
1

A framework for step-wise explaining how to
solve constraint satisfaction problems

Bart Bogaerts
(Joint work with Emilio Gamba, Jens Claes, and Tias Guns)

April 20, 2021 @ Beyond Satisfiability

2

BEYOND SATISFIABILITY

I “There Are No CNF Problems” (P.J. Stuckey)
I Adopt a (simple) high-level modeling language

I Structural information of the problem visible
I E.g., symmetry breaking

∀p[Pigeon]∃h[Hole] : In(p, h)

∀h[Hole], p1p2[Pigeon] : In(p1, h) ∧ In(p2, h)⇒ p1 = p2.

I Choice ... fragmentation ... ASP, CP, SMT, . . .

2

BEYOND SATISFIABILITY

I “There Are No CNF Problems” (P.J. Stuckey)
I Adopt a (simple) high-level modeling language
I Structural information of the problem visible
I E.g., symmetry breaking

∀p[Pigeon]∃h[Hole] : In(p, h)

∀h[Hole], p1p2[Pigeon] : In(p1, h) ∧ In(p2, h)⇒ p1 = p2.

I Choice ... fragmentation ... ASP, CP, SMT, . . .

2

BEYOND SATISFIABILITY

I “There Are No CNF Problems” (P.J. Stuckey)
I Adopt a (simple) high-level modeling language
I Structural information of the problem visible
I E.g., symmetry breaking

∀p[Pigeon]∃h[Hole] : In(p, h)

∀h[Hole], p1p2[Pigeon] : In(p1, h) ∧ In(p2, h)⇒ p1 = p2.

I Choice ... fragmentation ... ASP, CP, SMT, . . .

3

BEYOND SATISFIABILITY: THIS TALK

I Algorithms: SAT level
I Explanation: first-order level

4

OUTLINE

1. Introduction: Beyond Satisfiability

2. History: The Holy Grail Challenge

3. Step-Wise Explanations (ECAI 2020)

4. The OCUS Problem (Hitting Set–Based Algorithms) (Under Review)

5. Nested Explanations (AIJ 2021)

6. Conclusion

5

LOGIC GRID PUZZLES

I Set of clues
I Sets of entities that need to be linked
I Each entitity is linked to exactly one entity of each other type (bijectivity)
I The links are consistent (transitivity)

6

LOGIC GRID PUZZLES: EXAMPLE

I The person who ordered capellini paid less than the person who chose
arrabiata sauce

I The person who ordered tagliolini paid more than Angie
I The person who ordered tagliolini paid less than the person who chose

marinara sauce
I Claudia did not choose puttanesca sauce
I The person who ordered rotini is either the person who paid $8 more

than Damon or the person who paid $8 less than Damon
I The person who ordered capellini is either Damon or Claudia
I The person who chose arrabiata sauce is either Angie or Elisa
I The person who chose arrabiata sauce ordered farfalle

7

2019 HOLY GRAIL CHALLENGE: LOGIC GRID PUZZLES

I Parse puzzles and translate into CSP
I Solve CSP automatically
I Explain in a human-understandable way how to solve this puzzle

We won the challenge... out of two participants

7

2019 HOLY GRAIL CHALLENGE: LOGIC GRID PUZZLES

I Parse puzzles and translate into CSP
I Solve CSP automatically
I Explain in a human-understandable way how to solve this puzzle

We won the challenge...

out of two participants

7

2019 HOLY GRAIL CHALLENGE: LOGIC GRID PUZZLES

I Parse puzzles and translate into CSP
I Solve CSP automatically
I Explain in a human-understandable way how to solve this puzzle

We won the challenge... out of two participants

8

DEMO

I Automatically generated constraint representation from natural
language (no optimization of the constraints for the explanation
problem)

I No modifications to the underlying solvers (we do not equip each
propagator with explanation mechanisms)

