
Certifying Pareto Optimality in Multi-Objective
Maximum Satisfiability

Bart Bogaerts
(joint work with Christoph Jabs, Jeremias Berg, Matti Järvisalo)

KU Leuven
Dagstuhl Seminar 25231



TAKE-AWAY MESSAGE

Proof logging for multi-objective problems is feasible [JBBJ25]



OUTLINE

1. Problem Setting

2. Background

3. Proofs for MO-MaxSAT

4. Conclusions



MULTI-OBJECTIVE OPTIMIZATION
HOW TO DEAL WITH CONFLICTING OBJECTIVES

• Renting: distance vs. price
0 2 4 6 8

0

2

4

6

8

Price

D
is
ta
n
ce



MULTI-OBJECTIVE OPTIMIZATION
HOW TO DEAL WITH CONFLICTING OBJECTIVES

• Renting: distance vs. price

• Decision tree: accuracy vs. intrepretability
0 2 4 6 8

0

2

4

6

8

Price

D
is
ta
n
ce



MULTI-OBJECTIVE OPTIMIZATION
HOW TO DEAL WITH CONFLICTING OBJECTIVES

• Renting: distance vs. price

• Decision tree: accuracy vs. intrepretability

• Economics: employment rate vs. inflation

0 2 4 6 8
0

2

4

6

8

Price

D
is
ta
n
ce



MULTI-OBJECTIVE OPTIMIZATION
HOW TO DEAL WITH CONFLICTING OBJECTIVES

• Renting: distance vs. price

• Decision tree: accuracy vs. intrepretability

• Economics: employment rate vs. inflation

0 2 4 6 8
0

2

4

6

8

Price

D
is
ta
n
ce



MULTI-OBJECTIVE OPTIMIZATION
HOW TO DEAL WITH CONFLICTING OBJECTIVES

• Renting: distance vs. price

• Decision tree: accuracy vs. intrepretability

• Economics: employment rate vs. inflation

0 2 4 6 8
0

2

4

6

8

Price

D
is
ta
n
ce



MULTI-OBJECTIVE OPTIMIZATION
HOW TO DEAL WITH CONFLICTING OBJECTIVES

• Renting: distance vs. price

• Decision tree: accuracy vs. intrepretability

• Economics: employment rate vs. inflation

0 2 4 6 8
0

2

4

6

8

Price

D
is
ta
n
ce



MULTI-OBJECTIVE OPTIMIZATION
HOW TO DEAL WITH CONFLICTING OBJECTIVES

• Renting: distance vs. price

• Decision tree: accuracy vs. intrepretability

• Economics: employment rate vs. inflation

0 2 4 6 8
0

2

4

6

8

Price

D
is
ta
n
ce



MULTI-OBJECTIVE OPTIMIZATION
HOW TO DEAL WITH CONFLICTING OBJECTIVES

• Renting: distance vs. price

• Decision tree: accuracy vs. intrepretability

• Economics: employment rate vs. inflation

0 2 4 6 8
0

2

4

6

8

Price

D
is
ta
n
ce



MULTI-OBJECTIVE OPTIMIZATION
HOW TO DEAL WITH CONFLICTING OBJECTIVES

• Renting: distance vs. price

• Decision tree: accuracy vs. intrepretability

• Economics: employment rate vs. inflation

0 2 4 6 8
0

2

4

6

8

Price

D
is
ta
n
ce



THE PROBLEM
CAN YOU TRUST MY SOLVER?

• Renting: distance vs. price

• Decision tree: accuracy vs. intrepretability

• Economics: employment rate vs. inflation

0 2 4 6 8
0

2

4

6

8

Price

D
is
ta
n
ce



THE PROBLEM
CAN YOU TRUST MY SOLVER?

• Renting: distance vs. price

• Decision tree: accuracy vs. intrepretability

• Economics: employment rate vs. inflation

0 2 4 6 8
0

2

4

6

8

?

Price

D
is
ta
n
ce



OUTLINE

1. Problem Setting

2. Background

3. Proofs for MO-MaxSAT

4. Conclusions



CERTIFYING SOLVERS

SOLVER

PROOF

Ë

é

GROUNDER

High-level
specification

Low-level
specification

PROOF
CHECKER

PROOF
CHECKER

Correct(?) Answer

Specification

PROOF

WP1

SOLVER 2

Answer

WP2

FORMALLY
VERIFIED
CHECKER

∀t[Time] : (∃e[Event ] : ScheduledAt(e, t) ∧ HighRisk(e))
⇒ # {g[Personnel ] : WorksOn(g, t) ∧ Function(g) = SecGuard} ≥ 3

x1 ∨ x2 ∨ ¬x42¬x1 ∨ x42¬x2 ∨ x42¬x1 ∨ ¬x2 ∨ x146
x1 ∨ ¬x146
x2 ∨ ¬x146
x146 ∨ x17 ∨ x95
x146 ∨ ¬x17 ∨ x128. . .



