Implementing a Relevance Tracker Module

Joachim Jansen¹, Bart Bogaerts^{2,1}, Jo Devriendt¹ Gerda Janssens¹, Marc Denecker¹

1 KU Leuven, Belgium, firstname.lastname@kuleuven.be 2 Aalto University, Finland, bart.bogaerts@aalto.fi

October 16th, 2016

Overview

- Background: SAT(ID)
- Background: Relevance for SAT(ID)
- Implementing Relevance

PC(ID), SAT(ID)

- SAT(ID) = satisfiability check of PC(ID)
- Propositional Calculus + Inductive Definitions
- PC(ID) encoding $\mathcal{T} = \{p_{\mathcal{T}}, \Delta\}$ (normal form)
- $p_{\mathcal{T}}$ is defined in Δ ; must hold for \mathcal{T} to be satisfied.
- Relation with ASP: p_T is a single constraint, all atoms not defined in Δ are open (choice rules), Δ contains no recursion over negation (real definition)

PC(ID), SAT(ID)

- SAT(ID) = satisfiability check of PC(ID)
- Propositional Calculus + Inductive Definitions
- PC(ID) encoding $\mathcal{T} = \{p_{\mathcal{T}}, \Delta\}$ (normal form)
- $p_{\mathcal{T}}$ is defined in Δ ; must hold for \mathcal{T} to be satisfied.
- Relation with ASP: p_T is a single constraint, all atoms not defined in Δ are open (choice rules), Δ contains no recursion over negation (real definition)

Example

- Choose edges and colors of nodes s.t.
 - node b is reachable from a
 - every node reachable from a is colored green

Example (continued)

ĺ	ρ _T	\leftarrow	$\mathit{reach}_b \land \mathit{constr}_1 \land \mathit{constr}_2 \land \mathit{constr}_3.$
$\Delta = \left\{ {} \right.$	constr ₁ constr ₂ constr ₃	$\leftarrow \leftarrow \leftarrow$	$\neg reach_a \lor green_a.$ $\neg reach_b \lor green_b.$ $\neg reach_c \lor green_c.$
	reach _a reach _b	←	$case_1 \lor case_2.$
	case ₁	\leftarrow	$reach_a \wedge edge_{a,b}$.
	case ₂	\leftarrow	$reach_c \wedge edge_{c,b}.$
l	reach _c	\leftarrow	$reach_b \wedge edge_{b,c}.$

- reach_x = node x is reachable from a
- constr_x = color constraints on node x

- $green_x = node x$ is green
- edge_{x,y} = edge from x to y selected

SAT(ID) solver

Typically, a SAT(ID) solver searches for an assignment (true/false) to all atoms such that T is satisfied

Visualising the hierarchy

Justifications

- Defined by Denecker and De Schreye (1993) and Denecker, Brewka and Strass (2015)
- Intuitively, a literal is *justified* given a partial assignment if there exists a (recursive) explanation why it must hold in terms of true open literals.

Justifications

- Defined by Denecker and De Schreye (1993) and Denecker, Brewka and Strass (2015)
- Intuitively, a literal is *justified* given a partial assignment if there exists a (recursive) explanation why it must hold in terms of true open literals.
- If a literal is justified in a partial assignment, then there exists a model of Δ in which that literal holds.
- ► Thus... it suffices to prove that p_T is *justified* in some partial interpretation to conclude that T is satisfiable.

Searching assignment \rightarrow searching *justification*

Relevance

Definition

Given a PC(ID) theory $\mathcal{T} = \{p_{\mathcal{T}}, \Delta\}$ and a partial interpretation \mathcal{I} , we inductively define the set of relevant literals, denoted $\mathcal{R}_{\mathcal{T},\mathcal{I}}$, as follows

- p_T is relevant if p_T is not justified,
- I is relevant if l is not justified and there exists some l' such that (l', l) ∈ dd_∆ and l' is relevant.

