Knowledge Compilation	Monotone 000000	Non-Monotone 00000000	Algebraical 00000	Conclusion

Knowledge Compilation of Logic Programs Using Approximation Fixpoint Theory

Bart Bogaerts and Guy Van den Broeck Presenter: Joost Vennekens

ICLP 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Knowledge Compilation	Monotone 000000	Non-Monotone 00000000	Algebraical 00000	Conclusion
Content				

- Knowledge Compilation
- Bottom-Up Knowledge Compilation for Monotone Logic Programs
- Bottom-Up Knowledge Compilation for Non-Monotone Logic Programs

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

4 Knowledge Compilation: An Algebraical Perspective

5 Conclusion

Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion
●00000	000000	00000000	00000	000
Content				

In Knowledge Compilation

- 2 Bottom-Up Knowledge Compilation for Monotone Logic Programs
- 3 Bottom-Up Knowledge Compilation for Non-Monotone Logic Programs

4 Knowledge Compilation: An Algebraical Perspective

5 Conclusion

• Given:

- Theory \mathcal{T} in language \mathcal{L} .
- Find:
 - $\bullet\,$ Equivalent theory \mathcal{T}' in language \mathcal{L}' with attractive properties.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Knowledge Compilation: What?

• Given:

- Theory \mathcal{T} in language \mathcal{L} .
- Find:
 - Equivalent theory \mathcal{T}' in language \mathcal{L}' with attractive properties. E.g., if \mathcal{L}' is the language of SDDs: the following inference methods are polytime:

- Validity checking,
- Consistency checking,
- Equivalence checking,
- Model enumeration,
- (Weighted) model counting.
- . . .

000000	000000	00000000	00000	000
Knowledge Co	mpilation: '	Whv?		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Compile once, evaluate often.
- Reuse (off-line) compilation.
- \bullet Reduction of problems in ${\cal L}$ to problems in ${\cal L}'.$

- In this talk, \mathcal{L} is the language of propositional logic programs (parametrised well-founded semantics)
- L' is the language of SDDs (Sentential Decision Diagrams) (but it could be any representation of propositional formulas)
- State of the art:
 - Transform logic program \mathcal{P} to CNF (completion + loop breaking formulas)

• Transform the CNF to an SDD

- In this talk, \mathcal{L} is the language of propositional logic programs (parametrised well-founded semantics)
- L' is the language of SDDs (Sentential Decision Diagrams) (but it could be any representation of propositional formulas)
- State of the art:
 - Transform logic program \mathcal{P} to CNF (completion + loop breaking formulas)
 - Transform the CNF to an SDD
- Disadvantages
 - Many auxiliary variables are introduced
 - Expensive pre-processing (loop breaking) not always feasible

Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion
0000●0	000000	00000000	00000	000
Example				

 $\left\{\begin{array}{l} R(x,y) \leftarrow E(x,y).\\ R(x,y) \leftarrow E(x,z) \land R(z,y). \end{array}\right\} \qquad \bigcirc a \longleftarrow b \bigcirc$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion
0000●0	000000	00000000	00000	
Example				

$$\left\{ \begin{array}{l} R(x,y) \leftarrow E(x,y). \\ R(x,y) \leftarrow E(x,z) \land R(z,y). \end{array} \right\} \qquad \bigcirc a \rightleftharpoons b \searrow b_{y}$$

$$\begin{split} &R(a,a) \Leftarrow E(a,a) \lor (E(a,b) \land R(b,a)) \lor (E(a,a) \land R(a,a)).\\ &R(a,b) \Leftarrow E(a,b) \lor (E(a,a) \land R(a,b)) \lor (E(a,b) \land R(b,b)).\\ &R(b,b) \Leftarrow E(b,b) \lor (E(b,a) \land R(a,b)) \lor (E(b,b) \land R(b,b)).\\ &R(b,a) \Leftarrow E(b,a) \lor (E(b,b) \land R(b,a)) \lor (E(b,a) \land R(a,a)).\\ &R(a,a) \Rightarrow E(a,a) \lor (E(a,b) \land R(b,a) \land T_1) \lor (E(a,a) \land R(a,a) \land \mathbf{f}).\\ &R(a,b) \Rightarrow E(a,b) \lor (E(a,a) \land R(a,b) \land \mathbf{f}) \lor (E(a,b) \land R(b,b) \land T_2).\\ &R(b,b) \Rightarrow E(b,b) \lor (E(b,a) \land R(a,b) \land \mathbf{f}) \lor (E(b,b) \land R(b,b) \land \mathbf{f}).\\ &R(b,a) \Rightarrow E(b,a) \lor (E(b,b) \land R(b,a) \land \mathbf{f}) \lor (E(b,a) \land R(a,a) \land \mathbf{f}). \end{split}$$

Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion
0000€0	000000	00000000	00000	
Example				

$$\begin{cases} R(x,y) \leftarrow E(x,y).\\ R(x,y) \leftarrow E(x,z) \land R(z,y). \end{cases}$$

$$R(a,a) \Leftrightarrow E(a,a) \lor (E(a,b) \land E(b,a)).$$

$$R(a,b) \Leftrightarrow E(a,b).$$

$$R(b,a) \Leftrightarrow E(b,a).$$

$$R(b,b) \Leftrightarrow E(b,b) \lor (E(b,a) \land E(a,b)).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion
00000●	000000		00000	000
Situation				

- IJCAI'15 "Anytime inference in probabilistic logic programs with $T_{\mathcal{P}}$ -compilation" (Vlasselaer et al):
 - New *bottom-up* knowledge compilation for positive logic programs
 - Improved efficiency
 - Enables approximate inference
- This paper:
 - Generalisation for generalised logic program under parametrised well-founded semantics
 - Generalisation to algebraical setting (*Approximation Fixpoint Theory*)

Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion
	●00000	00000000	00000	000
Content				

- Knowledge Compilation
- Bottom-Up Knowledge Compilation for Monotone Logic Programs
- Bottom-Up Knowledge Compilation for Non-Monotone Logic Programs

4 Knowledge Compilation: An Algebraical Perspective

5 Conclusion

Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion
	○●○○○○	00000000	00000	000
Reachability				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\left\{\begin{array}{l} R(x,y) \leftarrow E(x,y).\\ R(x,y) \leftarrow E(x,z) \wedge R(z,y). \end{array}\right\}$$

Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion
	○●○○○○	00000000	00000	000
Reachability				

$$\left\{\begin{array}{c} R(x,y) \leftarrow E(x,y).\\ R(x,y) \leftarrow E(x,z) \land R(z,y). \end{array}\right\} \qquad \begin{array}{c} a \longrightarrow b\\ c \swarrow \end{array}$$

◆□ ▶ ◆■ ▶ ◆ ■ ◆ ● ◆ ● ◆ ● ◆

Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion
	○●○○○○	00000000	00000	000
Reachability				

$$\left\{ \begin{array}{c} R(x,y) \leftarrow E(x,y). \\ R(x,y) \leftarrow E(x,z) \land R(z,y). \end{array} \right\} \qquad a \longrightarrow b \\ c^{\checkmark} \end{array}$$

f

$$R(a, b) = f$$

$$R(b, a) = f$$

$$R(a, c) = f$$

$$R(c, a) = f$$

$$R(b, c) = f$$

$$R(c, b) = f$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Knowledge Compilation	Monotone ○●○○○○	Non-Monotone 00000000	Algebraical 00000	Conclusion
Reachability				

$$\left\{\begin{array}{c} R(x,y) \leftarrow E(x,y).\\ R(x,y) \leftarrow E(x,z) \land R(z,y).\end{array}\right\} \qquad a \longrightarrow b$$

$$R(a, b) =$$
ft $R(b, a) =$ ff $R(a, c) =$ ff $R(c, a) =$ ff $R(b, c) =$ ft $R(c, b) =$ ff

