
Link Traversal with Distributed Subweb Specifications

Bart Bogaerts1, Bas Ketsman1, Younes Zeboudj1, Heba Aamer2, Ruben Taelman3, and
Ruben Verborgh3

1 Vrĳe Universiteit Brussel, Belgium — {firstname.lastnamei}@vub.be
2 Universiteit Hasselt, Hasselt, Belgium — heba.mohamed@uhasselt.be

3 Ghent University – imec – IDLab — {firstname.lastname}@ugent.be

Abstract. LinkTraversal–basedQuery Processing (ltqp), inwhich a sparql query
is evaluated over a web of documents rather than a single dataset, is often seen as
a theoretically interesting yet impractical technique. However, in a time where the
hypercentralization of data has increasingly come under scrutiny, a decentralized
Web of Data with a simple document-based interface is appealing, as it enables data
publishers to control their data and access rights. While ltqp allows evaluating
complex queries over such webs, it suffers from performance issues (due to the
high number of documents containing data) as well as information quality concerns
(due to the many sources providing such documents). In existing ltqp approaches,
the burden of finding sources to query is entirely in the hands of the data consumer.
In this paper, we argue that to solve these issues, data publishers should also be
able to suggest sources of interest and guide the data consumer towards relevant
and trustworthy data. We introduce a theoretical framework that enables such
guided link traversal and study its properties. We illustrate with a theoretic example
that this can improve query results and reduce the number of network requests.

Keywords: sparql · Link traversal–based query processing · web of linked data

1 Introduction

The World-Wide Web provides a permissionless information space organized as in-
terlinked documents. The Semantic Web builds on top of it by representing data in
a machine-interpretable format, fueled by the Linked Data principles. In contrast to
more complex data-driven apis, the simplicity of document-based interfaces comes with
multiple advantages. They scale easily, and can be hosted on many different kinds of
hardware and software; we can realize the “anyone can say anything about anything”
principle because every publisher has their own domain in the Web, within which they
can freely refer to concepts from other domains; and complex features such as access
control or versioning are technically easy to achieve on a per-document basis.

However, decentralized interfaces are notoriously more difficult to query. As such,
the past decade has instead been characterized by Big Data and hypercentralization,
in which data from multiple sources becomes aggregated in an increasingly smaller
number of sources. While extremely powerful from a query and analytics perspective,
such aggregation levels lead to a loss of control and freedom for individuals and small- to
medium-scale data providers. This in turn has provoked some fundamental legal, societal,
and economical questions regarding the desiredness of such hypercentral platforms.

2 B. Bogaerts et al.

As such, there is again an increasing demand for more decentralized systems, where data
is stored closer to its authentic source, in line with the original intentions of the Web [14].

As with Big Data, query processing on the Semantic Web has traditionally focused
on single databases. The sparql query language allows querying such a single rdf store
through the sparql protocol, which places significantlymore constraints on the server than
a document-based interface [15]. While federated query processing enables incorporating
data from multiple sparql endpoints, federated queries have very limited link traversal
capabilities and sparql endpoints easily experience performance degradation [2].

Fortunately, a technique was introduced to query webs of data: Link Traversal–based
Query Processing (ltqp) [5, 8], in which an agent evaluates a sparql query over a set
of documents that is continuously expanded by selectively following hyperlinks inside
of them. While ltqp demonstrates the independence of queries and selection of sources
(on which these queries need to be executed), it has mostly remained a theoretical exercise,
as its slow performance makes it unsuitable for practical purposes. The fact that ltqp can
yield more results than single-source query evaluation, gave rise to different notions of
query semantics and completeness [9]. While more data can be considered advantageous,
it can also lead to doubts regarding data quality, trustworthiness, or license compatibility.
Together with performance, these concerns seem to have pushed ltqp to the background.

In this article, we identify two limitations of existing ltqp approaches. Essentially,
all existing ltqp approaches identify a subweb of the web of linked data on which a
query needs to be executed. The first limitation is that the responsibility for defining
how to construct this subweb is entirely in the hands of the data consumer, from now on
referred to as the querying agent (which can be an end-user or machine client). In other
words, existing approaches make the assumption that the querying agent can determine
perfectly which links should be traversed. However, since every data publisher can freely
choose how to organize their data, we cannot expect a single agent to possess complete
knowledge of how such traversals should proceed. A second restriction is that current
ltqp formalisms provide an all-or-nothing approach: a document is either included in the
subweb of interest in its entirety, or not at all, while for data-quality reasons, it would be
useful to only take parts of documents into account. For instance, an academic who has
moved institutions might specify that the data provided by institution A is trustworthy
up to a certain date and that for later information about them, institution B should be
consulted. More radically, a certain end user might wish to specify that Facebook’s data
about who her friends are is correct, without thereby implying that any triple published
by Facebook should be taken into account when performing a query.

In this paper, building on the use case of the next section, we propose an approach
for guided link traversal that overcomes these two limitations. In our proposal, each data
publisher has their own subweb of interest, and publishes a specification of how it can be
constructed. They can use this for instance to describe the organization of their data, or to
describe parties they trust (as well as for which data they trust them). The data consumer
can then construct a subweb of interest building on the subwebs of the publishers, e.g.,
deciding to include parts of a subweb, or to omit it. As such, the data publishers guide
the data consumer towards relevant data sources. We focus on the theoretical foundations
and highlight opportunities for result quality and performance improvements.

Link Traversal with Distributed Subweb Specifications 3

<https://uma.ex/#me> foaf:knows
<https://ann.ex/#me>, <https://bob.ex/#me>.

<https://bob.ex/#me> foaf:img <bob.jpg>.

