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THE VeriPB PROOF SYSTEM [BGMN23]

PSEUDO-BOOLEAN CUTTING PLANES PROOFS

▶ Pseudo-Boolean Constraints

▶ Derive constraints by cutting planes operations (e.g., linear combinations)
▶ Strengthening rules:

▶ Derive non-implied constraint
▶ Proof obligation: recipe that shows how to “patch up” every assignment that is lost (so that

the patched up assignment satisfies new constraint)

▶ Exclude solutions after finding them

▶ Single-objective optimization
▶ Recently: loading pre-order ⪯ for expressing preference (designed for symmetry breaking)

▶ When patching up α to α′, should show that α′ ⪯ α
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STRATEGY FOR GETTING VERIPB-BASED PROOFS

1. Start with hard constraints

2. Load order expressing Pareto-dominance (in the proof)

3. Justify everything from now on using standard VeriPB steps
▶ SAT solver reasoning
▶ PB-to-CNF encodings
▶ MO-specific reasoning steps
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PARETO DOMINANCE IN VeriPB PROOFS
USING VeriPB FOR MO PROBLEMS

Given O1, . . . , Op

Required VeriPB order:
formula (over two copies of variables) that is true
iff α (weakly) dominates β (α ⪯ β)

Syntactic restrictions

▶ First step in proof must load the Pareto
order

▶ Order must never be changed

VeriPB Pareto order

Oi↾α≤ Oi↾β, for i = 1, . . . , p

Guarantee

For each non-dominated point at least
one solution explicitly appears in the
proof
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CERTIFYING PARETO DOMINANCE CUTS
THE BUILDING BLOCK FOR ALL ALGORITHMS

α

O1 < O1↾α ∨O2 < O2↾α

1. Reified objective CNF encoding

w1 ⇔ O1 < O1↾α
w2 ⇔ O2 < O2↾α

2. Map each weakly dominated solution to α
(Redundant with α as witness)

w1 ∧ w2 ⇒ α

3. Log solution α and (hence) exclude it

4. Derive PD cut by combining previous two
constraints
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