
Embedding Justification Theory in Approximation Fixpoint Theory⋆,⋆⋆

Simon Marynissena,b,∗, Bart Bogaertsb, Marc Deneckera

aKU Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium
bVrije Universiteit Brussel, Pleinlaan 9, B-1050 Brussels, Belgium

Abstract

Approximation Fixpoint Theory (AFT) and Justification Theory (JT) are two frameworks to unify logical
formalisms. AFT studies semantics in terms of fixpoints of lattice operators, and JT in terms of so-called
justifications, which are explanations of why certain facts do or do not hold in a model. While the approaches
differ, the frameworks were designed with similar goals in mind, namely to study the different semantics that
arise in (mainly) non-monotonic logics. The first contribution of our current paper is to provide a formal link
between the two frameworks. To be precise, we show that every justification frame induces an approximator
and that this mapping from JT to AFT preserves all major semantics. The second contribution exploits
this correspondence to extend JT with a novel class of semantics, namely ultimate semantics: we formally
show that ultimate semantics can be obtained in JT by a syntactic transformation on the justification frame,
essentially performing a sort of resolution on the rules.

Keywords: justification theory, approximation fixpoint theory, knowledge representation,
2020 MSC: 68T30, 68T27

1. Introduction

In the 1980s and 90s, the area of non-monotonic reasoning (NMR) saw fierce debates about formal se-
mantics. In several subareas, researchers sought to formalise common-sense intuitions about knowledge of
introspective agents. In these areas, appeals to similar intuitions were made, resulting in the development of
similar mathematical concepts. Despite the obvious similarity, the precise relation between these concepts5

remained elusive. In this paper, we are concerned with two formal theories that were developed to unify se-
mantics of (mostly non-monotonic) logics, namely Approximation Fixpoint Theory (AFT) and Justification
Theory (JT).

1.1. Approximation Fixpoint Theory

Approximation Fixpoint Theory (AFT) was founded by Denecker, Marek and Truszczyński (2000) as10

a way of unifying semantics that emerged in different subareas of non-monotonic reasoning. The main
contribution of AFT was to demonstrate that, by moving to an algebraic setting, the common principles
behind these concepts can be isolated and studied in a general way. This breakthrough allowed results that
were achieved in the context of one of these languages to be easily transferred to another. In the early stages,
AFT was applied to default logic (Reiter, 1980), auto-epistemic logic (Moore, 1985), and logic programming15

(van Emden and Kowalski, 1976; Denecker et al., 2000, 2003). In recent years, interest in AFT has gradually
increased, with applications in various other domains, encompassing abstract argumentation (Strass, 2013;

⋆This research received partial funding from the FWO Flanders project G0B2221N.
⋆⋆This research is partially funded by the Flemish AI impulse program.
∗Corresponding author
Email addresses: simon.marynissen@kuleuven.be (Simon Marynissen), bart.bogaerts@vub.be (Bart Bogaerts),

marc.denecker@kuleuven.be (Marc Denecker)

Preprint submitted to Artificial Intelligence March 5, 2024

Bogaerts, 2019), extensions to deal with inconsistencies (Bi et al., 2014), causality (Bogaerts et al., 2014),
access control (Van Hertum et al., 2016), higher-order logic programs (Charalambidis et al., 2018), active
integrity constraints (Bogaerts and Cruz-Filipe, 2018), stream reasoning (Antic, 2020), constraint languages20

for the semantic web (Bogaerts and Jakubowski, 2021), as well as neuro-symbolic logic programming (Antić,
2023).

The foundations of AFT lie in Tarski’s fixpoint theory of monotone operators on a complete lattice
(Tarski, 1955). AFT demonstrates that by moving from the original lattice L to the bilattice L2, Tarski’s
theory can be generalised into a fixpoint theory for arbitrary (i.e., also non-monotone) operators. Crucially,25

all that is required to apply AFT to a formalism and obtain several semantics is to define an appropriate
approximating operator L2 → L2 on the bilattice; the algebraic theory of AFT then takes care of the rest.
For instance, to characterise the major logic programming semantics using AFT, the approximating operator
is nothing else than Fitting’s well-known four-valued immediate consequence operator (Fitting, 2002). The
(partial) stable fixpoints of that operator (as defined by AFT) are exactly the (partial) stable models of the30

original program; the well-founded fixpoint of the operator is the well-founded model of the program, etc.
All well-known semantics of logic programming correspond to distinguished types of fixpoints of Fitting’s
operator defined in the AFT framework!