I demo: https://bartbog.github.io/zebra/pasta/

https://bartbog.github.io/zebra/pasta/

9

OUTLINE

1. Introduction: Beyond Satisfiability

2. History: The Holy Grail Challenge

3. Step-Wise Explanations (ECAI 2020)

4. The OCUS Problem (Hitting Set–Based Algorithms) (Under Review)

5. Nested Explanations (AIJ 2021)

6. Conclusion

10

ECAI 2020 PAPER

I Formalize the step-wise explanation problem
I Propose an algorithm (agnostic of actual propagators, consistency

level, etc.)
I Propose heuristics for guiding the search for explanations
I Experimentally demonstrate feasibility

11

PRELIMINARIES/NOTATION

I Propositional vocabulary Σ

I (partial) interpretation I: consistent set of literals over Σ
Slightly abusing notation: set of (unit) clauses

I Propositional theory T (set of constraints over Σ)
Slightly abusing notation: set of constraints = conjunction

I Notation T ∧ I |= I′

12

GOAL

I Given T and I, let Iend denote the maximal set of literals such that

T ∧ I |= Iend

I Explain in simple steps how to derive Iend
I Our focus: single steps (not optimizing entire sequence yet)

13

FORMALIZING EXPLANATIONS

Definition
Let Ii−1 and Ii be partial interpretations such that Ii−1 ∧ T |= Ii. We say that
(Ei,Si,Ni) explains the derivation of Ii from Ii−1 if the following hold:
I Ni = Ii \ Ii−1 (i.e., Ni consists of all newly defined facts),
I Ei ⊆ Ii (i.e., the explaining facts are a subset of what was previously

derived),
I Si ⊆ T (i.e., a subset of the clues and implicit constraints are used), and
I Si ∧ Ei |= Ni (i.e., all newly derived information indeed follows from this

explanation).

14

FORMALIZING EXPLANATIONS

Definition
We call (Ei,Si,Ni) a non-redundant explanation of the derivation of Ii from Ii−1
if it explains this derivation and whenever E′ ⊆ Ei;S′ ⊆ Si while (E′,S′,Ni)
also explains this derivation, it must be that Ei = E′,Si = S′.

Observation: computing non-redundant explanations of a single literal can
be done using Minimal Unsat Core (MUS) extraction:

Theorem
There is a one-to-one correspondence between ⊆-minimal unsatisfiable cores
of Ii ∧ T ∧ ¬` and non-redundant explanations of Ii ∪ {`} from Ii (given T).

14

FORMALIZING EXPLANATIONS

Definition
We call (Ei,Si,Ni) a non-redundant explanation of the derivation of Ii from Ii−1
if it explains this derivation and whenever E′ ⊆ Ei;S′ ⊆ Si while (E′,S′,Ni)
also explains this derivation, it must be that Ei = E′,Si = S′.

Observation: computing non-redundant explanations of a single literal can
be done using Minimal Unsat Core (MUS) extraction:

Theorem
There is a one-to-one correspondence between ⊆-minimal unsatisfiable cores
of Ii ∧ T ∧ ¬` and non-redundant explanations of Ii ∪ {`} from Ii (given T).

15

FORMALIZING EXPLANATIONS

Definition
We call (Ei,Si,Ni) a non-redundant explanation of the derivation of Ii from Ii−1
if it explains this derivation and whenever E′ ⊆ Ei;S′ ⊆ Si while (E′,S′,Ni)
also explains this derivation, it must be that Ei = E′,Si = S′.

Furthermore, we assume existence of a cost function f(Ei,Si,Ni) that
quantifies the interpretability of a single explanation

16

FORMALIZING EXPLANATIONS

Definition
Given a theory T and initial partial interpretation I0, the
explanation-production problem consist of finding a non-redundent
explanation sequence

(I0, (∅, ∅, ∅)), (I1, (E1,S1,Ni)), . . . , (In, (En,Sn,Nn))

such that some aggregate over the sequence (f(Ei,Si,Ni))i≤n is minimised.