Document 1: Contents of https://uma.ex/

<https://ann.ex/#me> foaf:isPrimaryTopicOf <https://corp.ex/ann/>.
<https://ann.ex/#me> foaf:weblog <https://ann.ex/blog/>.
<https://ann.ex/#me> foaf:maker <https://photos.ex/ann/>.

Document 2: Contents of https://ann.ex/

<https://bob.ex/#me> foaf:name "Bob";
foaf:mbox <mailto:me@bob.ex>;
foaf:img <funny-fish.jpg>.

<https://uma.ex/#me> foaf:knows
<http://dbpedia.org/resource/Mickey_Mouse>.

<https://ann.ex/#me> foaf:name "Felix".

Document 3: Contents of https://bob.ex/

<https://ann.ex/#me> foaf:name "Ann";
foaf:mbox <mailto:ann@corp.ex>;
foaf:img <me.jpg>.

Document 4: Contents of https://corp.ex/ann/

SELECT ?friend ?name ?email ?picture WHERE {
<https://uma.ex/#me> foaf:knows ?friend.
?friend foaf:name ?name.
OPTIONAL { ?friend foaf:mbox ?email.

?friend foaf:img ?picture. }
}

Query 1: Application query in sparql
?friend ?name ?email ?picture

1 <https://ann.ex/#me> "Ann" <mailto:ann@corp.ex> <https://corp.ex/ann/me.jpg>
2 <https://bob.ex/#me> "Bob" <mailto:me@bob.ex> <https://uma.ex/bob.jpg>
3 <https://bob.ex/#me> "Bob" <mailto:me@bob.ex> <https://bob.ex/funny-fish.jpg>
4 <https://ann.ex/#me> "Felix" <mailto:ann@corp.ex> <https://corp.ex/ann/me.jpg>
5 dbr:Mickey_Mouse "Mickey Mouse"@en NULL NULL

Results 1: Possible results of ltqp of the query in Query 1 with https://uma.ex/ as seed

2 Use Case

As a guiding example throughout this article, we introduce example data and queries
for a use case that stems from the Solid ecosystem [14], where every person has their
own personal data vault. Let us consider 3 people’s profile documents, stored in their
respective data vaults. Uma’s profile (Document 1) lists her two friends Ann and Bob.
Ann’s profile (Document 2) contains links to her corporate page and various other
pages. Bob, a self-professed jokester, lists his real name and email address in his profile
(Document 3), in addition to a funny profile picture and a couple of factually incorrect
statements (which he is able to publish given the open nature of the Web). Note how
Ann provides additional facts about herself into the external document she links to
(Document 4), and Uma’s profile suggests a better profile picture for Bob (Document 1).

Next, we consider an address book application that displays the details of a user’s
contacts. At design-time, this application is unaware of the context and data distribution
of the user and their friends. If we assume Uma to be the user, then the application’s
data need can be expressed as Query 1, which is a generic sparql template in which
only the url corresponding to Uma’s identity (https://uma.ex/#me) has been filled out.

With traditional ltqp (under 2All semantics [9]), results include those in Results 1.
However, the actually desired results are Rows 1 and 2, which contain Uma’s two friends
with relevant details. Rows 3–5 are formed using triples that occur in Bob’s profile
document but are not considered trustworthy by Uma (even though other triples in the
same document are). To obtain these results, a query engine would need to fetch at least
7 documents: the profile documents of the 3 people (Uma, Ann, Bob), the 3 documents
referred to by Ann’s profile (Document 2), and the dbpedia page for Mickey Mouse.

https://uma.ex/
https://ann.ex/
https://bob.ex/
https://corp.ex/ann/
https://uma.ex/
https://uma.ex/#me

4 B. Bogaerts et al.

3 Preliminaries

As a basis for our data model of a Web of Linked Data, we use the rdf data model [3].
That is, we assume three pairwise disjoint, infinite sets:U (for uris), B (for blank nodes),
L (for literals). An rdf triple is a tuple (B, ?, >) ∈ T , with T the set of all triples defined
as T = (U ∪B) ×U × (U ∪B ∪L); if C = (B, ?, >) ∈ T , then uris(C) = {B, ?, >} ∩U.
A set of triples is called a triple graph or rdf graph. An rdf dataset is a set of tuples
{〈=8 , 68〉} where =8 ∈ U and 68 an rdf graph, where 60 is referred to as the default graph.

We assume another setD, disjoint from the aforementioned setsU, B and L, whose
elements are referred to as documents. The rdf graph contained in each document is
modeled by a function data : D → 2T that maps each document to a finite set of triples.

Definition 1. A Web of Linked Data (wold), is a tuple 〈�, data, adoc〉 where � is
a set of documents � ⊆ D, data a function from � to 2T such that data(3) is finite
for each 3 ∈ �, and adoc a partial function fromU to �. If, is a wold, we use �, ,
data, , and adoc, for its respective components. The set of all wolds is denotedW.

We aim to define parts of a web as subwebs. While existing definitions only consider
the inclusion of documents in their entirety [9], we allow for partial documents to enable
fine-grained control about which data is to be used for answering certain queries.

Definition 2. Consider two wolds , = 〈�, data, adoc〉 and , ′ = 〈� ′, data′, adoc′〉.
We say that, ′ is a subweb of, if i) � ′ ⊆ �, ii) ∀3 ∈ � ′ : data′(3) ⊆ data(3), and
iii) adoc′(D) = adoc(D) if adoc(D) ∈ � ′ and adoc′(D) is undefined otherwise.
We write subwebs(,) for the set of subwebs of, .

The simplest type of subwebs are those only consisting of a single document.

Definition 3. Let, be a wold and 3 ∈ �. We use singleton(3,,) to denote the (unique)
subweb 〈{3}, data′, adoc′〉 of, with data′(3) = data(3).
Additionally, if two subwebs of a given wold are given, we can naturally define operators
such as union and intersection on them; in this paper, we will only need the union.