CERTIFYING SOLVERS

SOLVER

PROOF

Ë

é

GROUNDER

High-level
specification

Low-level
specification

PROOF
CHECKER

PROOF
CHECKER

Correct(?) Answer

Specification

PROOF

WP1

SOLVER 2

Answer

WP2

FORMALLY
VERIFIED
CHECKER

∀t[Time] : (∃e[Event ] : ScheduledAt(e, t) ∧ HighRisk(e))
⇒ # {g[Personnel ] : WorksOn(g, t) ∧ Function(g) = SecGuard} ≥ 3

x1 ∨ x2 ∨ ¬x42¬x1 ∨ x42¬x2 ∨ x42¬x1 ∨ ¬x2 ∨ x146
x1 ∨ ¬x146
x2 ∨ ¬x146
x146 ∨ x17 ∨ x95
x146 ∨ ¬x17 ∨ x128. . .



CERTIFYING SOLVERS

SOLVER

PROOF

Ë

é

GROUNDER

High-level
specification

Low-level
specification

PROOF
CHECKER

PROOF
CHECKER

Correct(?) Answer

Specification

PROOF

WP1

SOLVER 2

Answer

WP2

FORMALLY
VERIFIED
CHECKER

∀t[Time] : (∃e[Event ] : ScheduledAt(e, t) ∧ HighRisk(e))
⇒ # {g[Personnel ] : WorksOn(g, t) ∧ Function(g) = SecGuard} ≥ 3

x1 ∨ x2 ∨ ¬x42¬x1 ∨ x42¬x2 ∨ x42¬x1 ∨ ¬x2 ∨ x146
x1 ∨ ¬x146
x2 ∨ ¬x146
x146 ∨ x17 ∨ x95
x146 ∨ ¬x17 ∨ x128. . .



CERTIFYING SOLVERS

Software and Hardware Bugs

SOLVER

PROOF

Ë

é

GROUNDER

High-level
specification

Low-level
specification

PROOF
CHECKER

PROOF
CHECKER

Correct(?) Answer

Specification

PROOF

WP1

SOLVER 2

Answer

WP2

FORMALLY
VERIFIED
CHECKER

∀t[Time] : (∃e[Event ] : ScheduledAt(e, t) ∧ HighRisk(e))
⇒ # {g[Personnel ] : WorksOn(g, t) ∧ Function(g) = SecGuard} ≥ 3

x1 ∨ x2 ∨ ¬x42¬x1 ∨ x42¬x2 ∨ x42¬x1 ∨ ¬x2 ∨ x146
x1 ∨ ¬x146
x2 ∨ ¬x146
x146 ∨ x17 ∨ x95
x146 ∨ ¬x17 ∨ x128. . .



CERTIFYING SOLVERS

Debugging Support

SOLVER

PROOF

Ë

é

GROUNDER

High-level
specification

Low-level
specification

PROOF
CHECKER

PROOF
CHECKER

Correct(?) Answer

Specification

PROOF

WP1

SOLVER 2

Answer

WP2

FORMALLY
VERIFIED
CHECKER

∀t[Time] : (∃e[Event ] : ScheduledAt(e, t) ∧ HighRisk(e))
⇒ # {g[Personnel ] : WorksOn(g, t) ∧ Function(g) = SecGuard} ≥ 3

x1 ∨ x2 ∨ ¬x42¬x1 ∨ x42¬x2 ∨ x42¬x1 ∨ ¬x2 ∨ x146
x1 ∨ ¬x146
x2 ∨ ¬x146
x146 ∨ x17 ∨ x95
x146 ∨ ¬x17 ∨ x128. . .



CERTIFYING SOLVERS

Auditable Record

SOLVER

PROOF

Ë

é

GROUNDER

High-level
specification

Low-level
specification

PROOF
CHECKER

PROOF
CHECKER

Correct(?) Answer

Specification

PROOF

WP1

SOLVER 2

Answer

WP2

FORMALLY
VERIFIED
CHECKER

∀t[Time] : (∃e[Event ] : ScheduledAt(e, t) ∧ HighRisk(e))
⇒ # {g[Personnel ] : WorksOn(g, t) ∧ Function(g) = SecGuard} ≥ 3

x1 ∨ x2 ∨ ¬x42¬x1 ∨ x42¬x2 ∨ x42¬x1 ∨ ¬x2 ∨ x146
x1 ∨ ¬x146
x2 ∨ ¬x146
x146 ∨ x17 ∨ x95
x146 ∨ ¬x17 ∨ x128. . .