1.2. Justification Theory

Building on an old semantic framework for (abductive) logic programming (Denecker and De Schreye,35

1993), Denecker et al. (2015) defined an abstract theory of justifications suitable for describing the semantics
of a range of logics in knowledge representation, computational and mathematical logic, including logic pro-
grams, argumentation frameworks and nested least and greatest fixpoint definitions. Justifications provide
a refined way of describing the semantics of a logic: they not only define whether an interpretation is a
model (under a suitable semantics) of a theory, but also why.40

Justifications — albeit not always in the exact formal form as described by Denecker et al. (2015) — have
appeared in different ways in different areas. The stable semantics for logic programs was defined in terms
of justifications (Fages, 1990; Schulz and Toni, 2013). Moreover, an algebra for combining justifications (for
logic programs) was defined by Cabalar et al. (2014); and justifications are underlying provenance systems
in databases (Damásio et al., 2013).45

Next to these theoretic benefits, justifications are also used in implementations of answer set solvers: they
form the basis of the so-called source-pointer approach in the unfounded set algorithm (Gebser et al., 2009),
and turned out to be key in analyzing conflicts in the context of lazy grounding (Bogaerts and Weinzierl,
2018)), as well as to improve parity game solvers (Lapauw et al., 2020).

1.3. Correspondence50

AFT and justification theory were designed with similar intentions in mind, namely to unify different
(mainly non-monotonic) logics. One major difference between them is that justification theory is defined
logically while AFT is defined purely algebraically. This makes justification frameworks less abstract and
easier to grasp, but also in a certain sense less general, as demonstrated by the fact that logics such as
autoepistemic logic have no justification semantics (yet). On the other hand, justification theory has a larger55

freedom to define semantics by providing a branch evaluation, as well as the notion of nesting (Denecker
et al., 2015), which captures the semantics of nested least and nested greatest fixpoint definitions (Hou et al.,
2010) as shown by Marynissen (2022).

Despite the differences, certain correspondences between the theories show up: several definitions in
justification frameworks seem to have an algebraical counterpart in AFT. This is evident from the fact that60

many results on justifications are formulated in terms of fixpoints of the support operator (see Definition 4.5)
that happens, for the case of logic programming, to coincide with (Fitting’s, 2002, three-valued version of)
the immediate consequence operator for logic programs. Of course, now the question naturally arises whether
this correspondence can be made formal, i.e., whether it can formally be shown that semantics induced by
justification theory will always coincide with their equally-named counterpart in AFT. If the answer is65

positive, this will allow us to translate results between the two theories. Formalising this correspondence is
the key contribution of the current paper.

2

1.4. Contributions

Our contributions can be summarised as follows:

• In Section 3, we provide some novel results for JT. While the main purpose of these results is to70

support the theorems of Section 4, they also directly advance the state of JT. In this section, we
give an alternative (and arguably, easier) characterization of splittable branch evaluations and use it
to get new results on how justifications can be “glued together”. Afterwards, we show how different
semantics induced by JT relate, and we resolve a discrepancy that exists between different definitions
of so-called stable and supported branch evaluations in prior work. We formally prove that the different75

circulating definitions of these branch evaluations indeed induce the same semantics.

• In Section 4, we turn our attention to the key contribution of the paper, namely embedding JT in
AFT. To do this, we proceed as follows. First, we show that under minor restrictions, each justification
frame (intuitively, this is a set of rules that describe when a positive or negative fact is true), can be
transformed into an approximator. Next, we show that for each of the most common branch evaluations80

(these are mathematical structures that are used to associate semantics to a justification frame), the
semantics induced by JT is the same as the equally-named semantics on the AFT side. Establishing this
result is of particular importance for the future development of JT, since this result immediately makes
a large body of theoretical results developed in the context of AFT readily available for JT, as well as
all its future application domains, including results on stratification (Vennekens et al., 2006; Bogaerts85

and Cruz-Filipe, 2021), predicate introduction (Vennekens et al., 2007), and knowledge compilation
(Bogaerts and Van den Broeck, 2015). On the other hand, from the context of AFT, the embedding
of JT can serve as inspiration for developing more general algebraic explanation mechanisms.