Definition 4. If ,1 and ,2 are subwebs of , , we define ,1 ∪,2 to be the unique
subweb 〈� ′, data′, adoc′〉 of, with
– � ′ = �,1 ∪ �,2 , and
– data′(3) = data,1 (3)∪data,2 (3) for each 3 ∈ � ′, where, slightly abusing notation,

we use data,8
(3) = ∅ if 3 ∉ �,8

.

4 Requirements

From the use case, we extracted four requirements that motivate our definitions.

A Declarative Language for Selecting Data Sources Similar to existing ltqp approaches,
we need a language to describe which data sources to select (possibly starting from a
given seed). We want such a language to be declarative, i.e., focus on which sources to
use, rather than how to obtain them. Formally, we expect a source selection expression to
evaluate in a given WOLD to a set of uris representing the documents to be included.

Link Traversal with Distributed Subweb Specifications 5

Independence of Query and Subweb Specification Motivated by principles of reusability
and separation of concerns, we want the query to be formulated independently from the
subweb over which the query is to be evaluated. While it might — to a certain extent —
be possible to encode traversal directions in (federated) sparql queries, what do I want
to know and where do I want to get my information are two orthogonal concerns that
we believe should be clearly separated, in order to improve readability, maintainability,
and reusability. E.g., in the use case, the phone book application defines the query,
while Uma defines her own subweb of interest (consisting of her own document, as well
as parts of the documents of her friends). The application should be able to run with
different subwebs (e.g., coming from other users), and Uma’s subweb of interest should
be reusable in other applications.

Scope Restriction of Sources One phenomenon that showed up in the use case is that
we want to trust a certain source, but only for specific data. We might for instance want
to use all our friends’ data sources, but only to provide information about themselves.
This would avoid “faulty” data providers such as Bob to publish data that pollute up
the entire application, and it would give a finer level of control over which data is to be
used to answer queries. On the formal level, this requirement already manifests itself
in the definition of subweb we chose: contrary to existing definitions [9], we allowed a
document in a subweb to have only a subset of the data of the original document.

Distributed Subweb Specifications Finally, we arrive at the notion of distribution. This
is the feature in which our approach most strongly deviates from the state-of-the-art in
link traversal. While the semantic web heavily builds on the assumption that data is
decentralized and different agents have different pieces of data to contribute, existing link
traversal–based approaches still assume that the knowledge of where this data can be found
is completely in the hands of the querying agent at query time, or at least that the principles
by which the web has to be traversed can be described by the querying agent. However,
as our use case illustrates, this is not always the case: Ann decided to distribute her
information over different pages; the agent developing the phone book application cannot
possibly know that the triple <https://ann.ex/#me> foaf:isPrimaryTopicOf <https://corp.ex/ann/>.

indicates that information from <https://corp.ex/ann/> is “equally good” as information
from Ann’s main document. Stated differently, only Ann knows how her own information
is organized and hence if we want to get personal information from Ann, we would want
her to be able to describe herself how or where to find this data. To summarize, we aim to
allow document publishers to publish specifications of subwebs in the same declarative
language as used by query agents and query agents to decide whether or not to include
the data from such subwebs.

5 Related Work

Link Traversal-based Query Processing Over a decade ago, the paradigm of Link
Traversal-based Query Processing was introduced [8], enabling queries over document-
oriented interfaces. The main advantage of this approach is that queries can always
be executed over live data, as opposed to querying over indexed data that may be

6 B. Bogaerts et al.

stale. The main disadvantages of this approach are that query termination and result
completeness are not guaranteed, and that query execution is typically significantly slower
than database-centric approaches such as sparql endpoints. Several improvements have
been suggested to cope with these problems [5]. For example, the processing order of
documents can be changed so that certain documents are prioritized [10], which allows
relevant results to be emitted earlier in an iterative manner [6], but does not reduce total
execution time. In this work, we propose to tackle this problem by allowing publishers to
specify their subweb of interest. These specifications are then used to guide the query
engine towards relevant (according to the data publishers at hand) documents.

Reachability Semantics The sparql query language was originally introduced for
query processing over rdf databases. Since ltqp involves a substantially different
kind of sources, a family of new semantics was introduced [9], involving the concept
of a reachable subweb. When executing a query over a set of seed documents, the
reachable Web is the set of documents that can be reached from these seeds using
one of different reachability criteria. These criteria are functions that test each data
triple within retrieved documents, indicating which (if any) of the uris in the triple
components should be dereferenced by interpreting them as the uri of a document that is
subsequently retrieved over http. The 2All reachability criterion involves following all
encountered uris, which is the strategy in the example of Results 1. A more elaborate
criterion is 2Match, which involves following uris from data triples that match at least one
triple pattern from the query. 2Match can significantly reduce the number of traversals
compared to 2All. However, evaluating Query 1 with 2Match semantics would not yield
results for Ann (rows 1 and 4). Her details are only reachable via a triple with predicate
foaf:isPrimaryTopicOf, which does not match any of the query’s triple patterns; hence,
the relevant document is never visited. So while 2Match can lead to better performance, it
comes at the cost of fewer results, showing that none of these approaches are optimal.

Delegation The concept of subwebs is somewhat related to the presence of active rules
in rule-based languages for distributed data management. A particularly relevant project
in this context is Webdamlog [1], a Datalog-based declarative language for managing
knowledge on the web with support for rule-delegation. Here, delegation is achieved by
allowing rules to get partially materialized by different peers.

