
Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Knowledge Compilation of Logic Programs Using
Approximation Fixpoint Theory

Bart Bogaerts and Guy Van den Broeck
Presenter: Joost Vennekens

ICLP 2015

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Content

1 Knowledge Compilation

2 Bottom-Up Knowledge Compilation for Monotone Logic
Programs

3 Bottom-Up Knowledge Compilation for Non-Monotone Logic
Programs

4 Knowledge Compilation: An Algebraical Perspective

5 Conclusion

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Content

1 Knowledge Compilation

2 Bottom-Up Knowledge Compilation for Monotone Logic
Programs

3 Bottom-Up Knowledge Compilation for Non-Monotone Logic
Programs

4 Knowledge Compilation: An Algebraical Perspective

5 Conclusion

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Knowledge Compilation: What?

Given:

Theory T in language L.

Find:

Equivalent theory T ′ in language L′ with attractive properties.

E.g., if L′ is the language of SDDs: the following inference
methods are polytime:

Validity checking,
Consistency checking,
Equivalence checking,
Model enumeration,
(Weighted) model counting.
. . .

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Knowledge Compilation: What?

Given:

Theory T in language L.

Find:

Equivalent theory T ′ in language L′ with attractive properties.
E.g., if L′ is the language of SDDs: the following inference
methods are polytime:

Validity checking,
Consistency checking,
Equivalence checking,
Model enumeration,
(Weighted) model counting.
. . .

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Knowledge Compilation: Why?

Compile once, evaluate often.

Reuse (off-line) compilation.

Reduction of problems in L to problems in L′.

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Knowledge Compilation: How?

In this talk, L is the language of propositional logic programs
(parametrised well-founded semantics)

L′ is the language of SDDs (Sentential Decision Diagrams)
(but it could be any representation of propositional formulas)

State of the art:

Transform logic program P to CNF (completion + loop
breaking formulas)
Transform the CNF to an SDD

Disadvantages

Many auxiliary variables are introduced
Expensive pre-processing (loop breaking) not always feasible

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Knowledge Compilation: How?

In this talk, L is the language of propositional logic programs
(parametrised well-founded semantics)

L′ is the language of SDDs (Sentential Decision Diagrams)
(but it could be any representation of propositional formulas)

State of the art:

Transform logic program P to CNF (completion + loop
breaking formulas)
Transform the CNF to an SDD

Disadvantages

Many auxiliary variables are introduced
Expensive pre-processing (loop breaking) not always feasible

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Example

{
R(x , y)← E (x , y).

R(x , y)← E (x , z) ∧ R(z , y).

}
a99

** bjj ff

R(a, a)⇐ E (a, a) ∨ (E (a, b) ∧ R(b, a)) ∨ (E (a, a) ∧ R(a, a)).

R(a, b)⇐ E (a, b) ∨ (E (a, a) ∧ R(a, b)) ∨ (E (a, b) ∧ R(b, b)).

R(b, b)⇐ E (b, b) ∨ (E (b, a) ∧ R(a, b)) ∨ (E (b, b) ∧ R(b, b)).

R(b, a)⇐ E (b, a) ∨ (E (b, b) ∧ R(b, a)) ∨ (E (b, a) ∧ R(a, a)).

R(a, a)⇒ E (a, a) ∨ (E (a, b) ∧ R(b, a) ∧ T1) ∨ (E (a, a) ∧ R(a, a) ∧ f).

R(a, b)⇒ E (a, b) ∨ (E (a, a) ∧ R(a, b) ∧ f) ∨ (E (a, b) ∧ R(b, b) ∧ T2).

R(b, b)⇒ E (b, b) ∨ (E (b, a) ∧ R(a, b) ∧ ¬T2) ∨ (E (b, b) ∧ R(b, b) ∧ f).

R(b, a)⇒ E (b, a) ∨ (E (b, b) ∧ R(b, a) ∧ f) ∨ (E (b, a) ∧ R(a, a) ∧ ¬T1).

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Example

{
R(x , y)← E (x , y).

R(x , y)← E (x , z) ∧ R(z , y).