CERTIFYING SOLVERS

Performance Analysis

SOLVER

PROOF

Ë

é

GROUNDER

High-level
specification

Low-level
specification

PROOF
CHECKER

PROOF
CHECKER

Correct(?) Answer

Specification

PROOF

WP1

SOLVER 2

Answer

WP2

FORMALLY
VERIFIED
CHECKER

∀t[Time] : (∃e[Event ] : ScheduledAt(e, t) ∧ HighRisk(e))
⇒ # {g[Personnel ] : WorksOn(g, t) ∧ Function(g) = SecGuard} ≥ 3

x1 ∨ x2 ∨ ¬x42¬x1 ∨ x42¬x2 ∨ x42¬x1 ∨ ¬x2 ∨ x146
x1 ∨ ¬x146
x2 ∨ ¬x146
x146 ∨ x17 ∨ x95
x146 ∨ ¬x17 ∨ x128. . .



CERTIFYING SOLVERS

Paradigm Proof format
SAT DRAT

MaxSAT/PBO VeriPB
SMT Various formats

K Compilation CPOG
... ...

MO-MaxSAT This talk

SOLVER

PROOF

Ë

é

GROUNDER

High-level
specification

Low-level
specification

PROOF
CHECKER

PROOF
CHECKER

Correct(?) Answer

Specification

PROOF

WP1

SOLVER 2

Answer

WP2

FORMALLY
VERIFIED
CHECKER

∀t[Time] : (∃e[Event ] : ScheduledAt(e, t) ∧ HighRisk(e))
⇒ # {g[Personnel ] : WorksOn(g, t) ∧ Function(g) = SecGuard} ≥ 3

x1 ∨ x2 ∨ ¬x42¬x1 ∨ x42¬x2 ∨ x42¬x1 ∨ ¬x2 ∨ x146
x1 ∨ ¬x146
x2 ∨ ¬x146
x146 ∨ x17 ∨ x95
x146 ∨ ¬x17 ∨ x128. . .



THE P -Minimal ALGORITHM
MULTI-OBJECTIVE SOLUTION-IMPROVING SEARCH

Init (Solver ← F )

isSAT

addPdCut(O1 < O1↾α ∨O2 < O2↾α)

isSAT s.t.

O1 ≤ b1 ∧O2 ≤ b2

yield/enumerate solution(s)

SAT ⇒ α

UNSAT

SAT ⇒ α

UNSAT

0 1 2 3 4
0

1

2

3

4

O1

O
2



THE P -Minimal ALGORITHM
MULTI-OBJECTIVE SOLUTION-IMPROVING SEARCH

Init (Solver ← F )

isSAT

addPdCut(O1 < O1↾α ∨O2 < O2↾α)

isSAT s.t.

O1 ≤ b1 ∧O2 ≤ b2

yield/enumerate solution(s)

SAT ⇒ α

UNSAT

SAT ⇒ α

UNSAT

0 1 2 3 4
0

1

2

3

4

O1

O
2



THE P -Minimal ALGORITHM
MULTI-OBJECTIVE SOLUTION-IMPROVING SEARCH

Init (Solver ← F )

isSAT

addPdCut(O1 < O1↾α ∨O2 < O2↾α)

isSAT s.t.

O1 ≤ b1 ∧O2 ≤ b2

yield/enumerate solution(s)

SAT ⇒ α

UNSAT

SAT ⇒ α

UNSAT

0 1 2 3 4
0

1

2

3

4

O1

O
2



THE P -Minimal ALGORITHM
MULTI-OBJECTIVE SOLUTION-IMPROVING SEARCH

Init (Solver ← F )

isSAT

addPdCut(O1 < O1↾α ∨O2 < O2↾α)

isSAT s.t.

O1 ≤ b1 ∧O2 ≤ b2

yield/enumerate solution(s)

SAT ⇒ α

UNSAT

SAT ⇒ α

UNSAT

0 1 2 3 4
0

1

2

3

4

O1

O
2



THE P -Minimal ALGORITHM
MULTI-OBJECTIVE SOLUTION-IMPROVING SEARCH

Init (Solver ← F )

isSAT

addPdCut(O1 < O1↾α ∨O2 < O2↾α)

isSAT s.t.