6 A Formalism for Subweb Specifications

Inspired by the desired properties from Section 4, we now define a formalism to describe
subwebs of interest. In our formalism, different agents will be able to provide a description
of a subweb of interest; they will be able to specify declaratively in (which parts of)
which documents they are interested. We do not make any assumption here about what
the reason for this “interest” is; depending on the context at hand, different criteria such
as relevance, trustworthiness, or license-compatibility can be used. Such a description of
a subweb of interest can be given by the querying agent (an end-user or machine client)
which provides it at runtime to the query processor. Additionally, every data publisher
can use the same mechanism to make assertions about her beliefs, such that other

Link Traversal with Distributed Subweb Specifications 7

data publishers or querying agents can reuse those instead of requiring explicit knowledge.
For instance, a data publisher can express which sources they consider relevant or
trustworthy for what kinds of data: a researcher might indicate that a certain source
represents her publication record correctly, whereas another source captures her affiliation
history. A certain agent might or might not choose to take the subweb of interest of
a data publisher into consideration. In the use case of Section 2, the application generates
a query % as Query 1, and end-user Uma expresses she trusts her own profile for her
list of contacts, and to trust those contacts for their own details. Furthermore, each of
these friends can indicate which other documents they trust for which information. For
instance, Ann could express that she trusts corp.ex for her personal details. Essentially,
in this case Uma partially delegates responsibility of traversing the web to Ann, but only
retains information about Ann from Ann’s subweb of interest. This leads to the following
definitions.

Definition 5. A source selector is a function f : W → 2U . A filter is a function
5 : 2T × U → 2T such that 5 ((, D) ⊆ (for every (⊆ T and D ∈ U. For a wold
, = 〈�, data, adoc〉 and uri D; we extend the notation and also write 5 (,, D) to denote
the subweb 〈�, data′, adoc〉 of, with data′(3) := 5 (data(3), D) for each 3 ∈ �.

In our running example, if Uma wants for each of her friends to only include statements
they make about themselves, she can use a source selector f that extracts her friends, e.g,
with f(,) = {> | 〈B, foaf:knows, >〉 ∈ data(adoc(B)) with B = <https://uma.ex/#me>} and
with a filter that maps ((, D) to {〈B, ?, >〉 ∈ (| B = D}. If we assume that, is a wold in
which only a particular friend D of Uma provides triples, then 5 (,, D) is the subweb of
, in which friend D has only the triples making statements about him or herself.

Definition 6. A subweb specification, often denoted Θ, is a set of tuples of the form
(f, 1, 5), where f is a source selector; 1 is a Boolean; and 5 is a filter.

Intuitively, the Boolean 1 in (f, 1, 5) indicates whether to include for each uri D ∈ f(,)
(the filtered version of) the subweb of adoc(D) or only D’s document. Finally, this brings
us to the definition of a specification-annotated wold (sa-wold in short): a wold
extended with the construction rules of all data publishers.

Definition 7. A specification-annotatedwold is a tupleW = 〈,,�〉 consisting of awold
, = 〈�, data, adoc〉 and an associated family � = (Θ3)3∈� of subweb specifications.

In a sa-wold, each data publisher declares her subweb specification that can be used to
construct her subweb of interest. The value of a subweb specification in a sa-wold is
defined as follows:

Definition 8. LetW = 〈,,�〉 be a sa-wold with, = 〈�, data, adoc〉, and Θ a subweb
specification. Then, ÈΘÉW denotes the subweb specified by Θ forW,

ÈΘÉW :=
⋃

(f,1, 5) ∈Θ∧D∈f (,)
5

(
singleton(adoc(D),,) ∪

(
È(Θadoc(D))ÉW if 1

)
, D

)
,

where ((if 1) equals (if 1 is true and the empty wold (the unique wold without
documents) otherwise. The subweb of interest of a document 3 ∈ � inW is defined as
soi(3,W) := singleton(3,,) ∪ ÈΘ3ÉW .

corp.ex

8 B. Bogaerts et al.

Since not just the data publishers, but also the querying agents should be able to
specify a subweb of interest, we naturally obtain the following definition.

Definition 9. A specification-annotated query is a tuple P = 〈%,Θ〉 with % a sparql
query and Θ a subweb specification. The evaluation of P inW, denoted [[P]]W , is defined
by [[P]]W := [[%]]ÈΘÉW

Here, we use [[%]], ′ to denote the evaluation of the sparql query in the dataset that
is the union of all the documents in, ′ (to be precise, this is the RDF dataset with as
default graph the union of all the data in all documents of the subweb, and for each uri D
with adoc(D) = 3 a named graph with name D and as triples the data of 3). Of course,
we need a mechanism to find all those documents, which is what Θ will provide.

In the next section, we propose a concrete sparql-based instantiation of the theoretical
framework presented here and illustrate our use case in that setting. Afterwards, we will
formally compare our proposal to existing ltqp approaches.

7 Expressing Subweb Specifications

In this section, we propose a syntax for subweb specifications (as formalized in Section 6),
named the Subweb Specification Language (swsl), inspired by ldql and sparql. In
order to lower the entry barrier of this syntax to existing sparql engine implementations,
we deliberately base this syntax upon the sparql grammar. This enables implementations
to reuse (parts of) existing sparql query parsers and evaluators.

The grammar below represents the swsl syntax in Extended Backus–Naur form
(EBNF) with start symbol 〈start〉. The specifications begin with the FOLLOW keyword,
followed by a 〈sources〉 clause, an optional WITH SUBWEBS keyword, and an optional
〈filter〉 clause.

