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Introduction

INTRODUCTION

I I will assume familiarity with notions such as
literals, formulas, SAT Solving, CDCL, ...

I I also assume everyone is convinced of the
benefits of proof logging

I I will focus on symmetry handling:
A permutation σ of literals is a (syntactic)
symmetry of a formula F if:
I σ respects negation: σ(x) = σ(x)
I F�σ = F

(F�σ is replacing each x by σ(x) in F )
I Symmetric problems are often problematic for

vanilla CDCL solvers (insert obligatory
reference to PH principle here)

Example
Consider the formula F :

a ∨ b ∨ x ∨ y b ∨ c ∨ x ∨ y
c ∨ d ∨ x ∨ y d ∨ a ∨ x ∨ y

The permutation

(abcd)(xy)(abcd)(xy)

is a symmetry of F since F�σ is

b ∨ c ∨ y ∨ x c ∨ d ∨ y ∨ x
d ∨ a ∨ y ∨ x a ∨ b ∨ y ∨ x
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Introduction

OUTLINE OF THIS TALK

1. Introduction

2. Handling Symmetries in SAT (Overview)

3. Symmetry Breaking with VeriPB
1. The VeriPB proof System
2. VeriPB-certified symmetry breaking

4. Conclusion
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Handling Symmetries in SAT (Overview)
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Static Dynamic

Global symmetry breaking
Shatter [ASM06]
BreakID [DBBD16]

Add lex-leader constraint
for symmetries of F :

set of clauses B such that
α |= B iff α �lex α ◦ σ
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Global symmetry breaking
Shatter [ASM06]
BreakID [DBBD16]

Local symmetry breaking [BS07]

Add lex-leader constraint
for symmetries of subformulas of F :
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Static Dynamic

Global symmetry breaking
Shatter [ASM06]
BreakID [DBBD16]

Local symmetry breaking [BS07]
Asymmetric branching SymChaff [Sab09]

For “simple symmetries”,
instead of branching on variables,
on the number of variables that are true
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Global symmetry breaking
Shatter [ASM06]
BreakID [DBBD16]

Local symmetry breaking [BS07]
Asymmetric branching SymChaff [Sab09]
Effective symmetry breaking [MBCK18]

Add lex-leader constraint
for symmetries of F

when these clauses would propagate
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Static Dynamic

Global symmetry breaking
Shatter [ASM06]
BreakID [DBBD16]

Local symmetry breaking [BS07]
Asymmetric branching SymChaff [Sab09]
Effective symmetry breaking [MBCK18]
Sat modulo symmetries [KS21]

Propagator for �lex-minimality
(graphs)
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Handling Symmetries in SAT (Overview)
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Static Dynamic

Global symmetry breaking
Shatter [ASM06]
BreakID [DBBD16]

Local symmetry breaking [BS07]
Asymmetric branching SymChaff [Sab09]
Effective symmetry breaking [MBCK18]
Sat modulo symmetries [KS21]

Symmetric Learning [HKM+05]
[SHvM09, BNOS10, DBD+12, DBB17]

When SAT solver learns c,
also learn c�σ (if this seems “interesting”)
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Global symmetry breaking
Shatter [ASM06]
BreakID [DBBD16]

Local symmetry breaking [BS07]
Asymmetric branching SymChaff [Sab09]
Effective symmetry breaking [MBCK18]
Sat modulo symmetries [KS21]

Symmetric Learning [HKM+05]
[SHvM09, BNOS10, DBD+12, DBB17]

ESBP+SP [MBK19]

Hybrid combination of
Effective symmetry breaking predicates

(first)
and symmetric learning

(for symmetries not broken completely)
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Handling Symmetries in SAT (Overview)

CERTIFIED SYMMETRY HANDLING

Static Symmetry breaking
I DRAT proof logging for limited cases only [HHW15]

(will not discuss details, but will illustrate difficulties)
I VeriPB proof logging for general case [BGMN22]
I Also appears to be applicable to dynamic symmetry breaking

Symmetric learning
I Recently proposed proof logging [TD20]

1. Special-purpose, specific approach
2. Requires adding explicit concept of symmetries
3. Not compatible with preprocessing techniques

Better to keep proof system super-simple(?)
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Symmetry Breaking with VeriPB The VeriPB proof System

THE VeriPB PROOF SYSTEM

A proof system for pseudo-Boolean optimization problems
I Reasons with general pseudo-Boolean constraints
I Builds on cutting planes
I Extends this with strengthening rules (natural generalizations of RAT/PR)