}
a99

** bjj ff

R(a, a)⇐ E (a, a) ∨ (E (a, b) ∧ R(b, a)) ∨ (E (a, a) ∧ R(a, a)).

R(a, b)⇐ E (a, b) ∨ (E (a, a) ∧ R(a, b)) ∨ (E (a, b) ∧ R(b, b)).

R(b, b)⇐ E (b, b) ∨ (E (b, a) ∧ R(a, b)) ∨ (E (b, b) ∧ R(b, b)).

R(b, a)⇐ E (b, a) ∨ (E (b, b) ∧ R(b, a)) ∨ (E (b, a) ∧ R(a, a)).

R(a, a)⇒ E (a, a) ∨ (E (a, b) ∧ R(b, a) ∧ T1) ∨ (E (a, a) ∧ R(a, a) ∧ f).

R(a, b)⇒ E (a, b) ∨ (E (a, a) ∧ R(a, b) ∧ f) ∨ (E (a, b) ∧ R(b, b) ∧ T2).

R(b, b)⇒ E (b, b) ∨ (E (b, a) ∧ R(a, b) ∧ ¬T2) ∨ (E (b, b) ∧ R(b, b) ∧ f).

R(b, a)⇒ E (b, a) ∨ (E (b, b) ∧ R(b, a) ∧ f) ∨ (E (b, a) ∧ R(a, a) ∧ ¬T1).

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Example

{
R(x , y)← E (x , y).

R(x , y)← E (x , z) ∧ R(z , y).

}
a99

** bjj ff

R(a, a)⇔ E (a, a) ∨ (E (a, b) ∧ E (b, a)).

R(a, b)⇔ E (a, b).

R(b, a)⇔ E (b, a).

R(b, b)⇔ E (b, b) ∨ (E (b, a) ∧ E (a, b)).

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Situation

IJCAI’15 “Anytime inference in probabilistic logic programs
with TP -compilation” (Vlasselaer et al):

New bottom-up knowledge compilation for positive logic
programs
Improved efficiency
Enables approximate inference

This paper:

Generalisation for generalised logic program under
parametrised well-founded semantics
Generalisation to algebraical setting (Approximation Fixpoint
Theory)

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Content

1 Knowledge Compilation

2 Bottom-Up Knowledge Compilation for Monotone Logic
Programs

3 Bottom-Up Knowledge Compilation for Non-Monotone Logic
Programs

4 Knowledge Compilation: An Algebraical Perspective

5 Conclusion

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Reachability

{
R(x , y)← E (x , y).

R(x , y)← E (x , z) ∧ R(z , y).

}

a b

c

R(a, b) = f

tf tt

R(b, a) = f

ff ff

R(a, c) = f

ft tt

R(c, a) = f

ff ff

R(b, c) = f

tf tf

R(c , b) = f

ft ft

· · ·

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Reachability

{
R(x , y)← E (x , y).

R(x , y)← E (x , z) ∧ R(z , y).

}
a // b

��

c

R(a, b) = f

tf tt

R(b, a) = f

ff ff

R(a, c) = f

ft tt

R(c, a) = f

ff ff

R(b, c) = f

tf tf

R(c , b) = f

ft ft

· · ·

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Reachability

{
R(x , y)← E (x , y).

R(x , y)← E (x , z) ∧ R(z , y).

}
a // b

��

c

R(a, b) = f

tf tt

R(b, a) = f

ff ff

R(a, c) = f

ft tt

R(c, a) = f

ff ff

R(b, c) = f

tf tf

R(c , b) = f

ft ft

· · ·

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Reachability

{
R(x , y)← E (x , y).

R(x , y)← E (x , z) ∧ R(z , y).

}
a // b

��

c

R(a, b) = f t

f tt

R(b, a) = f f

f ff

R(a, c) = f f

t tt

R(c, a) = f f

f ff

R(b, c) = f t

f tf

R(c , b) = f f

t ft

· · ·

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Reachability

{
R(x , y)← E (x , y).

R(x , y)← E (x , z) ∧ R(z , y).

}
a // b

��

c

R(a, b) = f t

f

t

t

R(b, a) = f f

f

f

f

R(a, c) = f f

t

t

t

R(c, a) = f f

f

f

f

R(b, c) = f t

f

t

f

R(c , b) = f f

t

f

t

· · ·

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Reachability

{
R(x , y)← E (x , y).