• To illustrate how this connection can be exploited for further extending the theory of justifications by
transferring results from AFT to JT, we turn our attention to ultimate semantics. In the context of90

AFT, Denecker and his coauthors have realised that a single operator can have multiple approximators
and that the choice of approximator influences the induced semantics. They also showed that — when
staying in the realm of consistent AFT — every operator induces a most precise approximator, and
called this the ultimate approximator (Denecker et al., 2004). In Section 5, we transfer this idea to JT.
We show there that by means of a simple transformation1 on the justification frame, we can obtain95

ultimate semantics. Importantly, since this transformation is defined independently of the branch
evaluation at hand, ultimate semantics are not just induced for the semantics that have a counterpart
in AFT, but for all conceivable current and future branch evaluations as well.

While establishing the connection between JT and AFT has no direct implications on fields such as
logic programming and abstract argumentation, for which characterizations in terms of justifications as100

well as in terms of approximating operators already existed, there are several benefits to establishing this
connection. On the one hand, we obtain a deeper understanding of the two frameworks (JT and AFT), and
as already mentioned above, it allows transferring results between fields, which we illustrate by means of the
ultimate semantics. On the other hand, it also means that whenever new application domains of JT arise,
an operator-based characterization of the semantics in those fields is obtained for free. This would mean105

for instance that for such application domains, we obtain constructive characterizations of the semantics at
hand (e.g., well-founded inductions (Denecker and Vennekens, 2007)), without additional effort.

Publication history. The short version of this paper was presented at IJCAI 2021 (Marynissen et al., 2021).2

This paper extends the short version with proofs, extra examples, and an expanded exposition. Most of
these extensions are also included in the first author’s PhD thesis (Marynissen, 2022).110

1Essentially, this transformation performs some sort of case splitting.
2Where it received a Distinguished Paper Award.

3

2. Preliminaries: Justification Theory

In this section, we recall the formalisation of Justification Theory of Marynissen et al. (2020).
Truth values are denoted t (true), f (false) and u (unknown); we write L for {t, f ,u}. We make use

of two orders on L, the truth order f ≤t u ≤t t and the precision order u ≤p f , t. JT starts with a set
F , referred to as a fact space, such that L ⊆ F ; the elements of F are called facts. We assume that F is115

equipped with an involution ∼ : F → F (i.e., a bijection that is its own inverse) such that ∼t = f , ∼u = u,
and ∼x ̸= x for all x ̸= u. Moreover, we assume that F \ L is partitioned into two disjoint sets F+ and
F− such that x ∈ F+ if and only if ∼x ∈ F− for all x ∈ F \ L. Elements of F+ are called positive and
elements of F− are called negative facts. An example of a fact space is the set of literals over a propositional
vocabulary Σ extended with L where ∼ maps a literal to its negation. For any set A we define ∼A to be120

the set of elements of the form ∼a for a ∈ A. We distinguish two types of facts: defined and open facts.
The former are accompanied by a set of rules that determine their truth value. The truth value of the latter
is not governed by the rule system but comes from an external source or is fixed (as is the case for logical
facts).

Definition 2.1. A justification frame JF is a tuple ⟨F ,Fd, R⟩ such that125

• Fd is a subset of F closed under ∼, i.e., ∼Fd = Fd; facts in Fd are called defined ;

• no logical fact is defined: L ∩ Fd = ∅;
• R ⊆ Fd × 2F \ {∅};
• for each x ∈ Fd there is at least one element (x,A) ∈ R.

A fact x ∈ F \Fd is called open (or sometimes a parameter). The set of open facts is denoted Fo. Notice130

that L ⊆ Fo, i.e., truth values are also called open facts. An element (x,A) ∈ R is called a rule with head
x and body (or case) A. The set of cases of x in JF is denoted JF(x). Rules (x,A) ∈ R are denoted as
x← A and if A = {y1, . . . , yn}, we often write x← y1, . . . , yn.

Logic programs as justification frames. Justification theory was developed partly for the semantic study of
logic programming. The relationship between logic programs and justification frames is the following. The135

negation operator ∼ corresponds to negation as failure not in LP, and positive and negative facts x ∈ Fd

correspond to LP literals x and not x. Justification frames generalize propositional LP in three ways: (1) a
rule body in a justification frame may be an arbitrary set rather than a finite one (as seems suitable for an
abstract semantic framework); (2) contrary to logic programs, justification frames may possess open facts;
(3) rules in justification frames may have ∼ in the head.140

The idea of open facts that are not in L is that their truth value is not constrained by the justification
framework. In contrast, every atom x in a logic program is constrained, even if there is no rule with x as
head:3 in this case, x is false according to the logic program. In justification theory, this is to be modelled
by including the rule x← f in R.