〈start〉 |= FOLLOW 〈sources〉 [WITH SUBWEBS] [〈filter〉]
〈sources〉 |= 〈variables〉 { 〈GroupGraphPattern〉 } [〈recurse〉]
〈variables〉 |= ?〈VARNAME〉 | ?〈VARNAME〉 〈variables〉
〈recurse〉 |= RECURSE [〈INTEGER〉]
〈filter〉 |= INCLUDE 〈ConstructTemplate〉 [WHERE { 〈GroupGraphPattern〉 }]

Intuitively, a full swsl expression corresponds to a single subweb specification tuple
(f, 1, 5) where the 〈sources〉 clause correspond to the source selection function f, the
keyword WITH SUBWEBS corresponds to the Boolean 1, and the 〈filter〉 clause corresponds
to the filter function 5 . We explain each of these parts in more detail hereafter.

Selection of Sources The 〈sources〉 will be evaluated in the context of a set (of seed
documents. For subweb specifications provided to the query processor, this set of seedswill
be given explicitly, whereas for subweb specifications found in a document, the set (is the
uri of that document . A 〈sources〉 clause begins with a list of sparql variables, followed
by a source extraction expression defined as sparql’s 〈GroupGraphPattern〉 clause. The
output is a set of bindings of the given variables, indicating uris whose documents are to

Link Traversal with Distributed Subweb Specifications 9

be included. For instance, when evaluating the expression ?E1 . . . ?E= { � } in a wold
, with seed set (, the resulting source selection is

f(,) =
⋃
D∈(
{`(E8) ∈ U | 1 ≤ 8 ≤ = ∧ ` ∈ È�Édata(adoc(D)) },

where È�É�(is the evaluation of the GroupGraphPattern � on a dataset �(.

Recurring Source Selection A 〈sources〉 clause may have at the end an optional 〈recurse〉
clause. If RECURSE is not used in a specification, then this latter will only apply to the
document in which it is defined; else, the specification will apply to that document, and
all output uris, taken as seed (recursively). In other words, the 〈sources〉 clause will
be applied to all documents that are obtained when following a chain of one or more
links using the specification. The 〈recurse〉 clause has an optional nonnegative integer
parameter, which indicates the maximum recursion depth. A depth of 0 is equivalent
to not defining the 〈recurse〉 clause. A depth of < means that all documents that are
obtained when following a link path of length < from the seeds are considered. This
recursion capability calls for the need to express the current document’s uri. To achieve
this, swsl syntax reuses sparql’s relative iri capability. Concretely, every time an swsl
specification is applied on a document, the document’s uri will be set as base iri to the
swsl specification, so that relative iris can be resolved upon this iri.

Inclusion of Subwebs of Selected Sources This is determined by the optional keyword
WITH SUBWEBS. Thus, if an swsl specification has the WITH SUBWEBS option, this is
equivalent to a subweb specification tuple with 1 is true. Otherwise, 1 is false.

Document Filtering The 〈filter〉 clause is an optional clause indicating that only certain
parts of the document are considered. Without this clause, the entire document is included.
The 〈filter〉 clause is similar to sparql’s 〈ContructQuery〉 clause. It exists in compact or
extended forms; in the latter, filtering constraints can be added via WHERE keyword.

Concretely, the extended form is defined by the sparql’s 〈ConstructTemplate〉
and 〈GroupGraphPattern〉 productions. The 〈ConstructTemplate〉 acts as a template of
triples to accept, while the 〈GroupGraphPattern〉 imposes conditions to do so. It is also
possible that in the bodies of the 〈GroupGraphPattern〉 and 〈ConstructTemplate〉 there are
variables that arementioned in the 〈GroupGraphPattern〉 of 〈sources〉 clause. This implies
that they should be instantiated according to the result of the first 〈GroupGraphPattern〉.

The compact form is defined by 〈ConstructTemplate〉, which acts as syntactical sugar
to the extended with an empty 〈GroupGraphPattern〉. Thus, to define 〈filter〉 clause’s
semantics, we only need the extended form. To illustrate this, consider an expression

FOLLOW ?E1 { �1 } INCLUDE � WHERE { �2 }

We already saw that when evaluated in context D, this induces a source selector selecting
those E such that `1 (?E1) = E, for some `1 ∈ È�1Édata(adoc(D)) . The associated filter is

5 ((, E) =
⋃

`1∈È�1Édata(adoc(D)) |`1 (?E1)=E
{C ∈ (| C ∈ È`2 (`1 (�))É(for some `2 ∈ È`1 (�2)É(}

10 B. Bogaerts et al.

<https://uma.ex/#me> ex:hasSpecification <#spec1>.
<#spec1> ex:appliesTo <https://uma.ex/>;

ex:scope """
FOLLOW ?friend WITH SUBWEBS {
<https://uma.ex/#me> foaf:knows ?friend.

} INCLUDE { ?friend ?p ?o. }
"""^^ex:SWSL.

Listing 1: Subweb Specification of
https://uma.ex/

<https://ann.ex/#me> ex:hasSpecification <#spec2>.
<#spec2> ex:appliesTo <https://ann.ex/>;

ex:scope """
FOLLOW ?page {
?topic foaf:isPrimaryTopicOf ?page.

} INCLUDE { ?topic ?p ?o. }
"""^^ex:SWSL.

Listing 2: Subweb Specification of
https://ann.ex/

ExpressingDocument Subwebs In this work, we assume that each published document can
link to its own context where they indicate the documents they consider relevant using an
swsl subweb specification. For illustration, we consider the predicate ex:hasSpecification
that is attached to the current document. An ex:Specification is a resource that contains
at least a value for ex:scope, pointing to one or more swsl strings. This resource can also
contain metadata about the subweb specification.

Application to the Use Case Listing 1 shows a part of Uma’s profile where she exposes
an swsl subweb specification to indicate that her friends can express information about
themselves. This specification states that all foaf:knows links from Uma should be
followed, and that from those followed documents, only information about that friend
should be included. By WITH SUBWEBS, she indicates that her friends’ subwebs must be
included in her subweb. Then, Ann can express in her subweb specification (Listing 2) that
she trusts documents pointed to by foaf:isPrimaryTopicOf links about triples about the
topic she indicates. With these subweb specifications, Query 1 produces only Rows 1–3
of Results 1. However, we still include the non-desired profile picture from Bob in our
results (Row 3). Extending the notion of filter to also allow this is left for future work.

8 Power and Limitations of Existing ltqp Approaches

Since ldql is a powerful link traversal formalism that has been shown to subsume other
approaches such as reachability-based querying [4], this raises the question: to which
extent can ldql in itself achieve the requirements set out in Section 4? In the current
section we formally investigate this, after introducing some preliminaries on ldql.

8.1 Preliminaries: ldql

ldql is a querying language for linked data. Its most powerful aspect is the navigational
language it uses for identifying a subweb of the given wold. The most basic block that
constitutes ldql’s navigational language is a link pattern that is a tuple in (U ∪ {_, +}) ×
(U ∪ {_, +}) × (U ∪ L ∪ {_, +}). Intuitively, a link pattern requires a context uri Dctx,
then evaluates to a set of uris (the links to follow) by matching the link pattern against
the triples in the document that Dctx is authoritative for. Formally, we say that a link
pattern lp = 〈ℓ1, ℓ2, ℓ3〉 matches a triple 〈G1, G2, G3〉 with result D in the context of a uri
Dctx if the following two points hold: i) there exists 8 ∈ {1, 2, 3} such that ℓ8 = _ and
G8 = D, and ii) for every 8 ∈ {1, 2, 3} either ℓ8 = G8 , or ℓ8 = + and G8 = Dctx, or ℓ8 = _

Link patterns are used to build link path expressions (lpes) with the following syntax:

lpe := Y | lp | lpe/lpe | lpe | lpe | lpe∗ | [lpe]

foaf:knows
foaf:isPrimaryTopicOf

Link Traversal with Distributed Subweb Specifications 11

Table 1: Value of link path expressions
lpe ÈlpeÉD

,

n {D}
lp {D′ | lp matches with C) with result D′ in context D for some C ∈ data(adoc(D))}
lpe1/lpe2 {E | E ∈ Èlpe2ÉD

′
,

and D′ ∈ Èlpe1ÉD, }
lpe1 | lpe2 Èlpe1ÉD, ∪ Èlpe2ÉD,
lpe∗ {D} ∪ ÈlpeÉD

,
∪ Èlpe/lpeÉD

,
∪ Èlpe/lpe/lpeÉD

,
∪ ...

[lpe] {D | ÈlpeÉD
,
≠ ∅}

where lp is a link pattern. In a given wold, , the value of a link path expression lpe in
context uri D (denoted ÈlpeÉD

,
) is a set of uris as given in Table 1.

An ldql query is a tuple @ = 〈lpe, %〉 with lpe a link path expression and % a sparql
query. The value of such a query @ in a wold, with a set of seed uris (is

È@É(, := È%É, ′ where, ′ =
⋃

B∈(,D∈ÈlpeÉB
,

singleton(adoc(D),,),

i.e., the query % is evaluated over the (RDF dataset constructed from the) data sources
obtained by evaluating the link path expression starting in one of the seeds.

Remark 1. [11] allows one other form of link path expression, where an entire ldql
query is nested in in an lpe; for the purpose of this paper, we opt to use a strict separation
between query and source selection and omit this last option4. Additionally, they consider
(Boolean) combinations of queries, thereby allowing to use different lpes for different
parts of the expression; we briefly come back to this when discussing scope restriction.

8.2 ldql and the Requirements

A Declarative Language for Selecting Data Sources In ldql, the link path expressions
provide a rich and flexible declarative language for describing source selection. Here,
paths through the linked web are described using a syntax similar to regular expressions.
For instance, the ldql expression 〈+, foaf:knows, _〉/〈+, foaf:knows, _〉 when evaluated in
a given uri D (the context) traverses to D’s friends 5 (as explicated by triples of the
form <u,foaf:knows,f> in adoc(D)) and subsequently to their friends 52 (as indicated by
triples <f,foaf:knows,f2> in adoc(5)). In other words, this example expression identifies
the documents of friends of friends of a given person.

Independence of Query and Subweb Specification The design philosophy behind ldql
does not start from an independence principle similar to the one proposed here. That
is, in its most general form, ldql allows intertwining the source selection and the
query. For instance, the ldql query 〈lpe1, %1〉AND 〈lpe2, %2〉 expresses the sparql
query %1 AND %2, and on top of that specifies that different parts of the query should
be evaluated with respect to different sources, and hence violating our principle of
independence. However, independence can easily be achieved in ldql by only considering
ldql queries of the form 〈lpe, %〉 with lpe a link path expression and % a sparql query.

4 Notably, this option was also not present in the original work [7].

12 B. Bogaerts et al.

Scope Restriction of Sources The semantics of an ldql query 〈lpe, %〉 is obtained
by first evaluating lpe starting from a seed document B, resulting in a set of uris
ÈlpeÉB

,
; the sparql query % is then evaluated over the union of the associated doc-

uments. That is, to compute the result of 〈lpe, %〉, for each document adoc(D) with
D ∈ ÈlpeÉB

,
, its entire content is used. As such, ldql provides no mechanism for

partial inclusion of documents. However, while ldql cannot select parts of documents,
it can be used, as discussed above, to apply source selection strategies only to parts
of queries and thereby to a certain extent achieve the desired behaviour. E.g., the
query 〈lpe1, (?G, foaf:knows, ?H)〉AND 〈lpe2, (?H, foaf:mbox, ?<〉 will only use triples with
predicate foaf:knows from documents produced by lpe1. However, this sacrifices the
independence property, and for complex queries and filters, this is not easy to achieve.