R(x , y)← E (x , z) ∧ R(z , y).

}
a

��

b

c

??

R(a, b) = f

tf tt

R(b, a) = f

ff ff

R(a, c) = f

ft tt

R(c, a) = f

ff ff

R(b, c) = f

tf tf

R(c , b) = f

ft ft

· · ·

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Reachability

{
R(x , y)← E (x , y).

R(x , y)← E (x , z) ∧ R(z , y).

}
a

��

b

c

??

R(a, b) = f

t

f

tt

R(b, a) = f

f

f

ff

R(a, c) = f

f

t

tt

R(c, a) = f

f

f

ff

R(b, c) = f

t

f

tf

R(c , b) = f

f

t

ft

· · ·

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Reachability

{
R(x , y)← E (x , y).

R(x , y)← E (x , z) ∧ R(z , y).

}
a

��

b

c

??

R(a, b) = f

t

f

t

t

R(b, a) = f

f

f

f

f

R(a, c) = f

f

t

t

t

R(c, a) = f

f

f

f

f

R(b, c) = f

t

f

t

f

R(c , b) = f

f

t

f

t

· · ·

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Observations

For every graph: similar process.

Lots of overlap.

Least fixpoint computation = sequence of interpretations.

Idea: Generalise this. Execute this fixpoint computation once,
symbolically.

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Parametrised well-founded semantics

P: parametrised logic program

Σd : defined symbols
Σp: parameter symbols

For every Σp-interpretation I : P defines the well-founded
model of P in context I (a Σd -interpretation), denoted
WFM(P, I)
= Parametrised well-founded semantics

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Symbolic Interpretations

Σd -interpretation: mapping Σd → {t, f}: state in the least
fixpoint computation

Symbolic Σd -interpretation A: mapping
Σd → {formulas over Σp} (modulo equivalence)

Will be a state in a symbolic least fixpoint computation

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Symbolic Least Fixpoint Computation

{
R(x , y)← E (x , y).

R(x , y)← E (x , z) ∧ R(z , y).

}
a

��

++ boo

wwc

??WW

R(a, b) = f

E (a, b) E (a, b) ∨ (E (a, c) ∧ E (c , a)) ∨ . . .

R(b, a) = f

E (b, a) E (b, a) ∨ (E (b, c) ∧ E (c, a)) ∨ . . .

R(c , a) = f

E (c , a) E (c , a) ∨ (E (c , b) ∧ E (b, a)) ∨ . . .

· · ·

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Symbolic Least Fixpoint Computation

{
R(x , y)← E (x , y).

R(x , y)← E (x , z) ∧ R(z , y).

}
a

��

++ boo

wwc

??WW

R(a, b) = f

E (a, b) E (a, b) ∨ (E (a, c) ∧ E (c , a)) ∨ . . .

R(b, a) = f

E (b, a) E (b, a) ∨ (E (b, c) ∧ E (c, a)) ∨ . . .

R(c , a) = f

E (c , a) E (c , a) ∨ (E (c , b) ∧ E (b, a)) ∨ . . .

· · ·

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Symbolic Least Fixpoint Computation

{
R(x , y)← E (x , y).

R(x , y)← E (x , z) ∧ R(z , y).

}
a

��

++ boo

wwc

??WW

R(a, b) = f E (a, b)

E (a, b) ∨ (E (a, c) ∧ E (c , a)) ∨ . . .

R(b, a) = f E (b, a)

E (b, a) ∨ (E (b, c) ∧ E (c, a)) ∨ . . .

R(c , a) = f E (c , a)

E (c , a) ∨ (E (c , b) ∧ E (b, a)) ∨ . . .

· · ·

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Symbolic Least Fixpoint Computation

{
R(x , y)← E (x , y).

R(x , y)← E (x , z) ∧ R(z , y).