Rules in justification frames may contain ∼ in the head of rules, whereas standard LP rules do not145

contain not in the head.4 However, in concrete instances of JT, the rules ∼x ← are strictly derived from
those for the positive facts x by a sort of completion process. The derivation is described by a technique
called complementation originally proposed by Denecker et al. (2015). This is a generic mechanism turning
a set of rules for x into a set of rules for ∼x with the aim to provide explanation for why x is not justified.
To define complementation, we first define selection functions for x. A selection function for x is a mapping150

s : JF(x)→ F such that s(A) ∈ A for all rules of the form x← A. Intuitively, a selection function chooses
an element from the body of each rule for x. For a selection function s, the set {s(A) | A ∈ JF(x)} is
denoted by Im(s).5

3There are also logic programming formalisms that have parameters; for instance the input atoms in the terminology of
Janhunen et al. (2009) correspond to parameters in justification theory.

4Answer Set Programming supports a second negation operator − called explicit negation which can appear in head of rules.
However, ∼ is no match with −, as can be seen in the rest of this paragraph. Semantic extensions of ASP also extend in which
default negation can appear in the head of a rule (Inoue and Sakama, 1998).

5The existence of selection functions for arbitrary justification frames depends on the axiom of choice.

4

Definition 2.2. For a set of rules R, we define R∗ to be the set of rules of the form ∼x ← ∼ Im(s) for
x ∈ Fd that has rules in R and s a selection function for x. The complementation of JF is defined as155

⟨F ,Fd, R ∪R∗⟩.
Since the complementation contains a rule for ∼x for every selection function for x, the complementation

intuitively contains all possible ways of “blocking” the rules for x.6

Example 2.3. If R = {x← a, b; x← c; }, then R∗ = {∼x← ∼a,∼c; ∼x← ∼b,∼c}. ▲

In summary, a (propositional) logic program π corresponds to a justification frame JFπ = ⟨F ,Fd, R⟩160

such that Fd is the set of positive and negative literals of π and R is the set of rules of π extended with,
first, rules p ← f for undefined program atoms p of π and, second, the complementation of this rule set.
Formally, R = πc ∪ π∗

c where πc is π ∪ {p ← f | p is an undefined program atom in π}. Further down, we
will see how different semantics of LP arise by the choice of different branch evaluations.

Justifications. The main semantic objects of justification theory are so-called justifications.165

Definition 2.4. A directed graph is a pair (N,E) where N is a set of nodes and E ⊆ N ×N is the set of
edges. An internal node is a node with outgoing edges. A leaf is a non-internal node.

Definition 2.5. Let JF = ⟨F ,Fd, R⟩ be a justification frame. A justification J in JF is a directed graph
(N,E) such that every node n ∈ N occurs on an edge in E and for every internal node n ∈ N , the rule
n← {m | (n,m) ∈ E} is an element of R. We say that J justifies n if n is an internal node of J .170

Remark 2.6. In some papers, a distinction is made between tree-like and graph-like justifications (Marynissen
et al., 2020). In a tree-like justification, a fact may have many occurrences while in a graph-like justification,
it has at most one. Since we restrict attention to the latter, we shall just use the term justification to mean
graph-like justifications. Our main result in this paper is an embedding of justification theory into AFT
that preserves several semantics. For each of these semantics, graph-like and tree-like justifications have175

been shown to be equivalent (Marynissen, 2022), hence all our results are valid for tree-like justifications as
well. ▲

A justification J can be viewed as a partial function Fd → R such that J(n) is the rule n ← {m |
(n,m) ∈ E}. Its domain dom(J) is the set of justified facts.

A justification is complete if dom(J) = Fd. A justification is locally complete if it has no leaves in Fd.180

We write JJF (x) to denote the set of locally complete justifications that have an internal node x (and write
J(x) if JF is clear from the context.

A justification J with internal fact x is called proper for x if all facts of J are reachable from x in the
graph J . It is straightforward to show that by reducing a non-proper justification J for x to the set of nodes
reachable from x, a proper justification of x is obtained, denoted J |x. If J is locally complete, then so is185

J |x. We write PJ(x) to denote the set of proper justifications of x.

Example 2.7. Take Fd = {x,∼x, y,∼y}, Fo = {a,∼a, b,∼b} ∪ L, and R the complementation of{
x← y, a
y ← y, b

}
.

Then
x

ay

b

is a locally complete justification in ⟨F ,Fd, R⟩ since a and b are open facts. It is proper only for x. ▲

6Complementation as described here is similar in flavour to Clark’s completion (Clark, 1978), except that the result is not a
propositional theory, but a set of rules for positive and negative facts. As we shall see later, this is useful for defining a variety
of semantics, formalizing different sorts of reasons why certain facts are true or false.

