSes [10] based on generating symmetric satisfiable subsets instead of symmetric cores.633

Another direction for future work is to investigate proof logging for IHS with SCL. For634

symmetry breaking, proof logging techniques have recently been added to a proof system for635

reasoning with PB constraints [11]. A proof system for symmetric learning in a SAT context636

has also been proposed [43]. An open question is whether these two ideas could be combined637

to yield proofs for SCL for pseudo-Boolean optimization.638

Ihalainen et al. 33:17

References639

1 Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah. ShatterPB: symmetry-640

breaking for pseudo-Boolean formulas. In Masaharu Imai, editor, Proceedings of the 2004641

Conference on Asia South Pacific Design Automation: Electronic Design and Solution Fair642

2004, Yokohama, Japan, January 27-30, 2004, pages 883–886. IEEE Computer Society, 2004.643

doi:10.1109/ASPDAC.2004.179.644

2 Fadi A. Aloul, Karem A. Sakallah, and Igor L. Markov. Efficient symmetry breaking for Boolean645

satisfiability. IEEE Trans. Computers, 55(5):549–558, 2006. doi:10.1109/TC.2006.75.646

3 Markus Anders, Sofia Brenner, and Gaurav Rattan. satsuma: Structure-based symmetry647

breaking in SAT. In Supratik Chakraborty and Jie-Hong Roland Jiang, editors, 27th Interna-648

tional Conference on Theory and Applications of Satisfiability Testing, SAT 2024, August 21-24,649

2024, Pune, India, volume 305 of LIPIcs, pages 4:1–4:23. Schloss Dagstuhl - Leibniz-Zentrum650

für Informatik, 2024. doi:10.4230/LIPICS.SAT.2024.4.651

4 Markus Anders, Pascal Schweitzer, and Mate Soos. Algorithms transcending the SAT-symmetry652

interface. In Meena Mahajan and Friedrich Slivovsky, editors, 26th International Conference653

on Theory and Applications of Satisfiability Testing, SAT 2023, July 4-8, 2023, Alghero, Italy,654

volume 271 of LIPIcs, pages 1:1–1:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,655

2023. doi:10.4230/LIPICS.SAT.2023.1.656

5 Fahiem Bacchus, Antti Hyttinen, Matti Järvisalo, and Paul Saikko. Reduced cost fixing in657

MaxSAT. In Beck [6], pages 641–651. doi:10.1007/978-3-319-66158-2_41.658

6 J. Christopher Beck, editor. Principles and Practice of Constraint Programming - 23rd659

International Conference, CP 2017, Melbourne, VIC, Australia, August 28 - September 1,660

2017, Proceedings, volume 10416 of Lecture Notes in Computer Science. Springer, 2017.661

doi:10.1007/978-3-319-66158-2.662

7 Belaid Benhamou, Tarek Nabhani, Richard Ostrowski, and Mohamed Réda Saïdi. Enhancing663

clause learning by symmetry in SAT solvers. In 22nd IEEE International Conference on Tools664

with Artificial Intelligence, ICTAI 2010, Arras, France, 27-29 October 2010 - Volume 1, pages665

329–335. IEEE Computer Society, 2010. doi:10.1109/ICTAI.2010.55.666

8 Jeremias Berg, Fahiem Bacchus, and Alex Poole. Abstract cores in implicit hitting set667

MaxSAT solving. In Luca Pulina and Martina Seidl, editors, Theory and Applications of668

Satisfiability Testing - SAT 2020 - 23rd International Conference, Alghero, Italy, July 3-669

10, 2020, Proceedings, volume 12178 of Lecture Notes in Computer Science, pages 277–294.670

Springer, 2020. doi:10.1007/978-3-030-51825-7_20.671

9 Jeremias Berg and Matti Järvisalo. Weight-aware core extraction in SAT-based MaxSAT672

solving. In Beck [6], pages 652–670. doi:10.1007/978-3-319-66158-2_42.673

10 Ignace Bleukx, Hélène Verhaeghe, Bart Bogaerts, and Tias Guns. Exploiting symmetries in674

MUS computation. In Toby Walsh, Julie Shah, and Zico Kolter, editors, AAAI-25, Sponsored675

by the Association for the Advancement of Artificial Intelligence, February 25 - March 4, 2025,676

Philadelphia, PA, USA, pages 11122–11130. AAAI Press, 2025. doi:10.1609/AAAI.V39I11.677

33209.678

11 Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified dominance679

and symmetry breaking for combinatorial optimisation. J. Artif. Intell. Res., 77:1539–1589,680

2023. doi:10.1613/jair.1.14296.681

12 Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Sebastiani. A682

modular approach to MaxSAT modulo theories. In Järvisalo and Van Gelder [26], pages683