. . .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Knowledge Compilation	Monotone 0●0000	Non-Monotone 00000000	Algebraical 00000	Conclusion
Reachability				

$$\left\{\begin{array}{c} R(x,y) \leftarrow E(x,y).\\ R(x,y) \leftarrow E(x,z) \land R(z,y). \end{array}\right\} \qquad \begin{array}{c} a \longrightarrow b\\ c \swarrow \end{array}$$

$$R(a,b) =$$
ftt $R(b,a) =$ fff $R(a,c) =$ fft $R(c,a) =$ fff $R(b,c) =$ ftt $R(c,b) =$ fff

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Knowledge Compilation	Monotone ⊙●○○○○	Non-Monotone 00000000	Algebraical 00000	Conclusion
Reachability				

$$R(a, b) = f$$

$$R(b, a) = f$$

$$R(a, c) = f$$

$$R(c, a) = f$$

$$R(b, c) = f$$

$$R(c, b) = f$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Knowledge Compilation	Monotone ⊙●○○○○	Non-Monotone 00000000	Algebraical 00000	Conclusion
Reachability				

$$\left\{\begin{array}{c} R(x,y) \leftarrow E(x,y).\\ R(x,y) \leftarrow E(x,z) \land R(z,y). \end{array}\right\} \qquad \begin{array}{c} a \qquad b \\ c \qquad \end{array}\right\}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

$$R(a,b) =$$
ff $R(b,a) =$ ff $R(a,c) =$ ft $R(c,a) =$ ff $R(b,c) =$ ff $R(c,b) =$ ft

Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion
	○●○○○○	00000000	00000	000
Reachability				

$$\left\{\begin{array}{c} R(x,y) \leftarrow E(x,y).\\ R(x,y) \leftarrow E(x,z) \land R(z,y). \end{array}\right\} \qquad \begin{array}{c} a \qquad b \\ & \swarrow_{\mathcal{C}} \end{array}\right\}$$

$$R(a,b) =$$
fft $R(b,a) =$ fff $R(a,c) =$ ftt $R(c,a) =$ fff $R(b,c) =$ fff $R(c,b) =$ ftt

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion
	00●000	00000000	00000	000
Observations				

- For every graph: similar process.
- Lots of overlap.
- Least fixpoint computation = sequence of interpretations.
- Idea: Generalise this. Execute this fixpoint computation once, symbolically.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 Knowledge Compilation
 Monotone
 Non-Monotone
 Algebraical
 Conclusion

 000000
 000
 000
 000
 000
 000

 Parametrised well-founded semantics

- \mathcal{P} : parametrised logic program
 - Σ_d : defined symbols
 - Σ_p : parameter symbols
- For every Σ_p-interpretation *I*: *P* defines the well-founded model of *P* in context *I* (a Σ_d-interpretation), denoted *WFM*(*P*, *I*)

• = Parametrised well-founded semantics

Symbolic Inter	nretations			
Knowledge Compilation	Monotone 0000●0	Non-Monotone 00000000	Algebraical 00000	Conclusion

- $\Sigma_d\text{-interpretation: mapping }\Sigma_d\to\{t,f\}\text{: state in the least fixpoint computation}$
- Symbolic Σ_d -interpretation \mathcal{A} : mapping $\Sigma_d \rightarrow \{\text{formulas over } \Sigma_p\} \pmod{\text{equivalence}}$
- Will be a state in a symbolic least fixpoint computation

 Knowledge Compilation
 Monotone
 Non-Monotone
 Algebraical
 Conclusion

 Symbolic Least Fixpoint Computation

 $\left\{\begin{array}{l} R(x,y) \leftarrow E(x,y).\\ R(x,y) \leftarrow E(x,z) \wedge R(z,y). \end{array}\right\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Symbolic Least Fixpoint Computation

$$\left\{\begin{array}{l} R(x,y) \leftarrow E(x,y).\\ R(x,y) \leftarrow E(x,z) \wedge R(z,y). \end{array}\right\}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

$$R(a,b) = \mathbf{f}$$
$$R(b,a) = \mathbf{f}$$
$$R(c,a) = \mathbf{f}$$

Symbolic Least Fixpoint Computation

$$\left\{\begin{array}{l} R(x,y) \leftarrow E(x,y).\\ R(x,y) \leftarrow E(x,z) \wedge R(z,y). \end{array}\right\}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