}
a

��

++ boo

wwc

??WW

R(a, b) = f E (a, b) E (a, b) ∨ (E (a, c) ∧ E (c , a)) ∨ . . .
R(b, a) = f E (b, a) E (b, a) ∨ (E (b, c) ∧ E (c, a)) ∨ . . .
R(c , a) = f E (c , a) E (c , a) ∨ (E (c , b) ∧ E (b, a)) ∨ . . .
· · ·

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Content

1 Knowledge Compilation

2 Bottom-Up Knowledge Compilation for Monotone Logic
Programs

3 Bottom-Up Knowledge Compilation for Non-Monotone Logic
Programs

4 Knowledge Compilation: An Algebraical Perspective

5 Conclusion

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Negation

Least fixpoint computation only works for monotone logic
programs.

What about negation?

For the standard (non-parametrised) well-founded semantics:
solved by Van Gelder, Ross and Schlipf (1991).

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Well-founded model construction


p← q ∨ s

q← p

r ← ¬p



s =

p = u

tf tf t

q = u

uf tf t

r = u

uu ut f

· · ·

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Well-founded model construction


p← q ∨ s

q← p

r ← ¬p

 s = t

p = u

tf tf t

q = u

uf tf t

r = u

uu ut f

· · ·

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Well-founded model construction


p← q ∨ s

q← p

r ← ¬p

 s = t

p = u

tf tf t

q = u

uf tf t

r = u

uu ut f

· · ·

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Well-founded model construction


p← q ∨ s

q← p

r ← ¬p

 s = t

p = u t

f tf t

q = u u

f tf t

r = u u

u ut f

· · ·

Rule application

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Well-founded model construction


p← q ∨ s

q← p

r ← ¬p

 s = t

p = u t

f

t

f t

q = u u

f

t

f t

r = u u

u

u

t f

· · ·

Rule application

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Well-founded model construction


p← q ∨ s

q← p

r ← ¬p

 s = t

p = u t

f

t

f

t

q = u u

f

t

f

t

r = u u

u

u

t

f

· · ·

Rule application

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Well-founded model construction


p← q ∨ s

q← p

r ← ¬p

 s = f

p = u

tf tf t

q = u

uf tf t

r = u

uu ut f

· · ·

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Well-founded model construction


p← q ∨ s

q← p

r ← ¬p

 s = f

p = u

t

f

tf t

q = u

u

f

tf t

r = u

u

u

ut f

· · ·

Unfounded set

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Well-founded model construction


p← q ∨ s

q← p

r ← ¬p

 s = f

p = u

t

f

t

f

t

q = u

u

f

t

f

t

r = u

u

u

u

t

f

· · ·

Rule application

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Observations

For every Σp-interpretation: similar process

Lots of overlap

Well-founded model computation = sequence of partial
interpretations

Idea: Generalise this. Execute this fixpoint computation once,
symbolically.

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Parametrised well-founded semantics

P: parametrised logic program

Σd : defined symbols
Σp: parameter symbols

For every Σp-interpretation I : P defines the well-founded
model of P in context I (a Σd -interpretation), denoted
WFM(P, I)
= Parametrised well-founded semantics

Now: compute PWFM(P)

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Parametrised well-founded semantics

P: parametrised logic program

Σd : defined symbols
Σp: parameter symbols

For every Σp-interpretation I : P defines the well-founded
model of P in context I (a Σd -interpretation), denoted
WFM(P, I)
= Parametrised well-founded semantics

Now: compute PWFM(P)

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Symbolic Partial Interpretations

Partial interpretation: mapping Σd → {t, f,u(, i)}: state in
the well-founded model computation.

Alternative representation: mapping Σd → {t, f} × {t, f}
(certain, possible)

(t, t) = t
(f, f) = f
(f, t) = u
(t, f) = i

Symbolic partial interpretation:
mapping Σd → {formulas over Σp} × {formulas over Σp}
(modulo equivalence)