150–165. doi:10.1007/978-3-642-39071-5_12.684

13 Nadia Creignou and Daniel Le Berre, editors. Theory and Applications of Satisfiability685

Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016,686

Proceedings, volume 9710 of Lecture Notes in Computer Science. Springer, 2016. doi:10.1007/687

978-3-319-40970-2.688

14 Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT689

instances. In Jimmy Ho-Man Lee, editor, Principles and Practice of Constraint Programming690

CP 2025

https://doi.org/10.1109/ASPDAC.2004.179
https://doi.org/10.1109/TC.2006.75
https://doi.org/10.4230/LIPICS.SAT.2024.4
https://doi.org/10.4230/LIPICS.SAT.2023.1
https://doi.org/10.1007/978-3-319-66158-2_41
https://doi.org/10.1007/978-3-319-66158-2
https://doi.org/10.1109/ICTAI.2010.55
https://doi.org/10.1007/978-3-030-51825-7_20
https://doi.org/10.1007/978-3-319-66158-2_42
https://doi.org/10.1609/AAAI.V39I11.33209
https://doi.org/10.1609/AAAI.V39I11.33209
https://doi.org/10.1609/AAAI.V39I11.33209
https://doi.org/10.1613/jair.1.14296
https://doi.org/10.1007/978-3-642-39071-5_12
https://doi.org/10.1007/978-3-319-40970-2
https://doi.org/10.1007/978-3-319-40970-2
https://doi.org/10.1007/978-3-319-40970-2

33:18 Symmetric Core Learning for PBO by IHS

- CP 2011 - 17th International Conference, CP 2011, Perugia, Italy, September 12-16, 2011.691

Proceedings, volume 6876 of Lecture Notes in Computer Science, pages 225–239. Springer,692

2011. doi:10.1007/978-3-642-23786-7_19.693

15 Jessica Davies and Fahiem Bacchus. Exploiting the power of mip solvers in MaxSAT. In694

Järvisalo and Van Gelder [26], pages 166–181. doi:10.1007/978-3-642-39071-5_13.695

16 Jessica Davies and Fahiem Bacchus. Postponing optimization to speed up MAXSAT solving.696

In Schulte [39], pages 247–262. doi:10.1007/978-3-642-40627-0_21.697

17 Toby O. Davies, Graeme Gange, and Peter J. Stuckey. Automatic logic-based benders698

decomposition with minizinc. In Satinder Singh and Shaul Markovitch, editors, Proceedings of699

the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,700

California, USA, pages 787–793. AAAI Press, 2017. doi:10.1609/AAAI.V31I1.10654.701

18 Erin Delisle and Fahiem Bacchus. Solving weighted CSPs by successive relaxations. In Schulte702

[39], pages 273–281. doi:10.1007/978-3-642-40627-0_23.703

19 Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. BreakIDGlucose: On the importance704

of row symmetry in SAT. In CSPSAT, Vienna, 18 July 2014, pages 1–17, July 2014. URL:705

https://lirias.kuleuven.be/handle/123456789/456639.706

20 Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. Symmetric explanation learning:707

Effective dynamic symmetry handling for SAT. In Serge Gaspers and Toby Walsh, editors,708

Theory and Applications of Satisfiability Testing - SAT 2017 - 20th International Conference,709

Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings, volume 10491 of Lecture710

Notes in Computer Science, pages 83–100. Springer, 2017. doi:10.1007/978-3-319-66263-3_711

6.712

21 Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Improved static713

symmetry breaking for SAT. In Creignou and Le Berre [13], pages 104–122. doi:10.1007/714

978-3-319-40970-2_8.715

22 Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-Boolean solving.716

In Jérôme Lang, editor, Proceedings of the Twenty-Seventh International Joint Conference on717

Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 1291–1299.718

ijcai.org, 2018. doi:10.24963/ijcai.2018/180.719

23 Katalin Fazekas, Fahiem Bacchus, and Armin Biere. Implicit hitting set algorithms for720

maximum satisfiability modulo theories. In Didier Galmiche, Stephan Schulz, and Roberto721

Sebastiani, editors, Automated Reasoning - 9th International Joint Conference, IJCAR 2018,722

Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,723

Proceedings, volume 10900 of Lecture Notes in Computer Science, pages 134–151. Springer,724

2018. doi:10.1007/978-3-319-94205-6_10.725

24 Ana Graça, Inês Lynce, João Marques-Silva, and Arlindo L. Oliveira. Efficient and accurate726

haplotype inference by combining parsimony and pedigree information. In Katsuhisa Hor-727

imoto, Masahiko Nakatsui, and Nikolaj Popov, editors, Algebraic and Numeric Biology - 4th728