O1 ≤ b1 ∧O2 ≤ b2

yield/enumerate solution(s)

SAT ⇒ α

UNSAT

SAT ⇒ α

UNSAT

0 1 2 3 4
0

1

2

3

4

O1

O
2



THE P -Minimal ALGORITHM
MULTI-OBJECTIVE SOLUTION-IMPROVING SEARCH

Init (Solver ← F )

isSAT

addPdCut(O1 < O1↾α ∨O2 < O2↾α)

isSAT s.t.

O1 ≤ b1 ∧O2 ≤ b2

yield/enumerate solution(s)

SAT ⇒ α

UNSAT

SAT ⇒ α

UNSAT

0 1 2 3 4
0

1

2

3

4

O1

O
2



THE P -Minimal ALGORITHM
MULTI-OBJECTIVE SOLUTION-IMPROVING SEARCH

Init (Solver ← F )

isSAT

addPdCut(O1 < O1↾α ∨O2 < O2↾α)

isSAT s.t.

O1 ≤ b1 ∧O2 ≤ b2

yield/enumerate solution(s)

SAT ⇒ α

UNSAT

SAT ⇒ α

UNSAT

0 1 2 3 4
0

1

2

3

4

O1

O
2



THE P -Minimal ALGORITHM
MULTI-OBJECTIVE SOLUTION-IMPROVING SEARCH

Init (Solver ← F )

isSAT

addPdCut(O1 < O1↾α ∨O2 < O2↾α)

isSAT s.t.

O1 ≤ b1 ∧O2 ≤ b2

yield/enumerate solution(s)

SAT ⇒ α

UNSAT

SAT ⇒ α

UNSAT

0 1 2 3 4
0

1

2

3

4

O1

O
2



THE P -Minimal ALGORITHM
MULTI-OBJECTIVE SOLUTION-IMPROVING SEARCH

Init (Solver ← F )

isSAT

addPdCut(O1 < O1↾α ∨O2 < O2↾α)

isSAT s.t.

O1 ≤ b1 ∧O2 ≤ b2

yield/enumerate solution(s)

SAT ⇒ α

UNSAT

SAT ⇒ α

UNSAT

0 1 2 3 4
0

1

2

3

4

O1

O
2



THE P -Minimal ALGORITHM
MULTI-OBJECTIVE SOLUTION-IMPROVING SEARCH

Init (Solver ← F )

isSAT

addPdCut(O1 < O1↾α ∨O2 < O2↾α)

isSAT s.t.

O1 ≤ b1 ∧O2 ≤ b2

yield/enumerate solution(s)

SAT ⇒ α

UNSAT

SAT ⇒ α

UNSAT

0 1 2 3 4
0

1

2

3

4

O1

O
2



THE VeriPB PROOF SYSTEM [BGMN23]

PSEUDO-BOOLEAN CUTTING PLANES PROOFS

▶ Pseudo-Boolean Constraints

▶ Derive constraints by cutting planes operations (e.g., linear combinations)
▶ Strengthening rules:

▶ Derive non-implied constraint
▶ Proof obligation: recipe that shows how to “patch up” every assignment that is lost (so that

the patched up assignment satisfies new constraint)

▶ Exclude solutions after finding them

▶ Single-objective optimization
▶ Recently: loading pre-order ⪯ for expressing preference (designed for symmetry breaking)

▶ When patching up α to α′, should show that α′ ⪯ α



THE VeriPB PROOF SYSTEM [BGMN23]

PSEUDO-BOOLEAN CUTTING PLANES PROOFS

▶ Pseudo-Boolean Constraints

▶ Derive constraints by cutting planes operations (e.g., linear combinations)
▶ Strengthening rules:

▶ Derive non-implied constraint
▶ Proof obligation: recipe that shows how to “patch up” every assignment that is lost (so that

the patched up assignment satisfies new constraint)

▶ Exclude solutions after finding them

▶ Single-objective optimization
▶ Recently: loading pre-order ⪯ for expressing preference (designed for symmetry breaking)

▶ When patching up α to α′, should show that α′ ⪯ α



THE VeriPB PROOF SYSTEM [BGMN23]

PSEUDO-BOOLEAN CUTTING PLANES PROOFS

▶ Pseudo-Boolean Constraints

▶ Derive constraints by cutting planes operations (e.g., linear combinations)
▶ Strengthening rules:

▶ Derive non-implied constraint
▶ Proof obligation: recipe that shows how to “patch up” every assignment that is lost (so that

the patched up assignment satisfies new constraint)

▶ Exclude solutions after finding them

▶ Single-objective optimization
▶ Recently: loading pre-order ⪯ for expressing preference (designed for symmetry breaking)