Details about the proof checker, see Stephan Gocht’s PhD thesis [Goc22]
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Symmetry Breaking with VeriPB The VeriPB proof System

PSEUDO-BOOLEAN CONSTRAINTS

Pseudo-Boolean constraints are 0-1 integer linear constraints∑
i

ai`i ≥ A

I ai, A ∈ Z

I literals `i: xi or xi (where xi + xi = 1)

I as before, variables xi take values 0 = false or 1 = true
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Symmetry Breaking with VeriPB The VeriPB proof System

PSEUDO-BOOLEAN REASONING: CUTTING PLANES [CCT87]

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB
[cA, cB ∈ N]

Division
∑
i cai`i ≥ A∑

i ai`i ≥ dA/ce
[c ∈ N+]
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Symmetry Breaking with VeriPB The VeriPB proof System

REDUNDANCE-BASED STRENGTHENING

I C is redundant with respect to F if F and F ∧ C are equisatisfiable
I Adding redundant constraints should be OK
I Notions such as RAT [JHB12] and propagation redundancy [HKB17]

Redundance-based strengthening [BT19, GN21]
C is redundant with respect to F if and only if there is a substitution ω (mapping variables to truth
values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)�ω

I Proof sketch for interesting direction: If α satisfies F but falsifies C, then α ◦ ω satisfies F ∧ C
I Implication should be efficiently verifiable (which is the case, e.g., if all constraints in (F ∧ C)�ω

are RUP)
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Fact
α |= φ�ω iff α ◦ ω |= φ
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Symmetry Breaking with VeriPB The VeriPB proof System

OPTIMIZATION PROBLEMS

Deal with symmetries by switching focus to optimization

Pseudo-Boolean optimization
Minimize f =

∑
i wi`i (for wi ∈ N) subject to constraints in F

Proof of optimality:
I F satisfied by α
I F ∧

(∑
i wi`i <

∑
i wi · α(`i)

)
is infeasible

Note that
∑
i wi`i<

∑
i wi · α(`i) means

∑
i wi`i≤ −1 +

∑
i wi · α(`i)

Spoiler alert:
For decision problem, nothing stops us from inventing objective function
(like lexicographic order

∑n
i=1 2i · xi)
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Symmetry Breaking with VeriPB The VeriPB proof System

PROOF LOGGING FOR OPTIMIZATION PROBLEMS

How does proof system change?
Rules must preserve (at least one) optimal solution

1. Standard cutting planes rules OK — derive constraints that must hold for any satisfying assignment

2. Once solution α has been found, allow constraint
∑
i wi`i <

∑
i wi · α(`i) to force search for

better solutions

3. Redundance rule must not destroy good solutions

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)�ω ∧ f�ω ≤ f
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Symmetry Breaking with VeriPB The VeriPB proof System

REDUNDANCE AND DOMINANCE RULES

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)�ω ∧ f�ω ≤ f

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F�ω ∧ f�ω < f
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F ∧ ¬D |= F�ω ∧ f�ω < f
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SOUNDNESS OF DOMINANCE RULE

Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F�ω ∧ f�ω < f

Why is this sound?
1. Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2. Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3. If α ◦ ω satisfies D, we’re done
4. Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5. If (α ◦ ω) ◦ ω satisfies D, we’re done
6. Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7. . . .
8. Can’t go on forever, so finally reach α′ satisfying F ∧D
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Symmetry Breaking with VeriPB The VeriPB proof System

STRENGTH OF DOMINANCE RULE

Dominance-based strengthening (stronger, still simplified) [BGMN22]
If D1, D2, . . . , Dm−1 have been derived from F (maybe using dominance), then can derive also Dm if
exists witness substitution ω such that

F ∧
∧m−1
i=1 Di ∧ ¬Dm |= F�ω ∧ f�ω < f

Why is this sound?
I Same inductive proof as before, but nested
I Or just pick α satisfying F and minimizing f and argue by contradiction

Further extensions:
I Define dominance rule w.r.t. order independent of objective function
I Switch between different orders in same proof
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Symmetry Breaking with VeriPB VeriPB-certified symmetry breaking

STRATEGY FOR SAT SYMMETRY BREAKING

1. Pretend to solve optimisation problem minimizing f .=
∑n
i=1 2n−i · xi

(searching lexicographically smallest assignment satisfying formula)