International Conference, ANB 2010, Hagenberg, Austria, July 31- August 2, 2010, Revised729

Selected Papers, volume 6479 of Lecture Notes in Computer Science, pages 38–56. Springer,730

2010. doi:10.1007/978-3-642-28067-2_3.731

25 Alexey Ignatiev, Mikolás Janota, and João Marques-Silva. Quantified maximum satisfiability.732

Constraints An Int. J., 21(2):277–302, 2016. doi:10.1007/S10601-015-9195-9.733

26 Matti Järvisalo and Allen Van Gelder, editors. Theory and Applications of Satisfiability734

Testing - SAT 2013 - 16th International Conference, Helsinki, Finland, July 8-12, 2013.735

Proceedings, volume 7962 of Lecture Notes in Computer Science. Springer, 2013. doi:10.1007/736

978-3-642-39071-5.737

27 Markus Kirchweger and Stefan Szeider. SAT modulo symmetries for graph generation and738

enumeration. ACM Trans. Comput. Log., 25(3):1–30, 2024. doi:10.1145/3670405.739

28 Javier Larrosa, Conrado Martínez, and Emma Rollon. Theoretical and empirical analysis of cost-740

function merging for implicit hitting set WCSP solving. In Michael J. Wooldridge, Jennifer G.741

Dy, and Sriraam Natarajan, editors, Thirty-Eighth AAAI Conference on Artificial Intelligence,742

https://doi.org/10.1007/978-3-642-23786-7_19
https://doi.org/10.1007/978-3-642-39071-5_13
https://doi.org/10.1007/978-3-642-40627-0_21
https://doi.org/10.1609/AAAI.V31I1.10654
https://doi.org/10.1007/978-3-642-40627-0_23
https://lirias.kuleuven.be/handle/123456789/456639
https://doi.org/10.1007/978-3-319-66263-3_6
https://doi.org/10.1007/978-3-319-66263-3_6
https://doi.org/10.1007/978-3-319-66263-3_6
https://doi.org/10.1007/978-3-319-40970-2_8
https://doi.org/10.1007/978-3-319-40970-2_8
https://doi.org/10.1007/978-3-319-40970-2_8
https://doi.org/10.24963/ijcai.2018/180
https://doi.org/10.1007/978-3-319-94205-6_10
https://doi.org/10.1007/978-3-642-28067-2_3
https://doi.org/10.1007/S10601-015-9195-9
https://doi.org/10.1007/978-3-642-39071-5
https://doi.org/10.1007/978-3-642-39071-5
https://doi.org/10.1007/978-3-642-39071-5
https://doi.org/10.1145/3670405

Ihalainen et al. 33:19

AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence,743

IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI744

2014, February 20-27, 2024, Vancouver, Canada, pages 8057–8064. AAAI Press, 2024. doi:745

10.1609/AAAI.V38I8.28644.746

29 Hakan Metin, Souheib Baarir, Maximilien Colange, and Fabrice Kordon. CDCLSym: Intro-747

ducing effective symmetry breaking in SAT solving. In Dirk Beyer and Marieke Huisman,748

editors, Tools and Algorithms for the Construction and Analysis of Systems - 24th International749

Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory and750

Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings,751

Part I, volume 10805 of Lecture Notes in Computer Science, pages 99–114. Springer, 2018.752

doi:10.1007/978-3-319-89960-2_6.753

30 Erick Moreno-Centeno and Richard M. Karp. The implicit hitting set approach to solve754

combinatorial optimization problems with an application to multigenome alignment. Oper.755

Res., 61(2):453–468, 2013. doi:10.1287/OPRE.1120.1139.756

31 Andreas Niskanen, Jere Mustonen, Jeremias Berg, and Matti Järvisalo. Computing smallest757

MUSes of quantified Boolean formulas. In Georg Gottlob, Daniela Inclezan, and Marco Maratea,758

editors, Logic Programming and Nonmonotonic Reasoning - 16th International Conference,759

LPNMR 2022, Genova, Italy, September 5-9, 2022, Proceedings, volume 13416 of Lecture Notes760

in Computer Science, pages 301–314. Springer, 2022. doi:10.1007/978-3-031-15707-3_23.761

32 Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computa-762

tions. J. Symb. Log., 62(3):981–998, 1997. doi:10.2307/2275583.763

33 James A. Reggia, Dana S. Nau, and Pearl Y. Wang. Diagnostic expert systems based on a set764

covering model. Int. J. Man Mach. Stud., 19(5):437–460, 1983. doi:10.1016/S0020-7373(83)765

