Implementing a Relevance Tracker Module

Joachim Jansen!, Bart Bogaerts>!, Jo Devriendt!
Gerda Janssens!, Marc Denecker?

1 KU Leuven, Belgium, firstname.lastname@kuleuven.be
2 Aalto University, Finland, bart.bogaerts@aalto.fi

October 16th, 2016

A!

Aalto University
School of Science

Overview

» Background: SAT(ID)
» Background: Relevance for SAT(ID)

» Implementing Relevance

PC(ID), SAT(ID)

SAT(ID) = satisfiability check of PC(ID)
Propositional Calculus 4+ Inductive Definitions
PC(ID) encoding 7 = {pr,A} (normal form)

p7 is defined in A; must hold for 7 to be satisfied.

Relation with ASP: pr is a single constraint, all atoms not
defined in A are open (choice rules), A contains no recursion
over negation (real definition)

vV V. v v VY

PC(ID), SAT(ID)

SAT(ID) = satisfiability check of PC(ID)
Propositional Calculus 4+ Inductive Definitions
PC(ID) encoding 7 = {pr,A} (normal form)

p7 is defined in A; must hold for 7 to be satisfied.

Relation with ASP: pr is a single constraint, all atoms not
defined in A are open (choice rules), A contains no recursion
over negation (real definition)

vV V. v v VY

Example

» Choose edges and colors of nodes s.t.

» node b is reachable from a
» every node reachable from a is colored green

O OWMO

Example (continued) ,@: \@

pr < reachp, A constry A constry N\ constrs.
constr; < ~—wreach, V green,.
constry < —wreachy V greeny.
constrs < ~—wreach. V green.
A =
reach,
reachp, < case; V cases.
case; < reach, N\ edge;p.
case; < reach. N edgec p.
reach. < reachy, N\ edgep ..
» reachy = node x is reachable » green, = node x is green
from a
> constr, = color constraints on > edge.,, = edge from x to y

node x selected

SAT(ID) solver

Typically, a SAT(ID) solver searches for an assignment (true/false)
to all atoms such that 7T is satisfied

Visualising the hierarchy

or-node

Visualising the Search process

Visualising the Search process

propagation

Visualising the Search process

propagation

Visualising the Search process

Visualising the Search process

Visualising the Search process

Visualising the Search process

Visualising the Search process

Justifications

» Defined by Denecker and De Schreye (1993) and Denecker,
Brewka and Strass (2015)

> Intuitively, a literal is justified given a partial assignment if
there exists a (recursive) explanation why it must hold in
terms of true open literals.

Justifications

» Defined by Denecker and De Schreye (1993) and Denecker,
Brewka and Strass (2015)

> Intuitively, a literal is justified given a partial assignment if
there exists a (recursive) explanation why it must hold in
terms of true open literals.

» If a literal is justified in a partial assignment, then there exists
a model of A in which that literal holds.

» Thus... it suffices to prove that py is justified in some partial
interpretation to conclude that 7 is satisfiable.

Searching assignment — searching Ejustificationi

.II.........II.......:
Searching assignment — searching i justification ;

.

& '¢‘
L]

. C,'

Searching assignment — searching Ejustificationi

Relevance

Definition
Given a PC(ID) theory 7 = {pr, A} and a partial interpretation Z,
we inductively define the set of relevant literals, denoted R 7, as
follows
> p7 is relevant if py is not justified,
» [is relevant if / is not justified and there exists some /" such
that (/',/) € dda and I’ is relevant.

Relevant

~ can help justify py

Relevant

~ can help justify py

Relevant

~ can help justify py

Relevant

~ can help justify py

Adjusting the Solver

» Decide only on literals.

» Stop search when pr is justified
» Guarantee that a two-valued solution can be generated
efficiently
» More tolerant to faulty choices of the solver
» Expectation: less choices made by solver

Implementation

» How to keep track of justified literals?

» How to keep track of relevant literals?

Keeping track of justified literals

» For each defined atom p, introduce a new atom j,.