2. Derive pseudo-Boolean lex-leader constraint

Cσ
.= f ≤ f�σ
.=

n∑
i=1

2n−i · (σ(xi)− xi) ≥ 0

3. Derive CNF encoding of lex-leader constraints from PB constraint
(in same spirit as [GMNO22])

y0 yj ∨ σ(xj) ∨ xj
yj−1 ∨ xj ∨ σ(xj) yj ∨ yj−1 ∨ xj
yj ∨ yj−1 yj ∨ yj−1 ∨ σ(xj)
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Symmetry Breaking with VeriPB VeriPB-certified symmetry breaking

EXPERIMENTAL EVALUATION
I Evaluated on SAT competition benchmarks
I BreakID [DBBD16, Bre] used to find and break symmetries
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I proof logging overhead negligible
I verification at most 20 times slower than solving for 95% of instances
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Symmetry Breaking with VeriPB VeriPB-certified symmetry breaking

SYMMETRY BREAKING: EXAMPLE

Example (Pigeonhole principle formula)
I Variables pij (1 ≤ i ≤ 4, 1 ≤ j ≤ 3) true iff pigeon i in hole j
I Focus on pigeon symmetries — notation:

I σ(12) swaps pigeons 1 and 2
Formally: σ(12)(p1j) = p2j and σ(12)(p2j) = p1j for all j

I σ(1234) shifts all pigeons
Order: “Pigeon 1 preferred in the largest possible hole; next pigeon 2, ...”

f
.= 211 · p13 + 210 · p12 + 29 · p11 + 28 · p23 + · · ·+ 1 · p41
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Symmetry Breaking with VeriPB VeriPB-certified symmetry breaking

BREAKING A SINGLE SIMPLE SYMMETRY (EXAMPLE)

I F is a formula expressing PHP constraints with F�σ(12) = F

I Want to add constraint C12 breaking σ(12) — should be satisfied by α iff α “at least as good” as
σ(12)(α)

C12
.= f ≤ f�σ(12)
.=
∑n

i=1 2n−i ·
(
σ(12)(xi)− xi

)
≥ 0

.=
(
211−28)(p23−p13) +

(
210−27)(p22−p12) +

(
29−26)(p21−p11) ≥ 0

“Pigeon 1 in smaller hole than pigeon 2”
I Can be added with redundance rule (the symmetry is the witness):

F ∧ ¬C12 |= F�σ(12) ∧ C12�σ(12) ∧ f�σ(12) ≤ f
F ∧ f > f�σ(12) |= F�σ(12) ∧ f ≥ f�σ(12) ∧ f�σ(12) ≤ f

Similar to DRAT symmetry breaking [HHW15]
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Symmetry Breaking with VeriPB VeriPB-certified symmetry breaking

BREAKING A SINGLE SIMPLE SYMMETRY (EXAMPLE)

I F is a formula expressing PHP constraints with F�σ(12) = F

I Want to add constraint C12 breaking σ(12) — should be satisfied by α iff α “at least as good” as
σ(12)(α)

C12
.= f ≤ f�σ(12)
.=
∑n

i=1 2n−i ·
(
σ(12)(xi)− xi

)
≥ 0

.=
(
211−28)(p23−p13) +

(
210−27)(p22−p12) +

(
29−26)(p21−p11) ≥ 0

“Pigeon 1 in smaller hole than pigeon 2”
I Can be added with redundance rule (the symmetry is the witness):

F ∧ ¬C12 |= F�σ(12) ∧ C12�σ(12) ∧ f�σ(12) ≤ f
F ∧ f > f�σ(12) |= F�σ(12) ∧ f ≥ f�σ(12) ∧ f�σ(12) ≤ f

Similar to DRAT symmetry breaking [HHW15]
Bart Bogaerts (VUB) Symmetries & Certification Dagstuhl Seminar 22411 18/22



Symmetry Breaking with VeriPB VeriPB-certified symmetry breaking

BREAKING A SINGLE SIMPLE SYMMETRY (EXAMPLE)

I F is a formula expressing PHP constraints with F�σ(12) = F

I Want to add constraint C12 breaking σ(12) — should be satisfied by α iff α “at least as good” as
σ(12)(α)

C12
.= f ≤ f�σ(12)
.=
∑n

i=1 2n−i ·
(
σ(12)(xi)− xi

)
≥ 0

.=
(
211−28)(p23−p13) +

(
210−27)(p22−p12) +

(
29−26)(p21−p11) ≥ 0

“Pigeon 1 in smaller hole than pigeon 2”
I Can be added with redundance rule (the symmetry is the witness):

F ∧ ¬C12 |= F�σ(12) ∧ C12�σ(12) ∧ f�σ(12) ≤ f
F ∧ f > f�σ(12) |= F�σ(12) ∧ f ≥ f�σ(12) ∧ f�σ(12) ≤ f

Similar to DRAT symmetry breaking [HHW15]
Bart Bogaerts (VUB) Symmetries & Certification Dagstuhl Seminar 22411 18/22



Symmetry Breaking with VeriPB VeriPB-certified symmetry breaking

BREAKING A SINGLE SIMPLE SYMMETRY (EXAMPLE)

I F is a formula expressing PHP constraints with F�σ(12) = F

I Want to add constraint C12 breaking σ(12) — should be satisfied by α iff α “at least as good” as
σ(12)(α)

C12
.= f ≤ f�σ(12)
.=
∑n

i=1 2n−i ·
(
σ(12)(xi)− xi

)
≥ 0

.=
(
211−28)(p23−p13) +

(
210−27)(p22−p12) +

(
29−26)(p21−p11) ≥ 0

“Pigeon 1 in smaller hole than pigeon 2”
I Can be added with redundance rule (the symmetry is the witness):

F ∧ ¬C12 |= F�σ(12) ∧ C12�σ(12) ∧ f�σ(12) ≤ f
F ∧ f > f�σ(12) |= F�σ(12) ∧ f ≥ f�σ(12) ∧ f�σ(12) ≤ f

Similar to DRAT symmetry breaking [HHW15]
Bart Bogaerts (VUB) Symmetries & Certification Dagstuhl Seminar 22411 18/22



Symmetry Breaking with VeriPB VeriPB-certified symmetry breaking

BREAKING A SINGLE SIMPLE SYMMETRY (EXAMPLE)

I F is a formula expressing PHP constraints with F�σ(12) = F

I Want to add constraint C12 breaking σ(12) — should be satisfied by α iff α “at least as good” as
σ(12)(α)

C12
.= f ≤ f�σ(12)
.=
∑n

i=1 2n−i ·
(
σ(12)(xi)− xi

)
≥ 0

.=
(
211−28)(p23−p13) +

(
210−27)(p22−p12) +

(
29−26)(p21−p11) ≥ 0

“Pigeon 1 in smaller hole than pigeon 2”
I Can be added with redundance rule (the symmetry is the witness):

F ∧ ¬C12 |= F�σ(12) ∧ C12�σ(12) ∧ f�σ(12) ≤ f
F ∧ f > f�σ(12) |= F�σ(12) ∧ f ≥ f�σ(12) ∧ f�σ(12) ≤ f

Similar to DRAT symmetry breaking [HHW15]
Bart Bogaerts (VUB) Symmetries & Certification Dagstuhl Seminar 22411 18/22



Symmetry Breaking with VeriPB VeriPB-certified symmetry breaking

BREAKING A SINGLE SIMPLE SYMMETRY (EXAMPLE)

I F is a formula expressing PHP constraints with F�σ(12) = F

I Want to add constraint C12 breaking σ(12) — should be satisfied by α iff α “at least as good” as
σ(12)(α)

C12
.= f ≤ f�σ(12)
.=
∑n

i=1 2n−i ·
(
σ(12)(xi)− xi

)
≥ 0

.=
(
211−28)(p23−p13) +

(
210−27)(p22−p12) +

(
29−26)(p21−p11) ≥ 0

“Pigeon 1 in smaller hole than pigeon 2”
I Can be added with redundance rule (the symmetry is the witness):

F ∧ ¬C12 |= F�σ(12) ∧ C12�σ(12) ∧ f�σ(12) ≤ f
F ∧ f > f�σ(12) |= F�σ(12) ∧ f ≥ f�σ(12) ∧ f�σ(12) ≤ f

Similar to DRAT symmetry breaking [HHW15]
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Symmetry Breaking with VeriPB VeriPB-certified symmetry breaking

BREAKING MORE/OTHER SYMMETRIES

Problem
This idea does not generalize.