5

Let JF be a justification frame.190

Definition 2.8. A JF-path is a finite or infinite sequence x0 → x1 → · · · of non-zero length, consisting of
defined facts potentially ended with an open fact. A JF-path is called a JF-branch if it cannot be extended
at its tail, that is, if it is infinite or ending with an open fact. If b is the branch x0 → x1 → · · · , we write
∼b for ∼x0 → ∼x1 → · · · . A tail of a branch b is a branch xi → xi+1 → · · · for some i ≥ 0.

Definition 2.9. For a JF-justification J , a J-branch p starting from an internal node x ∈ Fd is a path195

through J starting from x that is infinite or ends in a leaf of J . We write BJ(x) to denote the set of
J-branches starting from x.

JF-branches b are JF-paths that cannot be extended any further. Similarly, J-branches p are paths
through J that cannot be extended any further in J . Notice that a J-branch that ends in a defined leaf of J is
a JF-path, not a JF-branch. However, all J-branches of locally complete justifications J are JF-branches.200

Each J-branch starting at internal node x of J is clearly also a J |x-branch; hence, BJ(x) = BJ|x(x).

Definition 2.10. We say that an infinite branch is positive (respectively negative) if it consists of positive
facts (respectively negative facts). An infinite branch is called a eventually positive (respectively negative) if
it has a positive (respectively negative) tail. If it is neither eventually positive nor eventually negative, it is
called mixed.205

Notice that a mixed branch necessarily contains infinitely many positive and infinitely many negative
facts.

Intuitively, a justification formally captures a potential answer to the question “Why?”.

Why is a fact x0 true? Because the facts in the body of a rule x0 ← A0 are true. But, why is
some fact x1 ∈ A0 true? Because the facts in the body of a rule x1 ← A1 are true. But why is210

some fact x2 ∈ A1 true? Etc.

A (locally complete) justification collects all answers of this exhaustive, iterated process of posing “why?”
questions.7 A branch x0 → x1 → x2 → . . . in a justification formalizes a linear sequence “x0 because x1

because x2 because . . . ” which goes on until the question can be decided. But justifications do not capture
how such a process is to be evaluated. E.g., when can we stop? How to evaluate infinite branches? There215

are many mathematical ways to do this. They are captured in different kinds of branch evaluations.

Branch evaluations. The semantics for justification frames is defined by a branch evaluation.

Definition 2.11. A branch evaluation B is a mapping that maps any JF-branch to an element of F for
all justification frames JF . A branch evaluation B respects negation if B(∼b) = ∼B(b) for any branch
b. A justification frame JF together with a branch evaluation B forms a justification system JS, which is220

presented as a quadruple ⟨F ,Fd, R,B⟩.

Some branch evaluations of interest are given below. All of them respect negation.

Definition 2.12 (Bsp,BKK,Bst,Bwf). The supported branch evaluation Bsp maps x0 → x1 → · · · to x1. The
Kripke-Kleene branch evaluation BKK maps finite branches to their last element and infinite branches to u.
The well-founded branch evaluation Bwf maps finite branches to their last element and infinite branches to t225

if they have a negative tail, to f if they have a positive tail and to u otherwise. The stable branch evaluation
Bst maps a branch x0 → x1 → · · · to the first element that has a different sign than x0 if it exists; otherwise
b is mapped to Bwf(b). I.e., finite branches without sign switch are mapped to their last element; infinite
positive branches are mapped to f and infinite negative branches to t.

7This process of iterated “Why?” questions will sound familiar to many parents, expecially how exhaustive it can be!

6

Example 2.13. Consider the following branches:230

b1 : x→ y → a,

b2 : x→ y → ∼z → x→ y → ∼z → . . . ,

b3 : x→ y → z → x→ y → z →

In that case, it holds that Bsp(b1) = Bsp(b2) = Bsp(b3) = y, since Bsp maps all branches to their second
element. We see that BKK(b1) is a, since BKK maps finite branches to their last element, and BKK(b2) =
BKK(b3) = u. For the well-founded branch evaluation, we see that Bwf(b1) = a,Bwf(b2) = u, and Bwf(b3) =
f . The stable branch evaluation agrees with Bwf on b1 and b3, but not on b2, which contains a sign switch:
it holds that Bst(b2) = ∼z. ▲235

Definition 2.14. A (three-valued) interpretation of F is a function I : F → L such that I(∼x) = ