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Overview

I Background: SAT(ID)

I Background: Relevance for SAT(ID)

I Implementing Relevance



PC(ID), SAT(ID)

I SAT(ID) = satisfiability check of PC(ID)

I Propositional Calculus + Inductive Definitions

I PC(ID) encoding T = {pT ,∆} (normal form)

I pT is defined in ∆; must hold for T to be satisfied.

I Relation with ASP: pT is a single constraint, all atoms not
defined in ∆ are open (choice rules), ∆ contains no recursion
over negation (real definition)

Example

I Choose edges and colors of nodes s.t.
I node b is reachable from a
I every node reachable from a is colored green

a b c
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Example (continued) a b c

∆ =



pT ← reachb ∧ constr1 ∧ constr2 ∧ constr3.

constr1 ← ¬reacha ∨ greena.
constr2 ← ¬reachb ∨ greenb.
constr3 ← ¬reachc ∨ greenc .

reacha .
reachb ← case1 ∨ case2.
case1 ← reacha ∧ edgea,b.
case2 ← reachc ∧ edgec,b.
reachc ← reachb ∧ edgeb,c .


I reachx = node x is reachable

from a

I constrx = color constraints on
node x

I greenx = node x is green

I edgex,y = edge from x to y
selected



SAT(ID) solver

Typically, a SAT(ID) solver searches for an assignment (true/false)
to all atoms such that T is satisfied



Visualising the hierarchy

pT and-node

rb

or-node

c3

ca1 ca2

ra ea,b

¬rc gc

¬eb,c¬rb



Visualising the Search process
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Visualising the Search process
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Visualising the Search process

pT
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wait a minute...
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Visualising the Search process

pT

rb c3

ca1 ca2

ra ea,b

gc¬rc

...not helping!

¬eb,c¬rb



Visualising the Search process

pT

rb c3

ca1 ca2

ra ea,b

gc¬rc

could be any NP subproblem!

¬eb,c¬rb



Justifications

I Defined by Denecker and De Schreye (1993) and Denecker,
Brewka and Strass (2015)

I Intuitively, a literal is justified given a partial assignment if
there exists a (recursive) explanation why it must hold in
terms of true open literals.

I If a literal is justified in a partial assignment, then there exists
a model of ∆ in which that literal holds.

I Thus... it suffices to prove that pT is justified in some partial
interpretation to conclude that T is satisfiable.
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Searching assignment justification→ searching

pT

rb c3

ca1 ca2

ra ea,b

¬rc gc

¬eb,c¬rb
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Searching assignment justification→ searching

pT

rb c3

value = “fixed” for current branch

ca1 ca2

ra ea,b

¬rc gc

¬eb,c¬rb



Relevance

Definition
Given a PC(ID) theory T = {pT ,∆} and a partial interpretation I,
we inductively define the set of relevant literals, denoted RT ,I , as
follows

I pT is relevant if pT is not justified,

I l is relevant if l is not justified and there exists some l ′ such
that (l ′, l) ∈ dd∆ and l ′ is relevant.



Relevant ≈ can help justify pT
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Adjusting the Solver

I Decide only on Relevant literals.
I Stop search when pT is justified

I Guarantee that a two-valued solution can be generated
efficiently

I More tolerant to faulty choices of the solver
I Expectation: less choices made by solver



Implementation

I How to keep track of justified literals?

I How to keep track of relevant literals?



Keeping track of justified literals

I For each defined atom p, introduce a new atom jp.

I Intended interpretation: jp is true (in a partial interpretation)
iff p is justified; jp is false iff ¬p is justified; jp is unknown
otherwise.

I Duplicate definition ∆ to a new definition ∆′, obtained by a
replacing each defined atom p by jp (note: open literals
remain).

I Modify solver: forbidden to make choices on jp.

I Claim: after the standard propagation is executed, jp satisfies
the “intended interpretation” above.



Keeping track of justified literals

Theorem
Let ∆ be a (total) definition and I a partial interpretation in which
all defined symbols of ∆ are interpreted as u. Let l be a defined
literal in ∆. In this case l is justified in I if and only if l is
derivable by unit propagation on the completion of ∆ and
unfounded set propagations.



Keeping track of justified literals

I Without major modifications to the solver, we obtain a
method to keep track of justified literals.

I Only modification: do not make choices on certain atoms.



Keeping track of relevant literals

Recall:

Definition
Given a PC(ID) theory T = {pT ,∆} and a partial interpretation I,
we inductively define the set of relevant literals as follows

I pT is relevant if pT is not justified,

I l is relevant if l is not justified and there exists some l ′ such
that (l ′, l) ∈ dd∆ and l ′ is relevant.



Keeping track of relevant literals

I For each relevant literal (except pT ), we maintain one
relevant parent in dd∆: the reason why this literal is relevant.

I Thus, we maintain a subgraph of dd∆.

I We incrementally update this subgraph (as the justification
status of certain literals changes)

I Biggest challenge: keeping this graph acyclic. (how to choose
the “right” parent)

I Turns out... this cycle detection is the same problem as
tackled in unfounded set propagators.

I Only difference: works on a (slightly) different graph.
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Keeping track of relevant literals

I In the paper, we also detail the used data structures and an
event-driven implementation



Experiment Setup (1)

I Problems from previous ASP competitions

I Solver = Minisatid, Heuristic = VSIDS

I Measuring
I Ratio of irrelevant decisions (%)
I Ratio of conflicts originating from irrelevant decisions (%)
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Experimental Results (1)

Problem % Irr. Decisions % Irr. Conflicts
HP 27.37% 36.99%
NQueens 22.55% 0.43%
PPM 22.93% 4.98%
Sokoban 48.20% 0.96%
Solitaire 13.32% 3.95%
SM 96.40% 0.01%
Visit All 15.02% 16.45%



Experiment Setup (2)

I Problems from previous ASP competitions

I Solver = Minisatid, Heuristic = VSIDS

I Measuring
I Number of decisions (#)
I Number of conflicts (#)
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Take-away messages

I Exploit problem hierarchy using Relevance

I Preliminary promising results: fewer decisions
I A relevance tracker can be implemented reusing existing

methods:
I Justification status: unit propagation and unfounded set

propagation
I Relevance status: unfounded set algorithms
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Questions?