> Intended interpretation: j, is true (in a partial interpretation)
iff p is justified; j, is false iff =p is justified; j, is unknown
otherwise.

» Duplicate definition A to a new definition A’, obtained by a
replacing each defined atom p by j, (note: open literals
remain).

» Modify solver: forbidden to make choices on jp,.

» Claim: after the standard propagation is executed, j, satisfies
the “intended interpretation” above.

Keeping track of justified literals

Theorem

Let A be a (total) definition and Z a partial interpretation in which
all defined symbols of A are interpreted as u. Let | be a defined
literal in A. In this case | is justified in T if and only if | is
derivable by unit propagation on the completion of A and
unfounded set propagations.

Keeping track of justified literals

» Without major modifications to the solver, we obtain a
method to keep track of justified literals.

» Only modification: do not make choices on certain atoms.

Keeping track of relevant literals

Recall:

Definition
Given a PC(ID) theory 7 = {pr, A} and a partial interpretation Z,
we inductively define the set of relevant literals as follows
» p7 is relevant if py is not justified,
» [is relevant if / is not justified and there exists some /" such
that (/',/) € dda and I’ is relevant.

Keeping track of relevant literals

» For each relevant literal (except py), we maintain one
relevant parent in dda: the reason why this literal is relevant.

» Thus, we maintain a subgraph of dda.

» We incrementally update this subgraph (as the justification
status of certain literals changes)

» Biggest challenge: keeping this graph acyclic. (how to choose
the "right” parent)

Keeping track of relevant literals

» For each relevant literal (except py), we maintain one
relevant parent in dda: the reason why this literal is relevant.

» Thus, we maintain a subgraph of dda.

» We incrementally update this subgraph (as the justification
status of certain literals changes)

» Biggest challenge: keeping this graph acyclic. (how to choose
the "right” parent)

» Turns out... this cycle detection is the same problem as
tackled in unfounded set propagators.

» Only difference: works on a (slightly) different graph.

Keeping track of relevant literals

» In the paper, we also detail the used data structures and an
event-driven implementation

Experiment Setup (1)

» Problems from previous ASP competitions
» Solver = Minisatid, Heuristic = VSIDS

Experiment Setup (1)

» Problems from previous ASP competitions

» Solver = Minisatid, Heuristic = VSIDS
> Measuring

» Ratio of irrelevant decisions (%)
» Ratio of conflicts originating from irrelevant decisions (%)

Experimental Results (1)

Problem | % Irr. Decisions | % Irr. Conflicts
HP 27.37% 36.99%
NQueens 22.55% 0.43%
PPM 22.93% 4.98%
Sokoban 48.20% 0.96%
Solitaire 13.32% 3.95%
SM 96.40% 0.01%
Visit All 15.02% 16.45%

Experiment Setup (2)

» Problems from previous ASP competitions
» Solver = Minisatid, Heuristic = VSIDS

Experiment Setup (2)

» Problems from previous ASP competitions

» Solver = Minisatid, Heuristic = VSIDS
> Measuring

» Number of decisions (#)
» Number of conflicts (#)

Experimental Results (2)

Decisions Made

le+08 T T T T
1le+07 |]
@ le+06& | i
% _H_++ ;&’6‘2
8 e
B 100000 t B
AT
10000 | e i
s Without Relevance +
&+ With Relevance =
1000 - L L L . L
20 40 &0 100

Instances

Experimental Results (2)

Conflicts
le+06 T T T T T

100000 1

10000 ¢

1000 ¢

#Conflicts

100 |

10

e Without Relevance +
With Relevance ®

1 + L L L
20 40 60 80 100

Instances

Take-away messages

» Exploit problem hierarchy using

Take-away messages

» Exploit problem hierarchy using

» Preliminary promising results: fewer decisions
> A relevance tracker can be implemented reusing existing
methods:
» Justification status: unit propagation and unfounded set
propagation
» Relevance status: unfounded set algorithms

Questions?