▶ When patching up α to α′, should show that α′ ⪯ α



THE VeriPB PROOF SYSTEM [BGMN23]

PSEUDO-BOOLEAN CUTTING PLANES PROOFS

▶ Pseudo-Boolean Constraints

▶ Derive constraints by cutting planes operations (e.g., linear combinations)
▶ Strengthening rules:

▶ Derive non-implied constraint
▶ Proof obligation: recipe that shows how to “patch up” every assignment that is lost (so that

the patched up assignment satisfies new constraint)

▶ Exclude solutions after finding them

▶ Single-objective optimization
▶ Recently: loading pre-order ⪯ for expressing preference (designed for symmetry breaking)

▶ When patching up α to α′, should show that α′ ⪯ α



THE VeriPB PROOF SYSTEM [BGMN23]

PSEUDO-BOOLEAN CUTTING PLANES PROOFS

▶ Pseudo-Boolean Constraints

▶ Derive constraints by cutting planes operations (e.g., linear combinations)
▶ Strengthening rules:

▶ Derive non-implied constraint
▶ Proof obligation: recipe that shows how to “patch up” every assignment that is lost (so that

the patched up assignment satisfies new constraint)

▶ Exclude solutions after finding them

▶ Single-objective optimization
▶ Recently: loading pre-order ⪯ for expressing preference (designed for symmetry breaking)

▶ When patching up α to α′, should show that α′ ⪯ α



THE VeriPB PROOF SYSTEM [BGMN23]

PSEUDO-BOOLEAN CUTTING PLANES PROOFS

▶ Pseudo-Boolean Constraints

▶ Derive constraints by cutting planes operations (e.g., linear combinations)
▶ Strengthening rules:

▶ Derive non-implied constraint
▶ Proof obligation: recipe that shows how to “patch up” every assignment that is lost (so that

the patched up assignment satisfies new constraint)

▶ Exclude solutions after finding them

▶ Single-objective optimization
▶ Recently: loading pre-order ⪯ for expressing preference (designed for symmetry breaking)

▶ When patching up α to α′, should show that α′ ⪯ α



THE VeriPB PROOF SYSTEM [BGMN23]

PSEUDO-BOOLEAN CUTTING PLANES PROOFS

▶ Pseudo-Boolean Constraints

▶ Derive constraints by cutting planes operations (e.g., linear combinations)
▶ Strengthening rules:

▶ Derive non-implied constraint
▶ Proof obligation: recipe that shows how to “patch up” every assignment that is lost (so that

the patched up assignment satisfies new constraint)

▶ Exclude solutions after finding them

▶ Single-objective optimization
▶ Recently: loading pre-order ⪯ for expressing preference (designed for symmetry breaking)

▶ When patching up α to α′, should show that α′ ⪯ α



THE VeriPB PROOF SYSTEM [BGMN23]

PSEUDO-BOOLEAN CUTTING PLANES PROOFS

▶ Pseudo-Boolean Constraints

▶ Derive constraints by cutting planes operations (e.g., linear combinations)
▶ Strengthening rules:

▶ Derive non-implied constraint
▶ Proof obligation: recipe that shows how to “patch up” every assignment that is lost (so that

the patched up assignment satisfies new constraint)

▶ Exclude solutions after finding them

▶ Single-objective optimization
▶ Recently: loading pre-order ⪯ for expressing preference (designed for symmetry breaking)

▶ When patching up α to α′, should show that α′ ⪯ α



THE VeriPB PROOF SYSTEM [BGMN23]

PSEUDO-BOOLEAN CUTTING PLANES PROOFS

▶ Pseudo-Boolean Constraints

▶ Derive constraints by cutting planes operations (e.g., linear combinations)
▶ Strengthening rules:

▶ Derive non-implied constraint
▶ Proof obligation: recipe that shows how to “patch up” every assignment that is lost (so that

the patched up assignment satisfies new constraint)

▶ Exclude solutions after finding them

▶ Single-objective optimization
▶ Recently: loading pre-order ⪯ for expressing preference (designed for symmetry breaking)

▶ When patching up α to α′, should show that α′ ⪯ α



OUTLINE

1. Problem Setting

2. Background

3. Proofs for MO-MaxSAT

4. Conclusions



STRATEGY FOR GETTING VERIPB-BASED PROOFS

1. Start with hard constraints

2. Load order expressing Pareto-dominance (in the proof)

3. Justify everything from now on using standard VeriPB steps
▶ SAT solver reasoning
▶ PB-to-CNF encodings
▶ MO-specific reasoning steps