80065-0.766

34 Raymond Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1):57–95, 1987.767

doi:10.1016/0004-3702(87)90062-2.768

35 Ashish Sabharwal. Symchaff: exploiting symmetry in a structure-aware satisfiability solver.769

Constraints An Int. J., 14(4):478–505, 2009. doi:10.1007/s10601-008-9060-1.770

36 Paul Saikko, Jeremias Berg, and Matti Järvisalo. LMHS: A SAT-IP hybrid MaxSAT solver.771

In Creignou and Le Berre [13], pages 539–546. doi:10.1007/978-3-319-40970-2_34.772

37 Paul Saikko, Carmine Dodaro, Mario Alviano, and Matti Järvisalo. A hybrid approach to773

optimization in answer set programming. In Michael Thielscher, Francesca Toni, and Frank774

Wolter, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the775

Sixteenth International Conference, KR 2018, Tempe, Arizona, 30 October - 2 November 2018,776

pages 32–41. AAAI Press, 2018. URL: https://aaai.org/ocs/index.php/KR/KR18/paper/777

view/18021.778

38 Paul Saikko, Johannes Peter Wallner, and Matti Järvisalo. Implicit hitting set algorithms for779

reasoning beyond NP. In Chitta Baral, James P. Delgrande, and Frank Wolter, editors, Prin-780

ciples of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International781

Conference, KR 2016, Cape Town, South Africa, April 25-29, 2016, pages 104–113. AAAI782

Press, 2016. URL: http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12812.783

39 Christian Schulte, editor. Principles and Practice of Constraint Programming - 19th Interna-784

tional Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings, volume785

8124 of Lecture Notes in Computer Science. Springer, 2013. doi:10.1007/978-3-642-40627-0.786

40 Pavel Smirnov. Pseudo-boolean optimization by implicit hitting sets. Master’s thesis, University787

of Helsinki, 2021. URL: http://hdl.handle.net/10138/340857.788

41 Pavel Smirnov, Jeremias Berg, and Matti Järvisalo. Pseudo-Boolean optimization by implicit789

hitting sets. In Laurent D. Michel, editor, 27th International Conference on Principles and790

Practice of Constraint Programming, CP 2021, Montpellier, France (Virtual Conference),791

October 25-29, 2021, volume 210 of LIPIcs, pages 51:1–51:20. Schloss Dagstuhl - Leibniz-792

Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CP.2021.51.793

CP 2025

https://doi.org/10.1609/AAAI.V38I8.28644
https://doi.org/10.1609/AAAI.V38I8.28644
https://doi.org/10.1609/AAAI.V38I8.28644
https://doi.org/10.1007/978-3-319-89960-2_6
https://doi.org/10.1287/OPRE.1120.1139
https://doi.org/10.1007/978-3-031-15707-3_23
https://doi.org/10.2307/2275583
https://doi.org/10.1016/S0020-7373(83)80065-0
https://doi.org/10.1016/S0020-7373(83)80065-0
https://doi.org/10.1016/S0020-7373(83)80065-0
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1007/s10601-008-9060-1
https://doi.org/10.1007/978-3-319-40970-2_34
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18021
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18021
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18021
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12812
https://doi.org/10.1007/978-3-642-40627-0
http://hdl.handle.net/10138/340857
https://doi.org/10.4230/LIPIcs.CP.2021.51

33:20 Symmetric Core Learning for PBO by IHS

42 Pavel Smirnov, Jeremias Berg, and Matti Järvisalo. Improvements to the implicit hitting set794

approach to pseudo-Boolean optimization. In Kuldeep S. Meel and Ofer Strichman, editors,795

25th International Conference on Theory and Applications of Satisfiability Testing, SAT 2022,796

August 2-5, 2022, Haifa, Israel, volume 236 of LIPIcs, pages 13:1–13:18. Schloss Dagstuhl -797

Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.SAT.2022.13.798

43 Rodrigue Konan Tchinda and Clémentin Tayou Djamégni. On certifying the UNSAT result799

of dynamic symmetry-handling-based SAT solvers. Constraints An Int. J., 25(3-4):251–279,800

2020. doi:10.1007/s10601-020-09313-2.801

44 Daimy Van Caudenberg and Bart Bogaerts. Symmetry and dominance breaking for pseudo-802

Boolean optimization. In Toon Calders, Celine Vens, Jefrey Lijffijt, and Bart Goethals,803

editors, Artificial Intelligence and Machine Learning - 34th Joint Benelux Conference, BNA-804

IC/Benelearn 2022, Mechelen, Belgium, November 7-9, 2022, Revised Selected Papers, volume805

