
1

The IDP System: What and why?

Bart Bogaerts
AI Lab, Vrije Universiteit Brussel

October 19, 2021

Based on presentations of Marc Denecker

2

1. Introduction

2. Separating Knowledge from Problem: The KB Paradigm

3. FO(·), Informal Semantics and Inductive Definitions

4. Demo: IDP for Blocks World

5. Outlook

3

1. Introduction

2. Separating Knowledge from Problem: The KB Paradigm

3. FO(·), Informal Semantics and Inductive Definitions

4. Demo: IDP for Blocks World

5. Outlook

4

WHAT IS THE IDP SYSTEM?

I A Constraint Programming System
(lazy clause generation solver)

I An Answer Set Solving System
(ASP competitions, inductive definitions)

I A theorem prover
(building on first-order logic)

I None (or all) of the above:
A knowledge base system

4

WHAT IS THE IDP SYSTEM?

I A Constraint Programming System
(lazy clause generation solver)

I An Answer Set Solving System
(ASP competitions, inductive definitions)

I A theorem prover
(building on first-order logic)

I None (or all) of the above:
A knowledge base system

5

SOME DRIVING PRINCIPLES BEHIND IDP

I The Knowledge Base Paradigm: Knowledge and Problem should be separated
I Clear and precise Informal Semantics
I Focus on domain experts (rather than modelling experts)

(limited core language, symmetry, function detection, grounding techniques,
definitional structure)

6

1. Introduction

2. Separating Knowledge from Problem: The KB Paradigm

3. FO(·), Informal Semantics and Inductive Definitions

4. Demo: IDP for Blocks World

5. Outlook

7

SEPARATING KNOWLEDGE FROM PROBLEMS

One issue that fragments computational logic more than anything else:

the reasoning/inference task

8

STATE OF THE ART

I For every type of reasoning task, a new logic (or more than one):
I Classical first order logic (FO):

deduction
I Deductive Databases (SQL, Datalog):

query answering & other database operations
I Answer set Programming (ASP):

answer set computation
I Abductive Logic Programming:

abduction
I Constraint Programming (CP):

constraint solving
I Planning languages PDDL :

planning
I Temporal logics :

model checking
I . . .

9

STATE OF THE ART

A declarative proposition:

Each lecturer teaches at least one course in the first bachelor

What is its purpose? What task is it to be used for?
I It could be a query to a database.
I It could be a constraint in a course assignment problem.
I It could be a desired property, to be proven from a formal specification of the

course assignment domain.
I . . .

Depending on the task to be solved, we need a different system and a different logic
to represent this proposition.

9

STATE OF THE ART

A declarative proposition:

Each lecturer teaches at least one course in the first bachelor

What is its purpose? What task is it to be used for?
I It could be a query to a database.

I It could be a constraint in a course assignment problem.
I It could be a desired property, to be proven from a formal specification of the

course assignment domain.
I . . .

Depending on the task to be solved, we need a different system and a different logic
to represent this proposition.

9

STATE OF THE ART

A declarative proposition:

Each lecturer teaches at least one course in the first bachelor

What is its purpose? What task is it to be used for?
I It could be a query to a database.
I It could be a constraint in a course assignment problem.

I It could be a desired property, to be proven from a formal specification of the
course assignment domain.

I . . .
Depending on the task to be solved, we need a different system and a different logic
to represent this proposition.

9

STATE OF THE ART

A declarative proposition:

Each lecturer teaches at least one course in the first bachelor

What is its purpose? What task is it to be used for?
I It could be a query to a database.
I It could be a constraint in a course assignment problem.
I It could be a desired property, to be proven from a formal specification of the

course assignment domain.
I . . .

Depending on the task to be solved, we need a different system and a different logic
to represent this proposition.

9

STATE OF THE ART

A declarative proposition:

Each lecturer teaches at least one course in the first bachelor

What is its purpose? What task is it to be used for?
I It could be a query to a database.
I It could be a constraint in a course assignment problem.
I It could be a desired property, to be proven from a formal specification of the

course assignment domain.
I . . .

Depending on the task to be solved, we need a different system and a different logic
to represent this proposition.

10

Is declarative knowledge not independent of the task (and hence, of a specific form
of inference) ?