$$R(a,b) = \mathbf{f} \quad E(a,b)$$

$$R(b,a) = \mathbf{f} \quad E(b,a)$$

$$R(c,a) = \mathbf{f} \quad E(c,a)$$

 Knowledge Compilation
 Monotone
 Non-Monotone
 Algebraical
 Conclusion

 Symbolic Least Fixpoint Computation

$$\left\{ \begin{array}{l} R(x,y) \leftarrow E(x,y). \\ R(x,y) \leftarrow E(x,z) \land R(z,y). \end{array} \right\}$$

$$R(a,b) = \mathbf{f} \quad E(a,b) \quad E(a,b) \lor (E(a,c) \land E(c,a)) \lor \dots$$

$$R(b,a) = \mathbf{f} \quad E(b,a) \quad E(b,a) \lor (E(b,c) \land E(c,a)) \lor \dots$$

$$R(c,a) = \mathbf{f} \quad E(c,a) \quad E(c,a) \lor (E(c,b) \land E(b,a)) \lor \dots$$

Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion
	000000	●00000000	00000	000
Content				

- 1 Knowledge Compilation
- 2 Bottom-Up Knowledge Compilation for Monotone Logic Programs
- Bottom-Up Knowledge Compilation for Non-Monotone Logic Programs

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

4 Knowledge Compilation: An Algebraical Perspective

5 Conclusion

Knowledge Compilation	Monotone 000000	Non-Monotone o●ooooooo	Algebraical 00000	Conclusion
Negation				

- Least fixpoint computation only works for monotone logic programs.
- What about negation?
- For the standard (non-parametrised) well-founded semantics: solved by Van Gelder, Ross and Schlipf (1991).

 Knowledge Compilation
 Monotone
 Non-Monotone
 Algebraical
 Conclusion

 000000
 0000000
 0000000
 000000
 000

 Well-founded model construction
 0000000
 0000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\left\{ \begin{array}{c} p \leftarrow q \lor s \\ q \leftarrow p \\ r \leftarrow \neg p \end{array} \right\}$$

 Knowledge Compilation
 Monotone
 Non-Monotone
 Algebraical
 Conclusion

 000000
 000000
 000000
 00000
 00000

 Well-founded model construction
 00000
 00000

$$\left\{\begin{array}{l}p\leftarrow q\lor s\\q\leftarrow p\\r\leftarrow \neg p\end{array}\right\}$$

$$s = t$$

Well-founded model construction

$$\left\{\begin{array}{l} p \leftarrow q \lor s \\ q \leftarrow p \\ r \leftarrow \neg p \end{array}\right\}$$

u

u

u

p =

q =

r =

. . .

$$s = t$$

Knowledge Compilation Non-Monotone 00000000 Well-founded model construction

t

$$\left\{\begin{array}{c} p \leftarrow q \lor s \\ q \leftarrow p \\ r \leftarrow \neg p \end{array}\right\}$$

s = t

٣		-
q =	u	u
<i>r</i> =	u	u

...

Rule application

. . .

 $n \equiv$

Well-founded model construction

$$\left\{\begin{array}{l} p \leftarrow q \lor s \\ q \leftarrow p \\ r \leftarrow \neg p \end{array}\right\} \qquad \qquad s = \mathbf{t}$$

p =	u	t	t
q =	u	u	t
<i>r</i> =	u	u	u

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Rule application

Well-founded model construction

$$\left\{\begin{array}{l} p \leftarrow q \lor s \\ q \leftarrow p \\ r \leftarrow \neg p \end{array}\right\} \qquad \qquad s = \mathbf{t}$$

p =	u	t	t	t
q =	u	u	t	t
<i>r</i> =	u	u	u	f

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Rule application

Well-founded model construction

$$\left\{\begin{array}{c} p \leftarrow q \lor s \\ q \leftarrow p \\ r \leftarrow \neg p \end{array}\right\}$$

u

u

u

p =

q =

r =

. . .