1805 of Communications in Computer and Information Science, pages 149–166. Springer, 2022.806

doi:10.1007/978-3-031-39144-6_10.807

45 Daimy Van Caudenberg, Bart Bogaerts, and Leandro Vendramin. Incremental SAT-based808

enumeration of solutions to the yang-baxter equation. In Arie Gurfinkel and Marijn Heule,809

editors, Tools and Algorithms for the Construction and Analysis of Systems - 31st International810

Conference, TACAS 2025, Held as Part of the International Joint Conferences on Theory811

and Practice of Software, ETAPS 2025, Hamilton, ON, Canada, May 3-8, 2025, Proceedings,812

Part II, volume 15697 of Lecture Notes in Computer Science, pages 3–22. Springer, 2025.813

doi:10.1007/978-3-031-90653-4_1.814

https://doi.org/10.4230/LIPICS.SAT.2022.13
https://doi.org/10.1007/s10601-020-09313-2
https://doi.org/10.1007/978-3-031-39144-6_10
https://doi.org/10.1007/978-3-031-90653-4_1

Ihalainen et al. 33:21

1 Compact-SCL(C,K, Σ)
Input: A core C, a set of all so-far extracted cores K, and a set of symmetries Σ.
Output: A set of constraints, S ∪ D, that compactly encode a set of symmetric

cores of C.
2 S ← {C}; D ← ∅; coreQueue.init({(C, ∅)});
3 constrBudgetCompact← constrLim; litBudgetCompact← litLim;

constrBudgetExplicit← constrLim; litBudgetExplicit← litLim;
4 while coreQueue.size()>0 do
5 (C, D)← coreQueue.pop();
6 if constrBudgetCompact > 0 and litBudgetCompact > 0 then
7 C ← Try-Compact-SCL(C, D, Σ);
8 if |C| > 0 then
9 S ← S \ {C};

10 for (C ′, D′) ∈ C do
11 D ← D ∪D′;
12 S ← S ∪ {C ′};
13 coreQueue.push((C ′, D′));
14 constrBudgetCompact← constrBudgetCompact− 1;

litBudgetCompact← litBudgetCompact− |lit(C ′)|;
15 continue;
16 if constrBudgetExplicit > 0 and litBudgetExplicit > 0 then
17 for σ ∈ Filter-Symmetries(Σ, D) do
18 if σ(C) /∈ K ∪ S then
19 S ← S ∪ {σ(C)};
20 coreQueue.push((σ(C), D));
21 constrBudgetExplicit← constrBudgetExplicit− 1;

litBudgetExplicit← litBudgetExplicit− |lit(C)|;
22 return S ∪ D;

Algorithm 3 Compact SCL combined with explicit SCL.

A Implementing CompactSCL815

Algorithm 3 details our implementation of compact SCL combined with explicit SCL (the816

instantiation of SCL to be called by Algorithm 1). Given a core C extracted by Extract-Core,817

the algorithm initializes the set S of cores to be returned, a set D of definitions of new count818

variables, and a queue coreQueue of cores to be processed. Each pair in coreQueue consists819

of a core constraint C, and the definitions D of any count variables in C. The cores are then820

processed in breadth-first order.821

When processing a core C, compact SCL is tried first by the Try-Compact-SCL method822

attempting to compute a compact representation of a set of cores symmetric to C (Lines 6–15).823

The procedure returns a set C of pairs (C, D), where C is a core constraint, and a set D824

contains the definitions of count variables that appear in C. Each pair is a compacted core825

that represents a set of cores that are symmetric to C. When compact SCL on C is successful826

(|C| > 0), all pairs in C are added to S, the new definitions to D and the original C removed827

(as the constraints in C represent it). Finally, each pair (C, D) in C is added to coreQueue828

and the next core popped on Line 5. If instead compact SCL on C is unsuccessful (i.e., if829

|C| = 0 so the continue statement on Line 15 is not reached), or if the budget for compact830

SCL is exceeded (at which point the if statement on Line 6 returns false), explicit SCL is831

CP 2025

33:22 Symmetric Core Learning for PBO by IHS

1 Try-Compact-SCL(C, D, Σ)
Input: A core C, definitions of count variables D, and a set of symmetries Σ.
Output: A set of core constraints C and definition constraints D, that compactly

encode symmetric cores implied by C.
2 C ← ∅;
3 for k = 1, . . . , |lit(C)| − 1 do
4 S ← Select-Candidate-Partitions(C, k);
5 if Check-If-Good(C, S, k) = false then continue;
6 for L ∈ S do
7 if |lit(L)| = |{ℓ}| = 1 then
8 Lin,Lout ← Find-Interchangeable-Lits(C, D, ℓ, Σ);
9 if |Lin| > 1 and |Lout| > 0 then