I Breaking two symmetries

F ∧ C12 ∧ ¬C23 6|= F�σ(23) ∧ C12�σ(23) ∧ C23�σ(23) ∧ f�σ(23) ≤ f

Intuitively: applying σ(23) potentially falsifies C12
We might have to apply σ(12) again

I Breaking complex symmetries

F ∧ ¬C1234 |= F�σ(1234) ∧ C1234�σ(1234) ∧ f�σ(1234) ≤ f

Intuitively, C1234 holds if shifting all the pigeons results in a worse assignment.
If it is falsified, we can “restore” its truth by applying σ(1234) once, twice, or thrice.
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Symmetry Breaking with VeriPB VeriPB-certified symmetry breaking

BREAKING SYMMETRIES WITH THE DOMINANCE RULE (1/2)

Definition
Given a symmetry σ, the (pseudo-Boolean) breaking constraint of σ is

Cσ
.= f ≤ f�σ

Theorem
Cσ can be derived from F using dominance with witness σ

F ∧ ¬Cσ |= F�σ ∧ f�σ < f
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Symmetry Breaking with VeriPB VeriPB-certified symmetry breaking

BREAKING SYMMETRIES WITH THE DOMINANCE RULE (2/2)

Breaking symmetries with the dominance rule
I Surprisingly simple
I Generalizes well

I Works for arbitrary symmetries
I Works for multiple symmetries (ignore previously derived constraints)

F ∧ C12 ∧ ¬C23 |= F�σ(23) ∧ f�σ(23) < f

Why does it work?
I Witness need not satisfy all derived constraints
I Sufficient to just produce “better” assignment
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Conclusion

CONCLUSION

I Variety of symmetry handling methods
I For static symmetry breaking, fully general symmetry breaking in VeriPB

Challenge: get this to work in (some extension of) DRAT
I Unfounded claim that this generalizes to dynamic symmetry breaking methods

Challenge: Verify this claim
I For symmetric learning, dedicated proof system has been developed

Challenge: develop certification in a formalism that doesn’t know about symmetries

Thank you for your attention!
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Details: from PB breaking to clauses

STRATEGY FOR SAT SYMMETRY BREAKING

1. Pretend to solve optimisation problem minimizing f .=
∑n
i=1 2n−i · xi

(searching lexicographically smallest assignment satisfying formula)

2. Derive pseudo-Boolean lex-leader constraint

Cσ
.= f ≤ f�σ
.=

n∑
i=1

2n−i · (σ(xi)− xi) ≥ 0

3. Derive CNF encoding of lex-leader constraints from PB constraint
(in same spirit as [GMNO22])

y0 yj ∨ σ(xj) ∨ xj
yj−1 ∨ xj ∨ σ(xj) yj ∨ yj−1 ∨ xj
yj ∨ yj−1 yj ∨ yj−1 ∨ σ(xj)
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Details: from PB breaking to clauses

SYMMETRY BREAKING IN CNF

I In SAT symmetry breakers, symmetry is broken in CNF
I Still need to show how to derive CNF encoding
I We use the encoding of BreakID [DBBD16]:

y0

yj−1 ∨ xj ∨ σ(xj)
yj ∨ yj−1

yj ∨ σ(xj) ∨ xj
yj ∨ yj−1 ∨ xj
yj ∨ yj−1 ∨ σ(xj)

Define yj to be true if xk equals σ(xk) for all
k ≤ j

yk ⇔ yk−1 ∧ (xk ⇔ σ(xk))

(derivable with redundance rule) If yk is true,
xk is at most σ(xk)
(derivable from the PB breaking constraint)
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Details: from PB breaking to clauses

DETAILED DERIVATION OF CNF BREAKING CONSTRAINTS

Derived constraints (D):
n∑
i=1

2n−i · (σ(xi)− xi) ≥ 0

y0

y0 ∨ x1 ∨ σ(x1)
y1 ∨ y0

y1 ∨ σ(x1) ∨ x1

y1 ∨ y0 ∨ x1

y1 ∨ y0 ∨ σ(x1)
y1 ∨ x2 ∨ σ(x2)

Pseudo-Boolean breaking constraint
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Details: from PB breaking to clauses

DETAILED DERIVATION OF CNF BREAKING CONSTRAINTS

Derived constraints (D):
n∑
i=1

2n−i · (σ(xi)− xi) ≥ 0

y0

y0 ∨ x1 ∨ σ(x1)
y1 ∨ y0

y1 ∨ σ(x1) ∨ x1

y1 ∨ y0 ∨ x1

y1 ∨ y0 ∨ σ(x1)
y1 ∨ x2 ∨ σ(x2)

Derivable by redundance with witness ω : y0 7→ 1

F ∧D ∧ {y0} |= (F ∧D)�ω ∧ {y0}�ω
F ∧ {y0} |= (F ∧D)�ω ∧ {1}
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Details: from PB breaking to clauses