$$s = \mathbf{f}$$

Well-founded model construction

$$\left\{\begin{array}{c} p \leftarrow q \lor s \\ q \leftarrow p \\ r \leftarrow \neg p \end{array}\right\}$$

$$s = f$$

- f u p =f q =u
- r =u u

Unfounded set

Well-founded model construction

$$\left\{ \begin{array}{l} p \leftarrow q \lor s \\ q \leftarrow p \\ r \leftarrow \neg p \end{array} \right\} \qquad \qquad s = \mathbf{f}$$

p =	u	f	f
q =	u	f	f

<i>r</i> =	u	u	t

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rule application

Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion
	000000	000●00000	00000	000
Observations				

- For every Σ_p -interpretation: similar process
- Lots of overlap
- Well-founded model computation = sequence of partial interpretations
- Idea: Generalise this. Execute this fixpoint computation once, symbolically.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Knowledge Compilation Monotone Non-Monotone Conclusion 000000000

Parametrised well-founded semantics

- \mathcal{P} : parametrised logic program
 - Σ_d : defined symbols
 - Σ_p : parameter symbols
- For every Σ_{p} -interpretation *I*: \mathcal{P} defines the well-founded model of \mathcal{P} in context I (a Σ_d -interpretation), denoted $WFM(\mathcal{P}, I)$

Parametrised well-founded semantics

Knowledge Compilation Monotone Non-Monotone Algebraical Conclusion 000000000

Parametrised well-founded semantics

- \mathcal{P} : parametrised logic program
 - Σ_d : defined symbols
 - Σ_p : parameter symbols
- For every Σ_p -interpretation *I*: \mathcal{P} defines the well-founded model of \mathcal{P} in context I (a Σ_d -interpretation), denoted $WFM(\mathcal{P}, I)$

- Parametrised well-founded semantics
- Now: compute $PWFM(\mathcal{P})$

- Partial interpretation: mapping $\Sigma_d \rightarrow \{\mathbf{t}, \mathbf{f}, \mathbf{u}(, \mathbf{i})\}$: state in the well-founded model computation.
- Alternative representation: mapping $\Sigma_d \to \{\mathbf{t}, \mathbf{f}\} \times \{\mathbf{t}, \mathbf{f}\}$ (certain, possible)
 - (t,t) = t • (f,f) = f
 - $(\mathbf{f},\mathbf{t}) = \mathbf{u}$
 - $(\mathbf{t}, \mathbf{f}) = \mathbf{i}$
- Symbolic partial interpretation: mapping $\Sigma_d \rightarrow \{\text{formulas over } \Sigma_p\} \times \{\text{formulas over } \Sigma_p\}$ (modulo equivalence)
- Will be a state in a symbolic well-founded model computation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Symbolic well-founded model construction

$$\left\{ \begin{array}{c} p \leftarrow q \lor s \\ q \leftarrow p \\ r \leftarrow \neg p \end{array} \right\}$$

 Knowledge Compilation
 Monotone
 Non-Monotone
 Algebraical
 Conclusion

 000000
 000000000
 000000000
 000000
 000000000

Symbolic well-founded model construction

$$\left\{\begin{array}{c} p \leftarrow q \lor s \\ q \leftarrow p \\ r \leftarrow \neg p \end{array}\right\}$$

$$p_c =$$

$$p_{
ho} =$$

$$q_c =$$

$$q_p =$$

$$r_c =$$

$$r_p = t$$

. . .

Symbolic well-founded model construction

$$\left\{ \begin{array}{c} p \leftarrow q \lor s \\ q \leftarrow p \\ r \leftarrow \neg p \end{array} \right\}$$

$$p_c = \mathbf{f} \quad \mathbf{f} \lor \mathbf{s}$$

$$p_p = t t$$

$$q_c = \mathbf{f} \mathbf{f}$$

$$r_c = \mathbf{f}$$
 f

$$r_p = t t$$

Rule application

Symbolic well-founded model construction

$$\left\{\begin{array}{c} p \leftarrow q \lor s \\ q \leftarrow p \\ r \leftarrow \neg p \end{array}\right\}$$

$$p_c =$$
fss $p_p =$ ttt $q_c =$ ffs $q_p =$ ttt $r_c =$ fff

 $r_p = \mathbf{t} \mathbf{t} - \mathbf{s}$

Rule application

 Knowledge Compilation
 Monotone
 Non-Monotone
 Algebraical
 Conclusion

 000000
 000000000
 000000000
 000000
 000000000
 00000000000

Symbolic well-founded model construction

$$\left\{\begin{array}{c} p \leftarrow q \lor s \\ q \leftarrow p \\ r \leftarrow \neg p \end{array}\right\}$$