STRATEGY FOR GETTING VERIPB-BASED PROOFS

1. Start with hard constraints

2. Load order expressing Pareto-dominance (in the proof)

3. Justify everything from now on using standard VeriPB steps
▶ SAT solver reasoning
▶ PB-to-CNF encodings
▶ MO-specific reasoning steps



STRATEGY FOR GETTING VERIPB-BASED PROOFS

1. Start with hard constraints

2. Load order expressing Pareto-dominance (in the proof)

3. Justify everything from now on using standard VeriPB steps
▶ SAT solver reasoning
▶ PB-to-CNF encodings
▶ MO-specific reasoning steps



STRATEGY FOR GETTING VERIPB-BASED PROOFS

1. Start with hard constraints

2. Load order expressing Pareto-dominance (in the proof)

3. Justify everything from now on using standard VeriPB steps
▶ SAT solver reasoning
▶ PB-to-CNF encodings
▶ MO-specific reasoning steps



PARETO DOMINANCE IN VeriPB PROOFS
USING VeriPB FOR MO PROBLEMS

Given O1, . . . , Op

Required VeriPB order:
formula (over two copies of variables) that is true
iff α (weakly) dominates β (α ⪯ β)

Syntactic restrictions

▶ First step in proof must load the Pareto
order

▶ Order must never be changed

VeriPB Pareto order

Oi↾α≤ Oi↾β, for i = 1, . . . , p

Guarantee

For each non-dominated point at least
one solution explicitly appears in the
proof



PARETO DOMINANCE IN VeriPB PROOFS
USING VeriPB FOR MO PROBLEMS

Given O1, . . . , Op

Required VeriPB order:
formula (over two copies of variables) that is true
iff α (weakly) dominates β (α ⪯ β)

Syntactic restrictions

▶ First step in proof must load the Pareto
order

▶ Order must never be changed

VeriPB Pareto order

Oi↾α≤ Oi↾β, for i = 1, . . . , p

Guarantee

For each non-dominated point at least
one solution explicitly appears in the
proof



PARETO DOMINANCE IN VeriPB PROOFS
USING VeriPB FOR MO PROBLEMS

Given O1, . . . , Op

Required VeriPB order:
formula (over two copies of variables) that is true
iff α (weakly) dominates β (α ⪯ β)

Syntactic restrictions

▶ First step in proof must load the Pareto
order

▶ Order must never be changed

VeriPB Pareto order

Oi↾α≤ Oi↾β, for i = 1, . . . , p

Guarantee

For each non-dominated point at least
one solution explicitly appears in the
proof



PARETO DOMINANCE IN VeriPB PROOFS
USING VeriPB FOR MO PROBLEMS

Given O1, . . . , Op

Required VeriPB order:
formula (over two copies of variables) that is true
iff α (weakly) dominates β (α ⪯ β)

Syntactic restrictions

▶ First step in proof must load the Pareto
order

▶ Order must never be changed

VeriPB Pareto order

Oi↾α≤ Oi↾β, for i = 1, . . . , p

Guarantee

For each non-dominated point at least
one solution explicitly appears in the
proof