11

SEPARATING KNOWLEDGE FROM PROBLEMS

A logic theory is a bag of (descriptive) information.
I A logic theory cannot be executed.
I A logic theory is not a program.
I A logic theory is not a representation of a problem.

We use knowledge to solve a problem by applying the appropriate form of inference.

11

SEPARATING KNOWLEDGE FROM PROBLEMS

A logic theory is a bag of (descriptive) information.
I A logic theory cannot be executed.
I A logic theory is not a program.
I A logic theory is not a representation of a problem.

We use knowledge to solve a problem by applying the appropriate form of inference.

12

AN ILLUSTRATION

I What is the central “knowledge” in the graph coloring problem?
I No two adjacent vertices have the same color.

I Represented in FO (classical first order logic)?

∀x∀y(G(x, y)⇒ Col(x) 6= Col(y))

I How to solve a graph coloring problem in FO?
I What kind of inference do we need to apply to this formula to solve this

problem?

12

AN ILLUSTRATION

I What is the central “knowledge” in the graph coloring problem?
I No two adjacent vertices have the same color.
I Represented in FO (classical first order logic)?

∀x∀y(G(x, y)⇒ Col(x) 6= Col(y))

I How to solve a graph coloring problem in FO?
I What kind of inference do we need to apply to this formula to solve this

problem?

12

AN ILLUSTRATION

I What is the central “knowledge” in the graph coloring problem?
I No two adjacent vertices have the same color.
I Represented in FO (classical first order logic)?

∀x∀y(G(x, y)⇒ Col(x) 6= Col(y))

I How to solve a graph coloring problem in FO?
I What kind of inference do we need to apply to this formula to solve this

problem?

12

AN ILLUSTRATION

I What is the central “knowledge” in the graph coloring problem?
I No two adjacent vertices have the same color.
I Represented in FO (classical first order logic)?

∀x∀y(G(x, y)⇒ Col(x) 6= Col(y))

I How to solve a graph coloring problem in FO?
I What kind of inference do we need to apply to this formula to solve this

problem?

13

“What kind of inference do we need to solve this problem?”
I A question that until recently, for FO, was not asked.

I Many saw FO as the logic of deductive reasoning.
I In some fields, this is still the dominating view.

I Deduction is utterly useless for solving the graph coloring problem.
I Instead, people developed new logics to handle problems like this:

I Constraint Programming Languages
I Ilog, Zinc, Constraint Logic Programming, . . .

I Answer Set Programming (ASP).
I Form of inference needed here:

model generation/expansion

13

“What kind of inference do we need to solve this problem?”
I A question that until recently, for FO, was not asked.
I Many saw FO as the logic of deductive reasoning.

I In some fields, this is still the dominating view.

I Deduction is utterly useless for solving the graph coloring problem.
I Instead, people developed new logics to handle problems like this:

I Constraint Programming Languages
I Ilog, Zinc, Constraint Logic Programming, . . .

I Answer Set Programming (ASP).
I Form of inference needed here:

model generation/expansion

13

“What kind of inference do we need to solve this problem?”
I A question that until recently, for FO, was not asked.
I Many saw FO as the logic of deductive reasoning.

I In some fields, this is still the dominating view.
I Deduction is utterly useless for solving the graph coloring problem.

I Instead, people developed new logics to handle problems like this:
I Constraint Programming Languages

I Ilog, Zinc, Constraint Logic Programming, . . .
I Answer Set Programming (ASP).

I Form of inference needed here:
model generation/expansion

13

“What kind of inference do we need to solve this problem?”
I A question that until recently, for FO, was not asked.
I Many saw FO as the logic of deductive reasoning.

I In some fields, this is still the dominating view.
I Deduction is utterly useless for solving the graph coloring problem.
I Instead, people developed new logics to handle problems like this:

I Constraint Programming Languages
I Ilog, Zinc, Constraint Logic Programming, . . .

I Answer Set Programming (ASP).

I Form of inference needed here:
model generation/expansion

13

“What kind of inference do we need to solve this problem?”
I A question that until recently, for FO, was not asked.
I Many saw FO as the logic of deductive reasoning.

I In some fields, this is still the dominating view.
I Deduction is utterly useless for solving the graph coloring problem.
I Instead, people developed new logics to handle problems like this:

I Constraint Programming Languages
I Ilog, Zinc, Constraint Logic Programming, . . .