DETAILED DERIVATION OF CNF BREAKING CONSTRAINTS

Derived constraints (D):
n∑
i=1

2n−i · (σ(xi)− xi) ≥ 0

y0

y0 ∨ x1 ∨ σ(x1)
y1 ∨ y0

y1 ∨ σ(x1) ∨ x1

y1 ∨ y0 ∨ x1

y1 ∨ y0 ∨ σ(x1)
y1 ∨ x2 ∨ σ(x2)

Derivable by RUP

F ∧D ∧ ¬(y0 ∨ x1 ∨ σ(x1))

= F ∧D ∧ {y0 ∧ x1 ∧ σ(x1)}

n∑
i=1

2n−i · (σ(xi)− xi) ≥ 0

2n−1 · (−1) +
n∑
i=2

2n−i · (σ(xi)− xi) ≥ 0

with
n∑
i=2

2n−i · (σ(xi)− xi) ≤ 2n−1 − 1
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Details: from PB breaking to clauses

DETAILED DERIVATION OF CNF BREAKING CONSTRAINTS

Derived constraints (D):
n∑
i=1

2n−i · (σ(xi)− xi) ≥ 0

y0

y0 ∨ x1 ∨ σ(x1)
y1 ∨ y0

y1 ∨ σ(x1) ∨ x1

y1 ∨ y0 ∨ x1

y1 ∨ y0 ∨ σ(x1)
y1 ∨ x2 ∨ σ(x2)

Derivable by redundance with witness ω : y1 7→ 0

F ∧D ∧ ¬(y1 ∨ y0)
|= (F ∧D)�ω ∧ {y1 ∨ y0}�ω

F ∧D ∧ ¬(y1 ∨ y0)
|= (F ∧D)�ω ∧ {1 ∨ y0}
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Details: from PB breaking to clauses
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Details: from PB breaking to clauses

DETAILED DERIVATION OF CNF BREAKING CONSTRAINTS

Derived constraints (D):
n∑
i=1

2n−i · (σ(xi)− xi) ≥ 0

y0

y0 ∨ x1 ∨ σ(x1)
y1 ∨ y0

y1 ∨ σ(x1) ∨ x1

y1 ∨ y0 ∨ x1

y1 ∨ y0 ∨ σ(x1)
y1 ∨ x2 ∨ σ(x2)

Derivable by redundance with witness ω : y1 7→ 0
(same argument)
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Details: from PB breaking to clauses

DETAILED DERIVATION OF CNF BREAKING CONSTRAINTS

Derived constraints (D):
n∑
i=1

2n−i · (σ(xi)− xi) ≥ 0

y0

y0 ∨ x1 ∨ σ(x1)
y1 ∨ y0

y1 ∨ σ(x1) ∨ x1

y1 ∨ y0 ∨ x1

y1 ∨ y0 ∨ σ(x1)
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Derivable by redundance with witness ω : y1 7→ 1

F ∧D ∧ ¬(y1 ∨ y0 ∨ x1)
|= (F ∧D)�ω ∧ {y1 ∨ y0 ∨ x1}�ω

F ∧D ∧ {y1 ∧ y0 ∧ x1)
|= · · · ∧D�ω ∧ . . .
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Details: from PB breaking to clauses

DETAILED DERIVATION OF CNF BREAKING CONSTRAINTS

Derived constraints (D):
n∑
i=1

2n−i · (σ(xi)− xi) ≥ 0

y0

y0 ∨ x1 ∨ σ(x1)
y1 ∨ y0

y1 ∨ σ(x1) ∨ x1

y1 ∨ y0 ∨ x1

y1 ∨ y0 ∨ σ(x1)
y1 ∨ x2 ∨ σ(x2)

Derivable by redundance with witness ω : y1 7→ 1
(same argument)
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Details: from PB breaking to clauses

DETAILED DERIVATION OF CNF BREAKING CONSTRAINTS

Derived constraints (D):
n∑
i=1

2n−i · (σ(xi)− xi) ≥ 0

y0

y0 ∨ x1 ∨ σ(x1)
y1 ∨ y0

y1 ∨ σ(x1) ∨ x1

y1 ∨ y0 ∨ x1

y1 ∨ y0 ∨ σ(x1)
y1 ∨ x2 ∨ σ(x2)

n∑
i=1

2n−i · (σ(xi)− xi) ≥ 0
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(
y1 + σ(x1) + x1 ≥ 1

)
2n−1 · y1 +

n∑
i=2

2n−i · (σ(xi)− xi) ≥ 0

The clause to derive is RUP wrt this constraint
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