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Overview

» Background: SAT(ID)
» Background: Relevance for SAT(ID)

» Implementing Relevance



PC(ID), SAT(ID)

SAT(ID) = satisfiability check of PC(ID)
Propositional Calculus 4+ Inductive Definitions
PC(ID) encoding 7 = {pr,A} (normal form)

p7 is defined in A; must hold for 7 to be satisfied.

Relation with ASP: pr is a single constraint, all atoms not
defined in A are open (choice rules), A contains no recursion
over negation (real definition)
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Example

» Choose edges and colors of nodes s.t.

» node b is reachable from a
» every node reachable from a is colored green
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Example (continued) ,@: \@

pr < reachp, A constry A constry N\ constrs.
constr; < ~—wreach, V green,.
constry < —wreachy V greeny.
constrs < ~—wreach. V green.
A =
reach,
reachp, < case; V cases.
case; < reach, N\ edge;p.
case; < reach. N edgec p.
reach. < reachy, N\ edgep ..
» reachy = node x is reachable » green, = node x is green
from a
> constr, = color constraints on > edge.,, = edge from x to y

node x selected



SAT(ID) solver

Typically, a SAT(ID) solver searches for an assignment (true/false)
to all atoms such that 7T is satisfied



Visualising the hierarchy

or-node



Visualising the Search process
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Justifications

» Defined by Denecker and De Schreye (1993) and Denecker,
Brewka and Strass (2015)

> Intuitively, a literal is justified given a partial assignment if
there exists a (recursive) explanation why it must hold in
terms of true open literals.



Justifications

» Defined by Denecker and De Schreye (1993) and Denecker,
Brewka and Strass (2015)

> Intuitively, a literal is justified given a partial assignment if
there exists a (recursive) explanation why it must hold in
terms of true open literals.

» If a literal is justified in a partial assignment, then there exists
a model of A in which that literal holds.

» Thus... it suffices to prove that py is justified in some partial
interpretation to conclude that 7 is satisfiable.



Searching assignment — searching Ejustificationi
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Relevance

Definition
Given a PC(ID) theory 7 = {pr, A} and a partial interpretation Z,
we inductively define the set of relevant literals, denoted R 7, as
follows
> p7 is relevant if py is not justified,
» [ is relevant if / is not justified and there exists some /" such
that (/',/) € dda and I’ is relevant.



Relevant

~ can help justify py
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Adjusting the Solver

» Decide only on literals.

» Stop search when pr is justified
» Guarantee that a two-valued solution can be generated
efficiently
» More tolerant to faulty choices of the solver
» Expectation: less choices made by solver



Implementation

» How to keep track of justified literals?

» How to keep track of relevant literals?



Keeping track of justified literals

» For each defined atom p, introduce a new atom j,.

> Intended interpretation: j, is true (in a partial interpretation)
iff p is justified; j, is false iff =p is justified; j, is unknown
otherwise.

» Duplicate definition A to a new definition A’, obtained by a
replacing each defined atom p by j, (note: open literals
remain).

» Modify solver: forbidden to make choices on jp,.

» Claim: after the standard propagation is executed, j, satisfies
the “intended interpretation” above.



Keeping track of justified literals

Theorem

Let A be a (total) definition and Z a partial interpretation in which
all defined symbols of A are interpreted as u. Let | be a defined
literal in A. In this case | is justified in T if and only if | is
derivable by unit propagation on the completion of A and
unfounded set propagations.



Keeping track of justified literals

» Without major modifications to the solver, we obtain a
method to keep track of justified literals.

» Only modification: do not make choices on certain atoms.



Keeping track of relevant literals

Recall:

Definition
Given a PC(ID) theory 7 = {pr, A} and a partial interpretation Z,
we inductively define the set of relevant literals as follows
» p7 is relevant if py is not justified,
» [ is relevant if / is not justified and there exists some /" such
that (/',/) € dda and I’ is relevant.



Keeping track of relevant literals

» For each relevant literal (except py), we maintain one
relevant parent in dda: the reason why this literal is relevant.

» Thus, we maintain a subgraph of dda.

» We incrementally update this subgraph (as the justification
status of certain literals changes)

» Biggest challenge: keeping this graph acyclic. (how to choose
the "right” parent)



Keeping track of relevant literals

» For each relevant literal (except py), we maintain one
relevant parent in dda: the reason why this literal is relevant.

» Thus, we maintain a subgraph of dda.

» We incrementally update this subgraph (as the justification
status of certain literals changes)

» Biggest challenge: keeping this graph acyclic. (how to choose
the "right” parent)

» Turns out... this cycle detection is the same problem as
tackled in unfounded set propagators.

» Only difference: works on a (slightly) different graph.



Keeping track of relevant literals

» In the paper, we also detail the used data structures and an
event-driven implementation



Experiment Setup (1)

» Problems from previous ASP competitions
» Solver = Minisatid, Heuristic = VSIDS



Experiment Setup (1)

» Problems from previous ASP competitions

» Solver = Minisatid, Heuristic = VSIDS
> Measuring

» Ratio of irrelevant decisions (%)
» Ratio of conflicts originating from irrelevant decisions (%)



Experimental Results (1)

Problem | % Irr. Decisions | % Irr. Conflicts
HP 27.37% 36.99%
NQueens 22.55% 0.43%
PPM 22.93% 4.98%
Sokoban 48.20% 0.96%
Solitaire 13.32% 3.95%
SM 96.40% 0.01%
Visit All 15.02% 16.45%




Experiment Setup (2)

» Problems from previous ASP competitions
» Solver = Minisatid, Heuristic = VSIDS



Experiment Setup (2)

» Problems from previous ASP competitions

» Solver = Minisatid, Heuristic = VSIDS
> Measuring

» Number of decisions (#)
» Number of conflicts (#)



Experimental Results (2)

# Decisions Made
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Experimental Results (2)

# Conflicts
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Take-away messages

» Exploit problem hierarchy using



Take-away messages

» Exploit problem hierarchy using

» Preliminary promising results: fewer decisions
> A relevance tracker can be implemented reusing existing
methods:
» Justification status: unit propagation and unfounded set
propagation
» Relevance status: unfounded set algorithms



Questions?