~

$$p_c =$$
fsss $p_p =$ tttt $q_c =$ ffss $q_p =$ tttt $r_c =$ ffff $r_p =$ tt \neg_s \neg_s

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Unfounded set

 Knowledge Compilation
 Monotone
 Non-Monotone
 Algebraical
 Conclusion

 000000
 000000000
 000000000
 000000
 000000000

Symbolic well-founded model construction

$$\left\{\begin{array}{c} p \leftarrow q \lor s \\ q \leftarrow p \\ r \leftarrow \neg p \end{array}\right\}$$

Rule application

Symbolic well	founded m	odel		
000000	000000	000000000	00000	000
Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\left\{\begin{array}{c} p \leftarrow q \lor s \\ q \leftarrow p \\ r \leftarrow \neg p \end{array}\right\}$$

Symbolic interpretation: $p \mapsto s, q \mapsto s, r \mapsto \neg s$

Knowledge Compilation	Monotone 000000	Non-Monotone 00000000●	Algebraical 00000	Conclusion
Knowledge Com	npilation			

$$\left\{\begin{array}{l}p\leftarrow q\lor s\\q\leftarrow p\\r\leftarrow \neg p\end{array}\right\}$$

Propositional theory: $(p \Leftrightarrow s) \land (q \Leftrightarrow s) \land (r \Leftrightarrow \neg s)$

Knowledge Compilation	Monotone 000000	Non-Monotone 00000000●	Algebraical 00000	Conclusion
Knowledge Com	npilation			

$$\left\{\begin{array}{l} p \leftarrow q \lor s \\ q \leftarrow p \\ r \leftarrow \neg p \end{array}\right\}$$

Non-recursive logic program:

$$\left\{\begin{array}{l} p \leftarrow s. \\ q \leftarrow s. \\ r \leftarrow \neg s. \end{array}\right\}$$

Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion
	000000	00000000	●0000	000
Content				

- Knowledge Compilation
- Bottom-Up Knowledge Compilation for Monotone Logic Programs
- 3 Bottom-Up Knowledge Compilation for Non-Monotone Logic Programs

4 Knowledge Compilation: An Algebraical Perspective

5 Conclusion

- Algebraical theory
- Defines different types of fixpoints of lattice operators
 - Supported fixpoints
 - (Partial) stable fixpoints
 - Kripke-Kleene fixpoint
 - Well-founded fixpoint
- Captures semantics of many logical formalisms
 - Logic programming
 - Autoepistemic logic (Moore, 1985)
 - Default logic (Reiter, 1980)
 - Dung's argumentation frameworks (Dung, 1995)
 - Abstract dialectical frameworks (Brewka and Woltran, 2013)

(Denecker, Marek, Truszczyński, 2000)

- Given:
 - Complete lattice $\langle L, \leq \rangle$
 - Bilattice $\langle L^2, \leq_p \rangle$
 - Lattice operator $O: L \rightarrow L$
 - Approximator $A: L^2 \rightarrow L^2$
- Define:
 - Supported fixpoint: fixpoint of O
 - A-Kripke-Kleene fixpoint: $lfp_{\leq_p} A$
 - Partial A-stable fixpoint: pair (x, y) such that x = lfp(A(·, y)₁) and y = lfp(A(x, ·)₂)
 - A-well-founded fixpoint: least precise partial A-stable fixpoint
 - A-stable fixpoint of O: fixpoint x of O such that (x, x) is a partial A-stable fixpoint

- Given: (Logic programming)
 - Complete lattice $\langle L, \leq \rangle$ (Lattice of interpretations: $\langle 2^{\Sigma_d}, \subseteq \rangle$)
 - Bilattice $\langle L^2, \leq_p \rangle$ (Partial interpretations)
 - Lattice operator $O: L \to L(T_{\mathcal{P}})$
 - Approximator $A: L^2 \to L^2$ (Ψ_P)
- Define:
 - Supported fixpoint: fixpoint of *O* (Supported model)(Clark, 1978)
 - A-Kripke-Kleene fixpoint: lfp P A (Kripke-Kleene semantics)
 (Fitting, 1985)
 - Partial A-stable fixpoint: pair (x, y) such that x = lfp(A(·, y)₁) and y = lfp(A(x, ·)₂) (Partial stable model)
 - A-well-founded fixpoint: least precise partial A-stable fixpoint (Well-founded model) (Van Gelder, Ross and Schilpf, 1988)
 - A-stable fixpoint of O: fixpoint x of O such that (x, x) is a partial A-stable fixpoint (Stable model) (Gelfond and Lifschitz, 1988)

- Well-founded induction (Denecker and Vennekens, 2007):
 - Algebraical generalisation of well-founded model computation
 - Constructive characterisation of the well-founded fixpoint
 - Sequence of bilattice elements (partial interpretations)
 - Transitions similar to "rule application" and "unfounded set computation"

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion
	000000	00000000	0000●	000
Extending AFT				

- Studied the link between well-founded inductions of different operators
- (For logic programming): defined symbolic versions of $T_{\mathcal{P}}$ and $\Psi_{\mathcal{P}}$ (called $\mathcal{T}_{\mathcal{P}}$ and $\Psi_{\mathcal{P}}$ respectively)

Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion
	000000	000000000	0000●	000
Extending AFT				

- Studied the link between well-founded inductions of different operators
- (For logic programming): defined symbolic versions of $T_{\mathcal{P}}$ and $\Psi_{\mathcal{P}}$ (called $\mathcal{T}_{\mathcal{P}}$ and $\Psi_{\mathcal{P}}$ respectively)
- Any-time algorithm for approximate inference

Theorem

Let \mathcal{P} be a parametrised logic program with parametrised well-founded model $(\mathcal{A}, \mathcal{A})$. Let $(\mathcal{A}_i, \mathcal{A}'_i)_{i \leq \beta}$ be a well-founded induction of $\Psi_{\mathcal{P}}$. Then

 $WMC(\mathcal{A}_i, \varphi, W) \leq WMC(\mathcal{A}, \varphi, W) \leq WMC(\mathcal{A}'_i, \varphi, W).$

Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion
	000000	00000000	00000	•00
Content				

- Knowledge Compilation
- Bottom-Up Knowledge Compilation for Monotone Logic Programs
- 3 Bottom-Up Knowledge Compilation for Non-Monotone Logic Programs

4 Knowledge Compilation: An Algebraical Perspective

5 Conclusion

Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion
	000000	00000000	00000	000
Advantages				

Advantages of this approach for logic programming

- No auxiliary variables needed
- Preserves equivalence
- No loop-breaking preprocessing
- Any-time algorithm
- Works with any type of circuits ("propositional formulas modulo equivalence") that support bottom-up compilation

Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion
	000000	00000000	00000	○●○
Advantages				

Advantages of this approach for logic programming

- No auxiliary variables needed
- Preserves equivalence
- No loop-breaking preprocessing
- Any-time algorithm
- Works with any type of circuits ("propositional formulas modulo equivalence") that support bottom-up compilation

Advantages of using AFT

• Paves the way for knowledge compilation for autoepistemic logic, default logic, abstract argumentation, ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Knowledge compilation for Kripke-Kleene semantics
- Simple (but abstract) proofs of correctness

Knowledge Compilation	Monotone	Non-Monotone	Algebraical	Conclusion
	000000	000000000	00000	00●
Conclusion				

Main contributions:

• Lifted knowledge compilation principles to *general* logic programs

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Lifted knowledge compilation principles to AFT

Work in progress:

- Implementation and experiments
- Knowledge compilation for stable semantics