17

MUS-BASED EXPLANATION GENERATION

Algorithm 1: ONESTEP(T, f, I, Iend)

1 Xbest ← nil;
2 for ` ∈ {Iend \ I} do
3 X ← MUS(T ∧ I ∧ ¬`);
4 if f(X) < f(Xbest) then
5 Xbest ← X;
6 end
7 end
8 return Xbest

18

MUS-BASED GENERATION NOT SUFFICIENT

I MUS guarantees non-redundancy ...
I ... does not guarantee quality

I ECAI paper: MUS-based workaround (heuristic): do not use full T, but
approximate

I No details in this talk.

18

MUS-BASED GENERATION NOT SUFFICIENT

I MUS guarantees non-redundancy ...
I ... does not guarantee quality
I ECAI paper: MUS-based workaround (heuristic): do not use full T, but

approximate

I No details in this talk.

18

MUS-BASED GENERATION NOT SUFFICIENT

I MUS guarantees non-redundancy ...
I ... does not guarantee quality
I ECAI paper: MUS-based workaround (heuristic): do not use full T, but

approximate
I No details in this talk.

19

IMPLEMENTATION (ECAI PAPER)

I Visual explanation interface
I Logic Grid puzzle cost function:

I Single implicit axiom: very cheap
I Single constraint + implicit: less cheap
I Multiple constraints: very expensive

“The person who ordered capellini is either Damon or Claudia”.

∃p : ordered(p, capellini) ∧ (p = Damon ∨ p = Claudia).

I Under the hood: IDP system [1]

19

IMPLEMENTATION (ECAI PAPER)

I Visual explanation interface
I Logic Grid puzzle cost function:

I Single implicit axiom: very cheap
I Single constraint + implicit: less cheap
I Multiple constraints: very expensive

“The person who ordered capellini is either Damon or Claudia”.

∃p : ordered(p, capellini) ∧ (p = Damon ∨ p = Claudia).

I Under the hood: IDP system [1]

19

IMPLEMENTATION (ECAI PAPER)

I Visual explanation interface
I Logic Grid puzzle cost function:

I Single implicit axiom: very cheap
I Single constraint + implicit: less cheap
I Multiple constraints: very expensive

“The person who ordered capellini is either Damon or Claudia”.

∃p : ordered(p, capellini) ∧ (p = Damon ∨ p = Claudia).

I Under the hood: IDP system [1]

20

OUTLINE

1. Introduction: Beyond Satisfiability

2. History: The Holy Grail Challenge

3. Step-Wise Explanations (ECAI 2020)

4. The OCUS Problem (Hitting Set–Based Algorithms) (Under Review)

5. Nested Explanations (AIJ 2021)

6. Conclusion

21

BEYOND MUS-BASED EXPLANATIONS

I MUS: ⊆-minimal
I SMUS: #-minimal (still not sufficient...)

I New problem OUS

21

BEYOND MUS-BASED EXPLANATIONS

I MUS: ⊆-minimal
I SMUS: #-minimal (still not sufficient...)
I New problem OUS

22

THE OUS PROBLEM

Definition
Let T be a formula, f : 2T → N a cost function. We call S ⊆ T an OUS of T
(with respect to f) if
I S is unsatisfiable,
I all other unsatisfiable S ′ ⊆ T satisfy f(S ′) ≥ f(S).

Q: How to compute OUSs?

22

THE OUS PROBLEM

Definition
Let T be a formula, f : 2T → N a cost function. We call S ⊆ T an OUS of T
(with respect to f) if
I S is unsatisfiable,
I all other unsatisfiable S ′ ⊆ T satisfy f(S ′) ≥ f(S).

Q: How to compute OUSs?

23

OUS-BASED EXPLANATION GENERATION

Algorithm 2: ONESTEP(T, f, I, Iend)

1 Xbest ← nil;
2 for ` ∈ {Iend \ I} do
3 X ← OUS(T ∧ I ∧ ¬`);
4 if f(X) < f(Xbest) then
5 Xbest ← X;
6 end
7 end
8 return Xbest

24

BEYOND OUS-BASED EXPLANATIONS

I The different iterations (for loop line 2)... very similar
I Can we exploit this?