I Answer Set Programming (ASP).
I Form of inference needed here:

model generation/expansion

14

Shouldn’t it be possible to solve multiple types of tasks using the same language?

15

SEPARATING KNOWLEDGE FROM PROBLEMS

A logic theory is a bag of (descriptive) information.
I A logic theory cannot be executed.
I A logic theory is not a program.
I A logic theory is not a representation of a problem.

We use knowledge to solve a problem by applying the appropriate form of inference.

16

A KNOWLEDGE BASE SYSTEM (KBS)

Knowledge Base

Inference 2 Inference 3

Inference 4
Inference 1

Checking consistency of schedule

University course scheduling

Computing a schedule

. . .

Updating a schedule

I Manages a declarative Knowledge Base (KB): a theory
I Equiped with different forms of inference:

I Model generation: Computing a schedule
I Model checking: Verifying consistency of a schedule
I Update and Revision: Updating a given schedule
I Deduction for verification of the KB

Querying of defined predicates, . . .

16

A KNOWLEDGE BASE SYSTEM (KBS)

Knowledge Base

Inference 2 Inference 3

Inference 4
Inference 1

Checking consistency of schedule

University course scheduling

Computing a schedule

. . .

Updating a schedule

I Manages a declarative Knowledge Base (KB): a theory
I Equiped with different forms of inference:

I Model generation: Computing a schedule
I Model checking: Verifying consistency of a schedule
I Update and Revision: Updating a given schedule
I Deduction for verification of the KB

Querying of defined predicates, . . .

16

A KNOWLEDGE BASE SYSTEM (KBS)

Knowledge Base

Inference 2 Inference 3

Inference 4
Model Generation

Checking consistency of schedule

University course scheduling

Computing a schedule

. . .

Updating a schedule

I Manages a declarative Knowledge Base (KB): a theory
I Equiped with different forms of inference:

I Model generation: Computing a schedule

I Model checking: Verifying consistency of a schedule
I Update and Revision: Updating a given schedule
I Deduction for verification of the KB

Querying of defined predicates, . . .

16

A KNOWLEDGE BASE SYSTEM (KBS)

Knowledge Base

Model checking Inference 3

Inference 4
Model Generation

Checking consistency of schedule

University course scheduling

Computing a schedule

. . .

Updating a schedule

I Manages a declarative Knowledge Base (KB): a theory
I Equiped with different forms of inference:

I Model generation: Computing a schedule
I Model checking: Verifying consistency of a schedule

I Update and Revision: Updating a given schedule
I Deduction for verification of the KB

Querying of defined predicates, . . .

16

A KNOWLEDGE BASE SYSTEM (KBS)

Knowledge Base

Model checking Revision Inference

Inference 4
Model Generation

Checking consistency of schedule

University course scheduling

Computing a schedule

. . .

Updating a schedule

I Manages a declarative Knowledge Base (KB): a theory
I Equiped with different forms of inference:

I Model generation: Computing a schedule
I Model checking: Verifying consistency of a schedule
I Update and Revision: Updating a given schedule

I Deduction for verification of the KB
Querying of defined predicates, . . .

16

A KNOWLEDGE BASE SYSTEM (KBS)

Knowledge Base

Model checking Revision Inference

Deduction, Querying
Model Generation

Checking consistency of schedule

University course scheduling

Computing a schedule
. . .

Updating a schedule

I Manages a declarative Knowledge Base (KB): a theory
I Equiped with different forms of inference:

I Model generation: Computing a schedule
I Model checking: Verifying consistency of a schedule
I Update and Revision: Updating a given schedule
I Deduction for verification of the KB

Querying of defined predicates, . . .

17

THE FO(·)-KBS PROJECT

I On the logical level: FO(·)
I Study “knowledge” by principled development of expressive KR languages
I Clear informal semantics
I Expressive language, rich enough so that the information, relevant to solve a

problem CAN be represented.
I Model-theoretic semantics, in the Tarskian style.
I Classical first-order logic (FO) as foundation, extended where necessary.