Will be a state in a symbolic well-founded model computation

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Symbolic well-founded model construction


p← q ∨ s

q← p

r ← ¬p



pc = f

f ∨

s s s s

pp = t

t t s s

qc = f

f s s s

qp = t

t t s s

rc = f

f f f ¬s

rp = t

t ¬s ¬s ¬s

· · ·

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Symbolic well-founded model construction


p← q ∨ s

q← p

r ← ¬p


pc = f

f ∨

s s s s

pp = t

t t s s

qc = f

f s s s

qp = t

t t s s

rc = f

f f f ¬s

rp = t

t ¬s ¬s ¬s

· · ·

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Symbolic well-founded model construction


p← q ∨ s

q← p

r ← ¬p


pc = f f ∨ s

s s s

pp = t t

t s s

qc = f f

s s s

qp = t t

t s s

rc = f f

f f ¬s

rp = t t

¬s ¬s ¬s

· · ·

Rule application

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Symbolic well-founded model construction


p← q ∨ s

q← p

r ← ¬p


pc = f

f ∨

s s

s s

pp = t t t

s s

qc = f f s

s s

qp = t t t

s s

rc = f f f

f ¬s

rp = t t ¬s

¬s ¬s

· · ·

Rule application

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Symbolic well-founded model construction


p← q ∨ s

q← p

r ← ¬p


pc = f

f ∨

s s s

s

pp = t t t s

s

qc = f f s s

s

qp = t t t s

s

rc = f f f f

¬s

rp = t t ¬s ¬s

¬s

· · ·

Unfounded set

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Symbolic well-founded model construction


p← q ∨ s

q← p

r ← ¬p


pc = f

f ∨

s s s s

pp = t t t s s

qc = f f s s s

qp = t t t s s

rc = f f f f ¬s
rp = t t ¬s ¬s ¬s
· · ·

Rule application

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Symbolic well-founded model


p← q ∨ s

q← p

r ← ¬p


Symbolic interpretation: p 7→ s, q 7→ s, r 7→ ¬s

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Knowledge Compilation


p← q ∨ s

q← p

r ← ¬p


Propositional theory: (p ⇔ s) ∧ (q ⇔ s) ∧ (r ⇔ ¬s)

Non-recursive logic program:
p← s.

q← s.

r ←¬s.



Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Knowledge Compilation


p← q ∨ s

q← p

r ← ¬p



Propositional theory: (p ⇔ s) ∧ (q ⇔ s) ∧ (r ⇔ ¬s)

Non-recursive logic program:
p← s.

q← s.

r ←¬s.



Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Content

1 Knowledge Compilation

2 Bottom-Up Knowledge Compilation for Monotone Logic
Programs

3 Bottom-Up Knowledge Compilation for Non-Monotone Logic
Programs

4 Knowledge Compilation: An Algebraical Perspective

5 Conclusion

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Background: Approximation Fixpoint Theory

Algebraical theory

Defines different types of fixpoints of lattice operators

Supported fixpoints
(Partial) stable fixpoints
Kripke-Kleene fixpoint
Well-founded fixpoint

Captures semantics of many logical formalisms

Logic programming
Autoepistemic logic (Moore, 1985)
Default logic (Reiter, 1980)
Dung’s argumentation frameworks (Dung, 1995)
Abstract dialectical frameworks (Brewka and Woltran, 2013)

(Denecker, Marek, Truszczyński, 2000)

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Background: Approximation Fixpoint Theory

Given:

(Logic programming)

Complete lattice 〈L,≤〉

(Lattice of interpretations: 〈2Σd ,⊆〉)

Bilattice 〈L2, ≤p 〉

(Partial interpretations)

Lattice operator O : L→ L

(TP)

Approximator A : L2 → L2

(ΨP)

Define:

Supported fixpoint: fixpoint of O

(Supported model)(Clark,
1978)

A-Kripke-Kleene fixpoint: lfp≤p
A

(Kripke-Kleene semantics)
(Fitting, 1985)

Partial A-stable fixpoint: pair (x , y) such that x = lfp(A(·, y)1)
and y = lfp(A(x , ·)2)

(Partial stable model)

A-well-founded fixpoint: least precise partial A-stable fixpoint

(Well-founded model) (Van Gelder, Ross and Schilpf, 1988)

A-stable fixpoint of O: fixpoint x of O such that (x , x) is a
partial A-stable fixpoint

(Stable model) (Gelfond and Lifschitz,
1988)

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Background: Approximation Fixpoint Theory

Given: (Logic programming)