CERTIFYING PARETO DOMINANCE CUTS
THE BUILDING BLOCK FOR ALL ALGORITHMS

α

O1 < O1↾α ∨O2 < O2↾α

1. Reified objective CNF encoding

w1 ⇔ O1 < O1↾α
w2 ⇔ O2 < O2↾α

2. Map each weakly dominated solution to α
(Redundant with α as witness)

w1 ∧ w2 ⇒ α

3. Log solution α and (hence) exclude it

4. Derive PD cut by combining previous two
constraints



CERTIFYING PARETO DOMINANCE CUTS
THE BUILDING BLOCK FOR ALL ALGORITHMS

α

O1 < O1↾α ∨O2 < O2↾α

1. Reified objective CNF encoding

w1 ⇔ O1 < O1↾α
w2 ⇔ O2 < O2↾α

2. Map each weakly dominated solution to α
(Redundant with α as witness)

w1 ∧ w2 ⇒ α

3. Log solution α and (hence) exclude it

4. Derive PD cut by combining previous two
constraints



CERTIFYING PARETO DOMINANCE CUTS
THE BUILDING BLOCK FOR ALL ALGORITHMS

α

O1 < O1↾α ∨O2 < O2↾α

1. Reified objective CNF encoding

w1 ⇔ O1 < O1↾α
w2 ⇔ O2 < O2↾α

2. Map each weakly dominated solution to α
(Redundant with α as witness)

w1 ∧ w2 ⇒ α

3. Log solution α and (hence) exclude it

4. Derive PD cut by combining previous two
constraints



CERTIFYING PARETO DOMINANCE CUTS
THE BUILDING BLOCK FOR ALL ALGORITHMS

α

O1 < O1↾α ∨O2 < O2↾α

1. Reified objective CNF encoding

w1 ⇔ O1 < O1↾α
w2 ⇔ O2 < O2↾α

2. Map each weakly dominated solution to α
(Redundant with α as witness)

w1 ∧ w2 ⇒ α

3. Log solution α and (hence) exclude it

4. Derive PD cut by combining previous two
constraints



CERTIFYING PARETO DOMINANCE CUTS
THE BUILDING BLOCK FOR ALL ALGORITHMS

α

O1 < O1↾α ∨O2 < O2↾α

1. Reified objective CNF encoding

w1 ⇔ O1 < O1↾α
w2 ⇔ O2 < O2↾α

2. Map each weakly dominated solution to α
(Redundant with α as witness)

w1 ∧ w2 ⇒ α

3. Log solution α and (hence) exclude it

4. Derive PD cut by combining previous two
constraints



PROOF LOGGING MO-MAXSAT ALGORITHMS
PUTTING EVERYTHING TOGETHER

P -Minimal

[SBTL17]

▶ SAT solver reasoning

▶ CNF objective
encodings

▶ PD cuts

Lower-Bounding

[CLM23]

Upper-bounds irrelevant
→ same as P -Minimal

BiOptSat

[JBNJ24]

▶ Derive lower-bound on
first objective

▶ Certify PD cut

▶ Strengthen PD cut
based on known
lower-bound



PROOF LOGGING MO-MAXSAT ALGORITHMS
PUTTING EVERYTHING TOGETHER

P -Minimal

[SBTL17]

▶ SAT solver reasoning

▶ CNF objective
encodings

▶ PD cuts

Lower-Bounding

[CLM23]

Upper-bounds irrelevant
→ same as P -Minimal

BiOptSat

[JBNJ24]

▶ Derive lower-bound on
first objective

▶ Certify PD cut

▶ Strengthen PD cut
based on known
lower-bound



PROOF LOGGING MO-MAXSAT ALGORITHMS
PUTTING EVERYTHING TOGETHER

P -Minimal

[SBTL17]

▶ SAT solver reasoning

▶ CNF objective
encodings

▶ PD cuts

Lower-Bounding

[CLM23]

Upper-bounds irrelevant
→ same as P -Minimal

BiOptSat

[JBNJ24]

▶ Derive lower-bound on
first objective

▶ Certify PD cut

▶ Strengthen PD cut
based on known
lower-bound



PROOF LOGGING OVERHEAD
HOW EXPENSIVE IS THIS

10 100
10

100

1 000

3 600

3 600

No proof logging (s)

P
ro
of

lo
gg
in
g
(s
)

P -Minimal

10 100 3 600

No proof logging (s)

Lower-Bounding

10 100 3 600

No proof logging (s)

BiOptSat



PROOF LOGGING OVERHEAD
HOW EXPENSIVE IS THIS

10 100
10

100

1 000

3 600

3 600

No proof logging (s)

P
ro
of

lo
gg
in
g
(s
)

P -Minimal

10 100 3 600

No proof logging (s)

Lower-Bounding

10 100 3 600

No proof logging (s)

BiOptSat



PROOF LOGGING OVERHEAD
HOW EXPENSIVE IS THIS

10 100
10

100

1 000

3 600

3 600

23 %

No proof logging (s)

P
ro
of

lo
gg
in
g
(s
)

P -Minimal

10 100 3 600

22 %

No proof logging (s)

Lower-Bounding

10 100 3 600

25 %

No proof logging (s)

BiOptSat



OUTLINE

1. Problem Setting

2. Background

3. Proofs for MO-MaxSAT

4. Conclusions



LIMITATIONS & FUTURE WORK

▶ Support other orders than Pareto
Can build on orders with auxiliary variables (see talk Markus)

▶ Methods that guarantee enumerate all optimal solutions (not just one representative of
the Pareto front

▶ Distinguish between optimal and sub-optimal solutions in the proof

▶ Proper integration in VeriPB

▶ Efficient checking (pboxide?)



LIMITATIONS & FUTURE WORK

▶ Support other orders than Pareto
Can build on orders with auxiliary variables (see talk Markus)

▶ Methods that guarantee enumerate all optimal solutions (not just one representative of
the Pareto front

▶ Distinguish between optimal and sub-optimal solutions in the proof

▶ Proper integration in VeriPB

▶ Efficient checking (pboxide?)