(FO(·)= family of extensions of FO)

17

THE FO(·)-KBS PROJECT

I On the logical level: FO(·)
I Study “knowledge” by principled development of expressive KR languages
I Clear informal semantics
I Expressive language, rich enough so that the information, relevant to solve a

problem CAN be represented.
I Model-theoretic semantics, in the Tarskian style.
I Classical first-order logic (FO) as foundation, extended where necessary.

(FO(·)= family of extensions of FO)

18

THE FO(·)-KBS PROJECT

I On the application level:
I Towards a typology of tasks and computational problems in terms of (the same)

logic and inference.
I Eagerly searching for novel ways of using declarative specifications to solve

problems.

19

THE FO(·)-KBS PROJECT

I On the inference level:
I Building solvers for various forms of inference for FO(·)
I Integrating various solving techniques from various declarative programming

paradigms in one Knowledge Base System.
(In IDP3, with the Lua scripting language)

20

1. Introduction

2. Separating Knowledge from Problem: The KB Paradigm

3. FO(·), Informal Semantics and Inductive Definitions

4. Demo: IDP for Blocks World

5. Outlook

21

WHY FO AS A FOUNDATION ?

FO: the language that failed in the seventies?
I Too expressive for building “practical” systems?

I Undecidability
I Expressivity/Efficiency trade-off

I FO is not suitable for describing common sense knowledge?
I Nonmonotonic reasoning

I FO as a language is too difficult for practical use?
I E.g., quantifiers

22

WHY FO AS A FOUNDATION ?

I FO, the outcome of 18’s and 19’s century’s research in

“laws of thought”
I E.g., Leibniz, De Morgan, Boole, Frege, Peirce

I FO is about a small set of connectives:
∧,∨,¬,∀,∃,⇔,⇒

I Essential for KR, the right semantics in FO

I Crystal clear informal semantics
∀x(Human(x)⇒ Man(x) ∨Woman(x))

means
All humans are men or women

I Model semantics as a way to formalize meaning.

22

WHY FO AS A FOUNDATION ?

I FO, the outcome of 18’s and 19’s century’s research in

“laws of thought”
I E.g., Leibniz, De Morgan, Boole, Frege, Peirce

I FO is about a small set of connectives:
∧,∨,¬,∀,∃,⇔,⇒

I Essential for KR, the right semantics in FO

I Crystal clear informal semantics
∀x(Human(x)⇒ Man(x) ∨Woman(x))

means
All humans are men or women

I Model semantics as a way to formalize meaning.

22

WHY FO AS A FOUNDATION ?

I FO, the outcome of 18’s and 19’s century’s research in

“laws of thought”
I E.g., Leibniz, De Morgan, Boole, Frege, Peirce

I FO is about a small set of connectives:
∧,∨,¬,∀,∃,⇔,⇒

I Essential for KR, the right semantics in FO

I Crystal clear informal semantics
∀x(Human(x)⇒ Man(x) ∨Woman(x))

means
All humans are men or women

I Model semantics as a way to formalize meaning.

22

WHY FO AS A FOUNDATION ?

I FO, the outcome of 18’s and 19’s century’s research in

“laws of thought”
I E.g., Leibniz, De Morgan, Boole, Frege, Peirce

I FO is about a small set of connectives:
∧,∨,¬,∀,∃,⇔,⇒

I Essential for KR, the right semantics in FO

I Crystal clear informal semantics
∀x(Human(x)⇒ Man(x) ∨Woman(x))

means
All humans are men or women

I Model semantics as a way to formalize meaning.

23

CLAIMS

(1) Every expressive declarative modelling language has a substantial overlap with
FO, in one form or the other.

I For some languages, the syntax, conceptuology, terminology may obscure the
relationship.

I SQL
I ALLOY
I Zinc
I Answer Set Programming

(2) But FO is not enough for practical KR.

23

CLAIMS

(1) Every expressive declarative modelling language has a substantial overlap with
FO, in one form or the other.

I For some languages, the syntax, conceptuology, terminology may obscure the
relationship.

I SQL
I ALLOY
I Zinc
I Answer Set Programming

(2) But FO is not enough for practical KR.

23

CLAIMS

(1) Every expressive declarative modelling language has a substantial overlap with
FO, in one form or the other.

I For some languages, the syntax, conceptuology, terminology may obscure the
relationship.