Distributed Subweb Specifications This now brings us to the main topic of this section:
studying to which extent it is possible in ldql to distribute the knowledge of how
to construct the subweb of interest and as such to guide the data consumer towards
interesting/relevant documents. To answer this question, we will consider a slightly
simplified setting, without filters (all filters equal the identity function id on their first
argument) and where the Boolean 1 in (f, 1, 5) is always true. I.e., each agent states
that they wish to include the complete subweb of interest of all uris identified by f.
In this setting, we wonder if data publishers can, instead of publishing their subweb
specification in addition to their regular data, encode their subweb specification as triples
in the document (as meta-information), and use a single “meta” link path expression that
interprets these triples for the traversal. This is formalized as follows.

Definition 10. Let S be a set of source selectors, enc : S → 2T a function mapping
source selectors f onto a set of triples enc(f), andW = 〈〈�, data, adoc〉,�〉 a sa-wold
in which each subweb specification is of the form (f, true, id) with f ∈ S. The encoding
ofW by enc is the wold enc(W) = 〈�, data′, adoc〉 with for each 3 ∈ �:

data′(3) = data(3) ∪
⋃

{f | (f,true,id) ∈Θ3 }
enc(f).

Definition 11. Let S be a set of source selectors, enc a function S → 2T , and 4meta an
lpe. We say that (enc, 4meta) capturesS if for each sa-wold in which subweb specifications
only use triples of the form (f, true, id) with f ∈ S and for each uri D,

È4metaÉDenc(W) = soi(adoc(D),W).

We will say that ldql can capture distribution of functions in S if there exist some
enc and 4meta that capture S.

To define the encodings, we will make use of some “fresh” uris we assume not to
occur in any wold. In our theorems, we will make use of some specific sets of source
selectors. A source selector f is constant if it maps all wolds onto the same set of uris,
i.e., if f(,) = f(, ′) for all wolds ,,, ′; the set of all constant source selectors is
defined as Sconst. If ? and D are uris, we define the source selector all?∗ ,D as follows:

all?∗ ,D : , ↦→ È(+, ?, _)∗ÉD, .

Link Traversal with Distributed Subweb Specifications 13

31 = adoc(D1)
data = {(D1, ?, D2)}

32 = adoc(D2)
data = {(D2, ?, D3), (D2, @, D4)}

“include ?∗s of D1”
33 = adoc(D3)

data = ∅

34 = adoc(D4)
data = ∅

?

?

@

Fig. 1: Example wold used in ldql inexpressivity proof.

Intuitively, the function all?∗ ,D identifies the set of all ?s of ?s of of D. For instance,
by taking ? = friend, we include all direct or indirect friends of D. For a fixed ?, we
write S?∗ for the set of source selectors all?∗ ,D . We write S∗ for the set of all source
selectors of the form all?∗ ,D for any ?. The set S∗ allows each data publisher to choose
her own strategy for constructing the subweb, e.g., one data publisher might include all
her friend∗s, another her colleague∗s and a third one only uris explicitly trusted (i.e.,
their trust∗s). Our main expressivity results are then summarized as follows:

Theorem 1. ldql captures distribution of Sconst and S?∗ , but not of S∗.

Proof (Sketch of the proof). For the positive results, we can provide an explicit encoding
and meta-expression. For instance for showing that it captures S?∗ for a given ?, we can
take enc(all?∗ ,D) = {(0, 0, D)} and 4meta = ((0, 0, _)/(+, ?, _)∗)∗ with 0 a fresh uri. In
this expression 4meta, the link pattern (0, 0, _) is used to navigate the D whose ?s of ?s
of... we wish to include; the part (+, ?, _)∗ then navigates to all such ?∗s. The outermost
star ensures that for each D that is found, also their subweb of interest is included.

The proof of the negative result relies heavily on the fact that an lpe not mentioning ?
nor @, cannot distinguish the triples (G, ?, I) and (G, @, I). If (4meta, enc) were to capture
S∗, we can construct a wold (see Fig. 1) using only uris not occurring in 4meta in which
only one document has a non-empty subweb specification.We then use the aforementioned
fact to conclude that 33 ∈ È4metaÉD1

enc(W) if and only if 34 ∈ È4metaÉD1
enc(W) .

9 Discussion

So far, we have studied ltqp from the perspective of data quality; namely, we allow
querying agents and/or data publishers to capture a subweb of data that satisfies certain
quality properties for them. In real-world applications, such quality properties could
for example indicate different notions of trust, or something use-case-specific such as
data sensitivity levels. While our formal framework only associates a single subweb
specification to each agent, it is not hard to extend it to associate multiple subweb
constructions with each agent and allow the querying agent to pick a suitable one.

The same mechanism can be used to improve efficiency in two ways: the data
publishers can opt to not include certain documents in their subweb, and for the ones
included, they can use a filter which indicates which data will be used from said document.

Most prominently, every publisher of Linked Data typically has their own way
of organizing data across documents, and they could capture this structure in their
subweb of interest. For example, in contrast to Bob (Document 3), Ann stores her profile

14 B. Bogaerts et al.

information in multiple documents (Documents 2 and 4). If she were to declare this
as a subweb specfication, she can use filters to indicate which data can be found in
which documents. A query processor can then exploit this information to only follow
links to relevant documents (documents of Ann’s subweb for which the filter could
keep triples that contribute to the query result). For example, Uma’s querying agent can
use Ann’s subweb construction of Listing 2 to prune the set of links to follow, and as
such perform a guided navigation while maintaining completeness guarantees. Without
even inspecting https://photos.ex/ann/ , it knows Ann (and thus Uma) does not trust
triples in this document for data about her, so fetching it will not change the final query
result. Whereas ltqp under 2All semantics would require at least 7 http requests, the
filters allow us to derive which 4 requests are needed to return all 3 trusted results
of the specification-annotated query. Analogous performance gains were observed in
work on provenance-enabled queries [16]. In contrast, traditional ltqp cannot make
any assumptions of what to encounter behind a link. The work on describing document
structures using shapes [12] can be leveraged here.