10 C ′, D′ ← Add-Count-Variables(C,Lin,Lout);
11 C ← C ∪ {(C ′, D ∪D′)};
12 continue;
13 O ← Compute-Orbit(C, D, L, Σ);
14 if |O| < 2 then continue;
15 C ′, D′ ← Add-Count-Variable(C, L,O);
16 C ← C ∪ {(C ′, D ∪D′)};
17 if |C| > 0 then return C;
18 return C;

Algorithm 4 Applying compact symmetric core learning on a single core.

instead applied on C (Lines 16–21). Explicit SCL operates as described in Section 3.2 with832

the exception that now—since we are applying explicit SCL to compacted cores—only a833

subset of Σ is used. In Line 17 method Filter-Symmetries(Σ, D) is invoked to select the834

symmetries in Σ that keep the definitions of count variables in C intact, i.e., symmetries835

that can be used when explicit SCL is applied in conjunction with compact SCL.836

For intuition of how our approach produces compacted cores in terms of symmetry837

decompositions, Algorithm 3 can be seen as computing a compact representation of cores838

symmetric to C by building a partitioning L1 + · · ·+ Lk ≥ A of C step-by-step. The first839

time Try-Compact-SCL is invoked on C, different ways of selecting L1 are tried. For each840

candidate L1 resulting in an orbit of size at least 2, a new compacted core with the chosen L1841

replaced by a new count variable is introduced. The compacted cores are then reconsidered842

in subsequent iterations, in which Try-Compact-SCL tries ways of selecting L2, and so on.843

Algorithm 4 details Try-Compact-SCL. Given a (potentially compacted) core C, defini-844

tions D of the count variables in C, and a set Σ of symmetries, the algorithm first initializes845

an empty set C of new compacted cores on Line 2. The loop on Lines 3–17 then looks for a new846

subset of terms Li of the symmetry decomposition that is being built for C, prioritizing small847

|lit(Li)| (i.e., small values of k). For each k, the method Select-Candidate-Partitions848

returns a set S of “candidate Lis”. As computing all subsets of C with size k is infeasible, for849

k > 1, we select the candidate Li based on the symmetries in Σ. More precisely, S contains850

only sets L for which a symmetry in Σ (or row in a matrix-symmetry) shares with the core851

exactly the literals in L. After computing S, Algorithm 4 first heuristically estimates if852

applying compact SCL with the sets in S would result in compacted cores where the number853

of auxiliary constraints is smaller than the number of cores covered. (The check is here854

rather than elsewhere for practical implementation reasons.) If not, the sets L ∈ S are not855

Ihalainen et al. 33:23

1 Find-Interchangeable-Lits(C, D, ℓ, Σ)
Input: A core C, the definition constraints D of the count variables in C, a

literal ℓ that appears in C, and a set of symmetries Σ.
Output: Sets Lin and Lout, where {ℓ} ⊆ Lin ⊆ lit(C), Lin ∩ lit(C) = ∅ and

Lin ∪ Lout is a set of “interchangeable” literals.
2 L ← {ℓ};
3 while Extend-Outside-Core(L, C, D, Σ) or Extend-In-Core(L, C, D, Σ) do
4 continue;
5 while 2 ≤ |O ∩ C| ≤ |O| − 1 do
6 L′ ← Check-Interch(L, C, D, Σ);
7 if L′ = L then return L ∩ lit(C), L \ lit(C) ;
8 else L ← L′ ;
9 return {ℓ}, ∅;

Algorithm 5 Finding a set of interchangeable literals.

used for compact SCL. Otherwise the algorithm checks for each L ∈ S if the L can be used856

as the next Li. The special treatment of candidate Ls of size 1 corresponds to Case 1 of857

Definition 13. When lit(L) = {ℓ} the call to Find-Interchangeable-Lits(C, D, ℓ, Σ) first858

attempts to find a set of literals L and a set of symmetries that allow permuting the set L in859

any order, while keeping rest of C unchanged. The call returns the set L of interchangeable860

literals divided into two sets: Lin containing the literals of L that appear in core C, and861

Lout containing the rest. If |Lin| > 1 and |Lout| > 0 i.e. at least two of the interchangeable862

literals are in C, and at least one is not, the method Add-Count-Variables is invoked to863

generate a new compacted core C ′, in which the literals in Lin are replaced by count variables864

defined by constraints in D′ (Line 10). Then C is extended to include C ′ and D to include865

D (Line 11). When |L| > 1 or Case 1 optimization does not result in a compacted core866

(i.e. the if statement on Line 9 returns false), Compute-Orbit instead finds an orbit O for867

L under a subset of symmetries in Σ that satisfies the requirements for L being part of a868

symmetry decomposition. If O includes something in addition to L, Add-Count-Variable869

next generates an compacted core C ′ in which L is replaced by a count variable defined by870

the constraints in D (Line 15). C ′ is then added to C and D to D (Line 16). Algorithm 4871

continues iterating over increasing sizes of k until a compact core can be generated.872