I SQL
I ALLOY
I Zinc
I Answer Set Programming

(2) But FO is not enough for practical KR.

24

COMPUTATIONAL COMPLEXITY

I Deductive reasoning in FO is undecidable.

I Much richer “logics” exist and are in use in industry (SQL, ILOG, Zinc, ProB)
I They are used for simpler forms of inference: tractable (P) or almost (NP).
I Such forms of inference have apparently many applications than deduction.

In a knowledge-centered logic, we must accept that some sort of problems are
untractable or undecidable, while other problems are solvable.
I That is life, that is how knowledge is.
I We still hope to be able to solve many problems.

24

COMPUTATIONAL COMPLEXITY

I Deductive reasoning in FO is undecidable.
I Much richer “logics” exist and are in use in industry (SQL, ILOG, Zinc, ProB)
I They are used for simpler forms of inference: tractable (P) or almost (NP).
I Such forms of inference have apparently many applications than deduction.

In a knowledge-centered logic, we must accept that some sort of problems are
untractable or undecidable, while other problems are solvable.
I That is life, that is how knowledge is.
I We still hope to be able to solve many problems.

24

COMPUTATIONAL COMPLEXITY

I Deductive reasoning in FO is undecidable.
I Much richer “logics” exist and are in use in industry (SQL, ILOG, Zinc, ProB)
I They are used for simpler forms of inference: tractable (P) or almost (NP).
I Such forms of inference have apparently many applications than deduction.

In a knowledge-centered logic, we must accept that some sort of problems are
untractable or undecidable, while other problems are solvable.
I That is life, that is how knowledge is.
I We still hope to be able to solve many problems.

25

FO(·): TURNING FO INTO A PRACTICAL KR LANGUAGE

I FO does not suffice for knowledge representation, modelling, specification.

⇒ FO(

Types,ID,Agg,Arit,FD,Mod,HO,. . .

)

I Types
I (Inductive) Definitions
I Aggregates
I (Bounded) Arithmetic

I Coinductive Definitions
I Modal operators
I Higher Order logic
I . . .

The FO(·) language framework

25

FO(·): TURNING FO INTO A PRACTICAL KR LANGUAGE

I FO does not suffice for knowledge representation, modelling, specification.
⇒ FO(

Types,ID,Agg,Arit,FD,Mod,HO,. . .

)

I Types
I (Inductive) Definitions
I Aggregates
I (Bounded) Arithmetic

I Coinductive Definitions
I Modal operators
I Higher Order logic
I . . .

The FO(·) language framework

25

FO(·): TURNING FO INTO A PRACTICAL KR LANGUAGE

I FO does not suffice for knowledge representation, modelling, specification.
⇒ FO(Types

,ID,Agg,Arit,FD,Mod,HO,. . .

)
I Types

I (Inductive) Definitions
I Aggregates
I (Bounded) Arithmetic

I Coinductive Definitions
I Modal operators
I Higher Order logic
I . . .

The FO(·) language framework

25

FO(·): TURNING FO INTO A PRACTICAL KR LANGUAGE

I FO does not suffice for knowledge representation, modelling, specification.
⇒ FO(Types,ID

,Agg,Arit,FD,Mod,HO,. . .

)
I Types
I (Inductive) Definitions

I Aggregates
I (Bounded) Arithmetic

I Coinductive Definitions
I Modal operators
I Higher Order logic
I . . .

The FO(·) language framework

25

FO(·): TURNING FO INTO A PRACTICAL KR LANGUAGE

I FO does not suffice for knowledge representation, modelling, specification.
⇒ FO(Types,ID,Agg

,Arit,FD,Mod,HO,. . .

)
I Types
I (Inductive) Definitions
I Aggregates

I (Bounded) Arithmetic

I Coinductive Definitions
I Modal operators
I Higher Order logic
I . . .

The FO(·) language framework

25

FO(·): TURNING FO INTO A PRACTICAL KR LANGUAGE

I FO does not suffice for knowledge representation, modelling, specification.
⇒ FO(Types,ID,Agg,Arit

,FD,Mod,HO,. . .

)
I Types
I (Inductive) Definitions
I Aggregates
I (Bounded) Arithmetic

I Coinductive Definitions
I Modal operators
I Higher Order logic
I . . .