As such, filters in subweb specifications serve two purposes: they define semantics
by selecting only part of a data source, and give query processors guidance for saving
bandwidth and thus processing time.

10 Conclusion

ltqp is generally not considered suitable for real-world applications because of its
performance and data quality implications. However, if the current decentralization trend
continues, we need to prepare for a future with multi-source query processing, since
some data cannot be centralized for legal or other reasons.

Federated querying over expressive interfaces such as sparql endpoints only addresses
part of the problem: empirical evidence suggests that, counterintuitively, less expressive
interfaces can lead to faster processing times for several queries [15], while being less
expensive to host. A document-based interface is about the simplest interface imaginable,
and is thereby partly responsible for the Web’s scalability. Hence the need to investigate
how far we can push ltqp for internal and external integration of private and public data.

Our formalization for specification-annotated queries creates the theoretical foun-
dations for a next generation of traversal-based (and perhaps hybrid) query processing,
in which data quality can be controlled tightly, and network requests can be reduced
significantly. Moreover, the efforts to realize these necessary improvements are distributed
across the network, because every data publisher can describe their own subwebs. Impor-
tantly, the availability of such descriptions is also driven by other needs. For instance,
initiatives such as Solid [14] store people’s personal data as Linked Data, requiring every
personal data space to describe their document organization such that applications can
read and write data at the correct locations [12].

This article opens multiple avenues for future work. A crucial direction is the
algorithmic handling of the theoretical framework, and its software implementation, for
which we have ongoing work in the Comunica query engine [13]; an important open
question here is how the expressed filters can be exploited for query optimization. Also on
the implementation level, the creation and management of subweb specifications should

https://photos.ex/ann/

Link Traversal with Distributed Subweb Specifications 15

be facilitated. Empirical evaluations will shed light on cases where subweb annotated
wolds and queries result in a viable strategy.

Acknowledgements This research received funding from the Flemish Government
under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme.
Ruben Taelman and Ruben Verborgh are postdoctoral fellows of the Research Foundation
– Flanders (FWO) (1274521N). Heba Aamer is supported by the Special Research Fund
(BOF) (BOF19OWB16).

References
1. Abiteboul, S., Bienvenu, M., Galland, A., Antoine, É.: A rule-based language for web data

management. In: Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS 2011. pp. 293–304. ACM (2011)

2. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.Y.: sparql Web-querying infras-
tructure: Ready for action? In: Proceedings of the 12th International Semantic Web Conference.
Lecture Notes in Computer Science, vol. 8219, pp. 277–293. Springer (Oct 2013)

3. Cyganiak, R., Wood, D., Lanthaler, M.: rdf 1.1: Concepts and abstract syntax. Recommenda-
tion, w3c (Feb 2014), https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

4. Hartig, O.: sparql for a Web of Linked Data: semantics and computability. In: Proceedings of
the 9th international conference on The Semantic Web: research and applications (May 2012)

5. Hartig, O.: An overview on execution strategies for Linked Data queries. Datenbank-Spektrum
13(2), 89–99 (2013)

6. Hartig, O.: squin: a traversal based query execution system for the Web of Linked Data. In:
Proceedings of the acm sigmod International Conference on Management of Data (2013)

7. Hartig, O.: LDQL: A language for linked data queries. In: Proceedings of the 9th Alberto
Mendelzon International Workshop on Foundations of Data Management, Lima, Peru,
May 6 - 8, 2015. CEUR Workshop Proceedings, vol. 1378. CEUR-WS.org (2015), http:
//ceur-ws.org/Vol-1378/AMW_2015_paper_34.pdf

8. Hartig, O., Bizer, C., Freytag, J.C.: Executing sparql queries over the Web of Linked Data.
In: Proceedings of the 8th International Semantic Web Conference. Springer (2009)

9. Hartig, O., Freytag, J.C.: Foundations of traversal based query execution over Linked Data. In:
Proceedings of the 23rd ACM conference on Hypertext and social media (2012)

10. Hartig, O., Özsu, M.T.: Walking without a map: Ranking-based traversal for querying linked
data. In: Proceedings of ISWC 2016, Part I. pp. 305–324 (2016)

11. Hartig, O., Pérez, J.: LDQL: A query language for the web of linked data. J. Web Semant. 41,
9–29 (2016)

12. Prud’hommeaux, E., Bingham, J.: ShapeTrees specification. Editor’s draft (May 2020),
https:// shapetrees.github.io/specification/spec

13. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: a modular sparql
query engine for the web. In: Proceedings of the 17th International Semantic Web Conference
(Oct 2018), https://comunica.github.io/Article-ISWC2018-Resource/

14. Verborgh, R.: Re-decentralizing the Web, for good this time. In: Linking the World’s
Information. acm (2020)

15. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L., De Meester,
B., Haesendonck, G., Colpaert, P.: Triple Pattern Fragments: a low-cost knowledge graph
interface for the Web. Journal of Web Semantics 37–38, 184–206 (2016)

16. Wylot, M., Cudré-Mauroux, P., Groth, P.: Executing provenance-enabled queries over web
data. In: Proceedings of the 24th International Conference on World Wide Web (2015)

https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://ceur-ws.org/Vol-1378/AMW_2015_paper_34.pdf
http://ceur-ws.org/Vol-1378/AMW_2015_paper_34.pdf
https://shapetrees.github.io/specification/spec
https://comunica.github.io/Article-ISWC2018-Resource/

	Link Traversal with Distributed Subweb Specifications