Complete lattice 〈L,≤〉 (Lattice of interpretations: 〈2Σd ,⊆〉)
Bilattice 〈L2, ≤p 〉 (Partial interpretations)
Lattice operator O : L→ L (TP)
Approximator A : L2 → L2 (ΨP)

Define:

Supported fixpoint: fixpoint of O (Supported model)(Clark,
1978)
A-Kripke-Kleene fixpoint: lfp≤p

A (Kripke-Kleene semantics)
(Fitting, 1985)
Partial A-stable fixpoint: pair (x , y) such that x = lfp(A(·, y)1)
and y = lfp(A(x , ·)2) (Partial stable model)
A-well-founded fixpoint: least precise partial A-stable fixpoint
(Well-founded model) (Van Gelder, Ross and Schilpf, 1988)
A-stable fixpoint of O: fixpoint x of O such that (x , x) is a
partial A-stable fixpoint (Stable model) (Gelfond and Lifschitz,
1988)

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Background: Approximation Fixpoint Theory

Well-founded induction (Denecker and Vennekens, 2007):

Algebraical generalisation of well-founded model computation
Constructive characterisation of the well-founded fixpoint
Sequence of bilattice elements (partial interpretations)
Transitions similar to “rule application” and “unfounded set
computation”

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Extending AFT

1 Studied the link between well-founded inductions of different
operators

2 (For logic programming): defined symbolic versions of TP and
ΨP (called TP and ΨP respectively)

3 Applying (1): well-founded induction of ΨP : fixpoint
procedure to compute the parametrised well-founded model

4 Any-time algorithm for approximate inference

Theorem

Let P be a parametrised logic program with parametrised
well-founded model (A,A). Let (Ai ,A′i)i≤β be a well-founded
induction of ΨP . Then

WMC (Ai , ϕ,W) ≤WMC (A, ϕ,W) ≤WMC (A′i , ϕ,W).

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Extending AFT

1 Studied the link between well-founded inductions of different
operators

2 (For logic programming): defined symbolic versions of TP and
ΨP (called TP and ΨP respectively)

3 Applying (1): well-founded induction of ΨP : fixpoint
procedure to compute the parametrised well-founded model

4 Any-time algorithm for approximate inference

Theorem

Let P be a parametrised logic program with parametrised
well-founded model (A,A). Let (Ai ,A′i)i≤β be a well-founded
induction of ΨP . Then

WMC (Ai , ϕ,W) ≤WMC (A, ϕ,W) ≤WMC (A′i , ϕ,W).

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Content

1 Knowledge Compilation

2 Bottom-Up Knowledge Compilation for Monotone Logic
Programs

3 Bottom-Up Knowledge Compilation for Non-Monotone Logic
Programs

4 Knowledge Compilation: An Algebraical Perspective

5 Conclusion

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Advantages

Advantages of this approach for logic programming

No auxiliary variables needed

Preserves equivalence

No loop-breaking preprocessing

Any-time algorithm

Works with any type of circuits (“propositional formulas
modulo equivalence”) that support bottom-up compilation

Advantages of using AFT

Paves the way for knowledge compilation for autoepistemic
logic, default logic, abstract argumentation, . . .

Knowledge compilation for Kripke-Kleene semantics

Simple (but abstract) proofs of correctness

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Advantages

Advantages of this approach for logic programming

No auxiliary variables needed

Preserves equivalence

No loop-breaking preprocessing

Any-time algorithm

Works with any type of circuits (“propositional formulas
modulo equivalence”) that support bottom-up compilation

Advantages of using AFT

Paves the way for knowledge compilation for autoepistemic
logic, default logic, abstract argumentation, . . .

Knowledge compilation for Kripke-Kleene semantics

Simple (but abstract) proofs of correctness

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion

Conclusion

Main contributions:

Lifted knowledge compilation principles to general logic
programs

Lifted knowledge compilation principles to AFT

Work in progress:

Implementation and experiments

Knowledge compilation for stable semantics

	Knowledge Compilation
	Bottom-Up Knowledge Compilation for Monotone Logic Programs
	Bottom-Up Knowledge Compilation for Non-Monotone Logic Programs
	Knowledge Compilation: An Algebraical Perspective
	Conclusion