I Essentially, the task at hand is: find a single unsatisfiable subset of

T ∧ I ∧
∨

`∈Iend\I

¬`

that:
I Is optimal w.r.t. f
I Contains exactly one literal ¬` with ` ∈ Iend \ I (example!)

24

BEYOND OUS-BASED EXPLANATIONS

I The different iterations (for loop line 2)... very similar
I Can we exploit this?
I Essentially, the task at hand is: find a single unsatisfiable subset of

T ∧ I ∧
∨

`∈Iend\I

¬`

that:
I Is optimal w.r.t. f
I Contains exactly one literal ¬` with ` ∈ Iend \ I (example!)

25

THE OCUS PROBLEM

Definition
Let T be a formula, f : 2T → N a cost function and p a predicate
p : 2T → {t, f}. We call S ⊆ T an OCUS of T (with respect to f and p) if
I S is unsatisfiable,
I p(S) is true
I all other unsatisfiable S ′ ⊆ T with p(S ′) = t satisfy f(S ′) ≥ f(S).

26

OCUS-BASED EXPLANATION GENERATION

Algorithm 3: EXPLAIN-ONE-STEP-OCUS(T, f, I, Iend)

1 p← exactly one of Iend \ I
2 return OCUS(T ∧ I ∧ Iend \ I, f, p)

27

HOW TO FIND OCUSS?

I Hitting set–based algorithms: used for MaxSAT and SMUS

Theorem
A set S ⊆ T is a MCS of T iff it is a minimal hitting set of MUSs(T). A set S ⊆ T
is a MUS of T iff it is a minimal hitting set of MCSs(T).

I We extended this to OCUS:

27

HOW TO FIND OCUSS?

I Hitting set–based algorithms: used for MaxSAT and SMUS

Theorem
A set S ⊆ T is a MCS of T iff it is a minimal hitting set of MUSs(T). A set S ⊆ T
is a MUS of T iff it is a minimal hitting set of MCSs(T).

I We extended this to OCUS:

28

HITTING SET–BASED OCUS

Algorithm 4: OCUS(T, f, p)

1 H ← ∅
2 while true do
3 S ← COST-OPTIMAL-HITTINGSET(H, f, p)
4 if ¬SAT(S) then
5 return S
6 end
7 S ← GROW(S,T)
8 H ← H∪ {T \ S}
9 end

29

CORRECTNESS

Theorem
LetH be a set of correction subsets of T. If S is a hitting set ofH that is
f-optimal among the hitting sets ofH satisfying a predicate p, and S is
unsatisfiable, then S is an OCUS of T.
IfH has no hitting sets satisfying p, then T has no OCUSs.

30

TWO FURTHER IDEAS

I Incrementality: re-use previous computations in future calls
I Grow: Develop implementations of “grow” tailored for explanations

31

INCREMENTALITY

Algorithm 5: OCUS(T, f, p)

1 H ← . . .
2 while true do
3 S ← COST-OPTIMAL-HITTINGSET(H, f, p)
4 if ¬SAT(S) then
5 return S
6 end
7 S ← GROW(S,T)
8 H ← H∪ {T \ S}
9 end

32

DIFFERENT GROW STRATEGIES

When calling OCUS, the theory consists of
1. The original theory (constraints) T
2. The current interpretation Iend
3. The negation of literals in Iend Iend
I What to take into account for GROW?
I What about the cost function?

33

EXPERIMENTS

Implementation building on pysat + cpMpy
Q1 What is the effect of requiring optimality of the generated MUSs

on the quality of the generated explanations?
Q2 Which domain-specific GROW methods perform best?
Q3 What is the effect of the use of contrainedness on the time

required to compute an explanation sequence?
Q4 Does re-use of computed satisfiable subsets improve

efficiency?