Adjusting the Solver

- Decide only on *Relevant* literals.
- Stop search when p_T is justified
 - Guarantee that a two-valued solution can be generated efficiently
 - More tolerant to faulty choices of the solver
 - Expectation: less choices made by solver

Implementation

- How to keep track of justified literals?
- How to keep track of relevant literals?

Keeping track of justified literals

- For each defined atom p, introduce a new atom j_p .
- Intended interpretation: j_p is true (in a partial interpretation) iff p is justified; j_p is false iff ¬p is justified; j_p is unknown otherwise.
- Duplicate definition Δ to a new definition Δ', obtained by a replacing each defined atom p by j_p (note: open literals remain).
- ▶ Modify solver: forbidden to make choices on *j*_p.
- Claim: after the standard propagation is executed, j_p satisfies the "intended interpretation" above.

Keeping track of justified literals

Theorem

Let Δ be a (total) definition and \mathcal{I} a partial interpretation in which all defined symbols of Δ are interpreted as **u**. Let I be a defined literal in Δ . In this case I is justified in \mathcal{I} if and only if I is derivable by unit propagation on the completion of Δ and unfounded set propagations.

Keeping track of justified literals

- Without major modifications to the solver, we obtain a method to keep track of justified literals.
- Only modification: do not make choices on certain atoms.

Recall:

Definition

Given a PC(ID) theory $\mathcal{T} = \{p_{\mathcal{T}}, \Delta\}$ and a partial interpretation \mathcal{I} , we inductively define the set of relevant literals as follows

- p_T is relevant if p_T is not justified,
- I is relevant if I is not justified and there exists some I' such that (I', I) ∈ dd_∆ and I' is relevant.

- For each relevant literal (except p_T), we maintain one relevant parent in dd_∆: the reason why this literal is relevant.
- Thus, we maintain a subgraph of dd_{Δ} .
- We incrementally update this subgraph (as the justification status of certain literals changes)
- Biggest challenge: keeping this graph acyclic. (how to choose the "right" parent)

- For each relevant literal (except p_T), we maintain one relevant parent in dd_∆: the reason why this literal is relevant.
- Thus, we maintain a subgraph of dd_{Δ} .
- We incrementally update this subgraph (as the justification status of certain literals changes)
- Biggest challenge: keeping this graph acyclic. (how to choose the "right" parent)
- Turns out... this cycle detection is the same problem as tackled in unfounded set propagators.
- Only difference: works on a (slightly) different graph.

In the paper, we also detail the used data structures and an event-driven implementation

Experiment Setup (1)

- Problems from previous ASP competitions
- Solver = Minisatid, Heuristic = VSIDS

Experiment Setup (1)

- Problems from previous ASP competitions
- Solver = Minisatid, Heuristic = VSIDS
- Measuring
 - Ratio of irrelevant decisions (%)
 - ▶ Ratio of conflicts originating from irrelevant decisions (%)

Experimental Results (1)

Problem	% Irr. Decisions	% Irr. Conflicts
HP	27.37%	36.99%
NQueens	22.55%	0.43%
PPM	22.93%	4.98%
Sokoban	48.20%	0.96%
Solitaire	13.32%	3.95%
SM	96.40%	0.01%
Visit All	15.02%	16.45%

Experiment Setup (2)

- Problems from previous ASP competitions
- Solver = Minisatid, Heuristic = VSIDS

Experiment Setup (2)

- Problems from previous ASP competitions
- Solver = Minisatid, Heuristic = VSIDS
- Measuring
 - Number of decisions (#)
 - Number of conflicts (#)

Experimental Results (2)

#Decisions

Decisions Made

Instances

Experimental Results (2)

#Conflicts

• Exploit problem hierarchy using *Relevance*

Take-away messages

- Exploit problem hierarchy using *Relevance*
- Preliminary promising results: fewer decisions
- A relevance tracker can be *implemented* reusing existing methods:
 - Justification status: unit propagation and unfounded set propagation
 - Relevance status: unfounded set algorithms

Questions?