LIMITATIONS & FUTURE WORK

▶ Support other orders than Pareto
Can build on orders with auxiliary variables (see talk Markus)

▶ Methods that guarantee enumerate all optimal solutions (not just one representative of
the Pareto front

▶ Distinguish between optimal and sub-optimal solutions in the proof

▶ Proper integration in VeriPB

▶ Efficient checking (pboxide?)



LIMITATIONS & FUTURE WORK

▶ Support other orders than Pareto
Can build on orders with auxiliary variables (see talk Markus)

▶ Methods that guarantee enumerate all optimal solutions (not just one representative of
the Pareto front

▶ Distinguish between optimal and sub-optimal solutions in the proof

▶ Proper integration in VeriPB

▶ Efficient checking (pboxide?)



LIMITATIONS & FUTURE WORK

▶ Support other orders than Pareto
Can build on orders with auxiliary variables (see talk Markus)

▶ Methods that guarantee enumerate all optimal solutions (not just one representative of
the Pareto front

▶ Distinguish between optimal and sub-optimal solutions in the proof

▶ Proper integration in VeriPB

▶ Efficient checking (pboxide?)



PROOF LOGGING FOR MULTI-OBJECTIVE MAXSAT
SUMMARY AND CONCLUSIONS

▶ MO-MaxSAT certificates that all
non-dominated points were discovered

▶ Includes techniques such as core-boosting
& PB-to-CNF encodings

▶ Proofs in VeriPB format

▶ Low overhead for proof logging

▶ Open-source implementation

Paper, slides, code, and contact:

christophjabs.info/tacas25

https://christophjabs.info/tacas25
https://christophjabs.info/tacas25


PROOF LOGGING FOR MULTI-OBJECTIVE MAXSAT
SUMMARY AND CONCLUSIONS

▶ MO-MaxSAT certificates that all
non-dominated points were discovered

▶ Includes techniques such as core-boosting
& PB-to-CNF encodings

▶ Proofs in VeriPB format

▶ Low overhead for proof logging

▶ Open-source implementation

Paper, slides, code, and contact:

christophjabs.info/tacas25

https://christophjabs.info/tacas25
https://christophjabs.info/tacas25


REFERENCES I

[BGMN23] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified dominance and symmetry
breaking for combinatorial optimisation. J. Artif. Intell. Res., 77:1539–1589, 2023.

[CLM23] João Cortes, Inês Lynce, and Vasco Manquinho. New core-guided and hitting set algorithms for
multi-objective combinatorial optimization. In Sriram Sankaranarayanan and Natasha Sharygina, editors,
Tools and Algorithms for the Construction and Analysis of Systems - 29th International Conference, TACAS
2023, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Paris, France, April 22-27, 2023, Proceedings, Part II, volume 13994 of Lecture Notes in Computer Science,
pages 55–73. Springer, 2023.

[JBBJ25] Christoph Jabs, Jeremias Berg, Bart Bogaerts, and Matti Järvisalo. Certifying pareto-optimality in multi
objective maximum satisfiability. In Arie Gurfinkel and Marijn Heule, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 31st International Conference, TACAS 2025, Held as Part of the
International Joint Conferences on Theory and Practice of Software, ETAPS 2025, Hamilton, ON, Canada,
May 3-8, 2025, Proceedings, Part II, volume 15697 of Lecture Notes in Computer Science, pages 108–129.
Springer, 2025.

[JBNJ24] Christoph Jabs, Jeremias Berg, Andreas Niskanen, and Matti Järvisalo. From single-objective to bi-objective
maximum satisfiability solving. J. Artif. Intell. Res., 80:1223–1269, 2024.



REFERENCES II

[SBTL17] Takehide Soh, Mutsunori Banbara, Naoyuki Tamura, and Daniel Le Berre. Solving multiobjective discrete
optimization problems with propositional minimal model generation. In J. Christopher Beck, editor, Principles
and Practice of Constraint Programming - 23rd International Conference, CP 2017, Melbourne, VIC,
Australia, August 28 - September 1, 2017, Proceedings, volume 10416 of Lecture Notes in Computer Science,
pages 596–614. Springer, 2017.



ACKNOWLEDGEMENTS

Co-funded by the European Union (ERC, CertiFOX, 101122653). Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect those of the
European Union or the European Research Council. Neither the European Union nor the
granting authority can be held responsible for them.


	Problem Setting
	Background
	Proofs for MO-MaxSAT
	Conclusions
	Appendix