34

EXPERIMENTS: SOLUTION QUALITY

60 120 180 240 300 360
OUS Explanation cost

360

300

240

180

120

60

M
US

 E
xp

la
na

tio
n

co
st

35

EXPERIMENTS: GROW STRATEGIES

100 101 102 103

log #Explanation steps

0

1000

2000

3000

4000

5000

6000

7000
Cu

m
ul

at
iv

e
CP

U
tim

e
(s

)

Max-Actual-Unif
Max-Actual-Inv
Max-Actual-Pos
Greedy-Sat-Actual
Greedy-Sat-Full
Max-Full-Unif
Max-Full-Pos
Max-Full-Inv

36

EXPERIMENTS: PERFORMANCE

100 101 102 103

log #Explanation steps

0

1000

2000

3000

4000

5000

6000

7000
Cu

m
ul

at
iv

e
CP

U
tim

e
(s

)

OCUS+I
OCUS
OUS
OUS+I
MUS

37

OUTLINE

1. Introduction: Beyond Satisfiability

2. History: The Holy Grail Challenge

3. Step-Wise Explanations (ECAI 2020)

4. The OCUS Problem (Hitting Set–Based Algorithms) (Under Review)

5. Nested Explanations (AIJ 2021)

6. Conclusion

38

OBSERVATION

I Some steps still quite difficult.
I Idea: explanations at different levels of abstraction
I Explain hardest steps of the sequence

39

EXAMPLE

40

NESTED EXPLANATIONS

I Idea: explanations at different levels of abstraction
I Counterfactual reasoning/proof by contradiction
I See demo https://bartbog.github.io/zebra/pasta/

I For which steps? Hardest step of the nested sequence simpler than the
step to explain

https://bartbog.github.io/zebra/pasta/

40

NESTED EXPLANATIONS

I Idea: explanations at different levels of abstraction
I Counterfactual reasoning/proof by contradiction
I See demo https://bartbog.github.io/zebra/pasta/
I For which steps? Hardest step of the nested sequence simpler than the

step to explain

https://bartbog.github.io/zebra/pasta/

41

OUTLINE

1. Introduction: Beyond Satisfiability

2. History: The Holy Grail Challenge

3. Step-Wise Explanations (ECAI 2020)

4. The OCUS Problem (Hitting Set–Based Algorithms) (Under Review)

5. Nested Explanations (AIJ 2021)

6. Conclusion

42

CONCLUSION

I Overview of a (relatively young) research project
⇒ Lots of open questions!

I Goal:Provide human-understandable explanations of inferences made
by a constraint solver

I Our proposal: split in small comprehensible steps
I Explain them at different levels of detail (abstraction)
I Triggers novel algorithmic needs
I Demonstrated on logic grid puzzles

43

USE CASES

I Teach humans how to solve a certain problem
I Quantify problem difficulty
I “Help” button
I Interactive configuration/planning/scheduling

44

FUTURE WORK

I Learning the optimization function (from humans) – Learning the level
of abstraction

I Explaining optimization (different types of “why” queries); close relation
to Explainable AI Planning [2]

I Scaling up (approximate algorithms; decomposition of explanation
search)

I Incremental algorithms over different “why” queries

45

REFERENCES

[1] Broes De Cat, Bart Bogaerts, Maurice Bruynooghe, Gerda Janssens, and Marc Denecker.
Predicate logic as a modelling language: The IDP system. CoRR, abs/1401.6312v2, 2016.

[2] Maria Fox, Derek Long, and Daniele Magazzeni. Explainable planning. arXiv preprint
arXiv:1709.10256, 2017.

	Introduction: Beyond Satisfiability
	History: The Holy Grail Challenge
	Step-Wise Explanations (ECAI 2020)
	The OCUS Problem (Hitting Set–Based Algorithms) (Under Review)
	Nested Explanations (AIJ 2021)
	Conclusion
	References