The FO(·) language framework

25

FO(·): TURNING FO INTO A PRACTICAL KR LANGUAGE

I FO does not suffice for knowledge representation, modelling, specification.
⇒ FO(Types,ID,Agg,Arit,FD

,Mod,HO,. . .

)
I Types
I (Inductive) Definitions
I Aggregates
I (Bounded) Arithmetic

I Coinductive Definitions

I Modal operators
I Higher Order logic
I . . .

The FO(·) language framework

25

FO(·): TURNING FO INTO A PRACTICAL KR LANGUAGE

I FO does not suffice for knowledge representation, modelling, specification.
⇒ FO(Types,ID,Agg,Arit,FD,Mod

,HO,. . .

)
I Types
I (Inductive) Definitions
I Aggregates
I (Bounded) Arithmetic

I Coinductive Definitions
I Modal operators

I Higher Order logic
I . . .

The FO(·) language framework

25

FO(·): TURNING FO INTO A PRACTICAL KR LANGUAGE

I FO does not suffice for knowledge representation, modelling, specification.
⇒ FO(Types,ID,Agg,Arit,FD,Mod,HO,. . .)

I Types
I (Inductive) Definitions
I Aggregates
I (Bounded) Arithmetic

I Coinductive Definitions
I Modal operators
I Higher Order logic
I . . .

The FO(·) language framework

25

FO(·): TURNING FO INTO A PRACTICAL KR LANGUAGE

I FO does not suffice for knowledge representation, modelling, specification.
⇒ FO(Types,ID,Agg,Arit,FD,Mod,HO,. . .)

I Types
I (Inductive) Definitions
I Aggregates
I (Bounded) Arithmetic

I Coinductive Definitions
I Modal operators
I Higher Order logic
I . . .

The FO(·) language framework

26

SOME PROTOTYPICAL INDUCTIVE DEFINITIONS.

The two most common forms of ID’s.

Monotone induction
The transitive closure TG of a graph G is defined
inductively:
- (x, y) ∈ TG if (x, y) ∈ G;
- (x, y) ∈ TG if for some vertex z, (x, z), (z, y) ∈ TG.

Induction over well-founded order
We define A |= ϕ by induction on the structure of ϕ
- A |= q if q ∈ A;
- A |= α ∧ β if A |= α and A |= β;
- A |= ¬α if A 6|= α (i.e., if not A |= α);

27

PROPERTIES OF INFORMAL ID’S

I Linguistically, a set of informal rules (with negation)

I Semantically, two principles:
I Non-constructively, the least set closed under rule application
I Constructively, the set obtained by iterated rule application.

I These two principles coincide – Tarski!

I Only for monotone definitions!

27

PROPERTIES OF INFORMAL ID’S

I Linguistically, a set of informal rules (with negation)

I Semantically, two principles:
I Non-constructively, the least set closed under rule application
I Constructively, the set obtained by iterated rule application.

I These two principles coincide – Tarski!
I Only for monotone definitions!

28

INFORMAL (INDUCTIVE) DEFINITIONS (ID’S)

I Definitions in mathematics: a special sort of knowledge:
I of mathematical precision
I broadly used
I intuitively well understood
I but not scientifically well-understood

29

ADDING ID’S TO FO

I Inductive definitions frequently occur in KR and formal specifications
I ID’s cannot be expressed in FO in general.

I Compactness theorem

⇒ It is necessary to extend FO with them.

30

FO(ID) (DENECKER 2000, DENECKER& TERNOVSKA 2008)

An FO(ID) theory:
I FO sentences
I Definitions: sets of rules

Example: {
∀x∀y(R(x, y)← G(x, y))
∀x∀y(R(x, y)← ∃z(G(x, z) ∧ R(z, y)))

}
∀x∀yR(x, y)

expresses that . . .R is the reachability graph of graph G and G is a connected graph

Claim (KR 2014)

Rules under well-founded semantics provide a uniform formalism for expressing
the most common forms of definitions.

30

FO(ID) (DENECKER 2000, DENECKER& TERNOVSKA 2008)

An FO(ID) theory:
I FO sentences
I Definitions: sets of rules

Example: {
∀x∀y(R(x, y)← G(x, y))
∀x∀y(R(x, y)← ∃z(G(x, z) ∧ R(z, y)))

}
∀x∀yR(x, y)

expresses that . . .

R is the reachability graph of graph G and G is a connected graph

Claim (KR 2014)

Rules under well-founded semantics provide a uniform formalism for expressing
the most common forms of definitions.

30

FO(ID) (DENECKER 2000, DENECKER& TERNOVSKA 2008)

An FO(ID) theory:
I FO sentences
I Definitions: sets of rules

Example: {
∀x∀y(R(x, y)← G(x, y))
∀x∀y(R(x, y)← ∃z(G(x, z) ∧ R(z, y)))

}
∀x∀yR(x, y)

expresses that . . .R is the reachability graph of graph G and G is a connected graph

Claim (KR 2014)

Rules under well-founded semantics provide a uniform formalism for expressing
the most common forms of definitions.

30

FO(ID) (DENECKER 2000, DENECKER& TERNOVSKA 2008)

An FO(ID) theory:
I FO sentences
I Definitions: sets of rules

Example: {
∀x∀y(R(x, y)← G(x, y))
∀x∀y(R(x, y)← ∃z(G(x, z) ∧ R(z, y)))

}
∀x∀yR(x, y)

expresses that . . .R is the reachability graph of graph G and G is a connected graph

Claim (KR 2014)

Rules under well-founded semantics provide a uniform formalism for expressing
the most common forms of definitions.

31

FO(ID) AS A RULE FORMALISM

I Many rule-based formalisms
I Logic Programming
I Datalog
I Answer Set Programming
I Description logics with rules
I Abductive Logic Programming
I Business rule systems

I FO(ID) overlaps with many of them and provides two precise, well-understood
declarative sorts of rules
I Material implications, definitional rules

32

1. Introduction

2. Separating Knowledge from Problem: The KB Paradigm

3. FO(·), Informal Semantics and Inductive Definitions

4. Demo: IDP for Blocks World

5. Outlook

33

SMALL DEMONSTRATION

Block’s World Application

I Blocks can either be on the table or stacked
I Robot (arm) can grab a block to move it (and later put it down)
I Entire stacks can be moved
I If too large a stack is picked up, it falls down (on the table)

34

BLOCK’S WORLD VOCABULARY

Types
I Time points (discrete time)
I Objects (including table

Discrete time (functions)

I Start point
I Successor

Relations
I Fluents (On, Holds)
I Actions (Take, Put)
I Derived Fluents (Above, Fall)

35

BLOCK’S WORLD THEORIES

Some different theories
I Theory describing the temporal domain
I Goal theory (for planning)
I Invariant theory (to prove)

36

BLOCK’S WORLD DEMO

Let’s look at
I IDP Syntax
I Language Features (Definitions, aggregates, . . .)
I Different inference methods
I Lua programming environment

37

1. Introduction

2. Separating Knowledge from Problem: The KB Paradigm

3. FO(·), Informal Semantics and Inductive Definitions

4. Demo: IDP for Blocks World

5. Outlook

38

FUTURE

I IDP3 (as demonstrated) no longer actively maintained
I New version coming

I MinisatID replaced by Z3
I Lua replaced by python
I Strong focus on extensibility of the language

39

MAIN PUBLICATIONS

I IDP:
B. De Cat, B. Bogaerts, M. Bruynooghe, G. Janssens and M. Denecker Predicate
Logic as a Modeling Language: The IDP System. Chapter in Declarative Logic

Programming: Theory, Systems, and Applications, p. 279-323, 2018.
I The KBS-paradigm:

Denecker, Marc; Vennekens, Joost. Building a knowledge base system for an
integration of logic programming and classical logic, ICLP 2008

I The logic FO(ID):
Denecker, Marc; Ternovska, Eugenia. A logic of nonmonotone inductive

definitions, ACM Transactions on Computational Logic, volume 9, issue 2, 2008.
I The well-founded semantics works well for IDs:

Marc Denecker, Joost Vennekens: The Well-Founded Semantics Is the Principle
of Inductive Definition, Revisited. KR 2014

	Introduction
	Separating Knowledge from Problem: The KB Paradigm
	FO(), Informal Semantics and Inductive Definitions
	Demo: IDP for Blocks World
	Outlook