Algorithm 5 details Find-Interchangeable-Lits, for computing interchangeable literals873

for a literal ℓ in a core C. Initially, the candidate set L only contains ℓ (Line 2). The first874

stage of search (Lines 3–4) heuristically add literals one by one to L. The second stage875

(Lines 5–8) checks if the resulting L is a set of interchangeable literals. If not, it tries to876

identify a subset of L that is. The first stage uses two methods to introduce literals into877

L. Extend-Outside-Core(L, C, D, Σ) looks for symmetries that map a literal l ∈ L to some878

literal l′ /∈ L, while keeping the rest of L and C stable. Extend-In-Core(L, C, D, Σ) checks879

for each pair l ∈ L and l′ ∈ (lit(C) \ L), if there is a symmetry that maps l′ and l to each880

other while keeping the rest of C, definitions in D, and the rest of L stable.881

When the construction of the set L is finished, the algorithm proceeds to the second882

stage in which Check-Interch(L, C, D, Σ) checks if L contains a set of interchangeable883

literals. Check-Interch tries to rebuild L by adding new literals one by one, only using884

symmetries that do not map any l ∈ L to some l′ /∈ L. The implementation ensures885

that there is a set of symmetries that allow permuting literals in L into any order. First,886

Check-Interch(L, C, D, Σ) initializes L′ = {l} with some l ∈ L. Then it looks for symmetries887

that swap some literals l ∈ L′ and l′ ∈ (L \ L′), while keeping L′ \ {l}, (L \ L′) \ {l′}, and888

CP 2025

33:24 Symmetric Core Learning for PBO by IHS

1 Compute-Orbit(C, D, L, Σ)
Input: A core C, the definition constraints D of the count variables in C, a

subset L of the terms of C, and a set of symmetries Σ.
Output: An orbit O of L computed on a subset of Σ that satisfies the definition

of symmetry decomposition.
2 O ← {L};
3 orbitQueue.init(L);
4 Σ′ ← Filter-Symmetries(Σ, C, D, L);
5 while orbitQueue.size() > 0 do
6 L← orbitQueue.pop();
7 for σ ∈ Σ′ do
8 if σ(L) ∈ O then continue;
9 O ← O ∪ {σ(L)};

10 orbitQueue.push(σ(L));
11 return O;

Algorithm 6 Computing an orbit for L.

the rest of C stable. If such l and l′ are found, L′ is extended to include l′. If in the end889

L = L′, Check-Interch(L, C, D, Σ) finishes by returning the set L. If L ≠ L′, the process is890

reiterated by initializing L′ = {l} with a different l ∈ L. If there is no more new l ∈ L with891

which L′ could be initialized, Check-Interch returns the L′ computed on the last l, which892

will always be the first ℓ given to Find-Interchangeable-Lits to ensure that the literal ℓ893

used when calling Find-Interchangeable-Lits will be included in the set L returned. If894

Check-Interch(L, C, D, Σ) finds L′ such that L = L′, the set L is divided to literals in the895

core and outside the core, and these two sets are then returned (Line 7). Otherwise the896

procedure is reiterated with the set L′ returned by Check-Interch (Line 8).897

Finally, Algorithm 6 details the computation of an orbit. The procedure resembles explicit898

SCL as detailed in Algorithm 2 in that, starting from L itself, it explicitly enumerates all899

members of the orbit in breadth-first order. To ensure, that the symmetries used satisfy900

the definition of a symmetry decomposition, the set of symmetries to be considered during901

breadth-first search is filtered in Line 4. In particular, in our implementation, a symmetry902

σ ∈ Σ is removed from consideration if any of the following conditions hold for it. 1) σ maps903

some literal ℓ ∈ C to a literal not in C, or to a literal in C that has a different coefficient in904

C. 2) C contains a Boolean count variable sx introduced in previous iterations of compact905

learning and σ maps a literal that appears in the definition of sx to a literal that does not.906

3) C contains an integer count variable sx and σ maps any literal in the definition of σ to907

any literal other than itself.908

B Details on the Encoding of the CC instances909

Extending the encoding from [32], the PBO encoding of the CC instances has the following910

variables.911

ei,j for 1 ≤ i, j ≤ n indicates an edge between nodes i and j912

ri,c for each node 1 ≤ i ≤ n and color 1 ≤ c ≤ t indicates that the node i is colored with913

thecolor c.914

qk,i for 1 ≤ i, k ≤ n indicates that the node i is the kth node to be included in a largest915

clique.916

bi for 1 ≤ i ≤ n are objective variables indicating that node i is not in a largest clique.917

Ihalainen et al. 33:25

 1

 10

 100

 1000

 1 10 100 1000

LL
S
 t

im
e
 (

s)

LL time (s)

Figure 5 Runtime Comparison: LL vs. LLS.

The objective is to minimize
∑n

i=1 bi in the unweighted CC and
∑n

i=1 ibi in the weighted918

CC, subject to919 ∑
k qk,i ≤ 1 for 1 ≤ i ≤ n (Each node i is the kth node in the clique for at most one value920

of k.)921

ei,j − qk,i − qk′,j ≥ −1 for 1 ≤ i, j, k, k′ ≤ n922

(If nodes i and j are the kth and k′th nodes in a largest clique, there must be an edge923

between i and j.)924

ei,j + ri,c + rj,c ≤ 2 for 1 ≤ i, j ≤ n, 1 ≤ c ≤ t925

(Adjacent nodes must have different colors.)926

bi +
∑

k qk,i ≥ 1 (If node i is in the clique, it is the k:th node for some k..)927

The scripts used to generate the CC instances are provided in the paper supplement.928

C Comparing LL and LLS929

Runtime comparison of LL and LLS is shown in Figure 5, LLS exhibiting better performance.930

D Further Analysis of LLS vs ExplicitSCL931

Fig. 6 shows a comparison of runtime LLS and ExplicitSCL spent in BreakID, core extraction,932

the IP solver, and solution-improving search (SIS). ExplicitSCL uses less time in each of the933

components. However, since ExplicitSCL generally solves instances with a smaller number934

of iterations (recall Figure 4), the difference in total runtime spent in core extraction, the935

IP solver and SIS is partially explained by the difference in the number of IHS iterations936

required for termination. For further details, Fig. 7 shows a comparison of the average time937

spent per iteration in each of the core extraction, IP solver and SIS component: the main938

difference in runtimes is due to time spent in core extraction and SIS. Digging deeper into939

the runtime spent in core extraction and SIS, we observed that for core extraction, the main940

runtime difference is due to calls which turn out to be satisfiable. This follows the intuition941

that the lex-leader constraints—all added at the beginning of IHS search—which rule out942

symmetric solutions may make it harder for a PB solver to find a solution. For SIS the main943

runtime difference is due to calls on which the PB solver is terminated without solution due944

exceeding the runtime limit enforced in PBO-IHS on the SIS solver calls.945

CP 2025

33:26 Symmetric Core Learning for PBO by IHS

 1

 10

 100

 1000

 1 10 100 1000

B
re

a
kI

D
 E

x
p
lic

it
S
C

L

BreakID LLS

 1

 10

 100

 1000

 1 10 100 1000

C
o
re

 e
x
tr

a
ct

io
n
 E

x
p
lic

it
S
C

L

Core extraction LLS

 1

 10

 100

 1000

 1 10 100 1000

O
p
ti

m
iz

e
r

E
x
p
lic

it
S
C

L

Optimizer LLS

 1

 10

 100

 1000

 1 10 100 1000

S
IS

 E
x
p
lic

it
S
C

L

SIS LLS

Figure 6 Time spent in BreakID (top left), core extraction (top right), IP solver (bottom left)
and SIS (bottom right).

 1

 10

 100

 1000

 1 10 100 1000

C
o
re

 e
x
tr

a
ct

io
n
 E

x
p
lic

it
S

C
L

Core extraction LLS

 1

 10

 100

 1000

 1 10 100 1000

O
p
ti

m
iz

e
r

E
x
p
lic

it
S
C

L

Optimizer LLS

 1

 10

 100

 1000

 1 10 100 1000

S
IS

 E
x
p
lic

it
S
C

L

SIS LLS

Figure 7 Average time spent per iteration in core extraction (left), IP solver (middle) and SIS
(right).

	1 Introduction
	2 Preliminaries
	2.1 Pseudo-Boolean Optimization
	2.2 Symmetries in Pseudo-Boolean Optimization
	2.3 The Implicit Hitting Set Approach to PBO

	3 Symmetric Core Learning for IHS
	3.1 The Basic Idea
	3.2 Explicit Symmetric Core Learning
	3.3 Compact Symmetric Core Learning
	3.4 SCL and Heuristic Optimizations in IHS
	3.5 SCL and Symmetry Breaking

	4 Experiments
	4.1 Experiments on Highly Symmetric Benchmarks
	4.2 Experiments on a Wider Set of Benchmarks

	5 Conclusions
	A Implementing CompactSCL
	B Details on the Encoding of the CC instances
	C Comparing LL and LLS
	D Further Analysis of LLS vs ExplicitSCL

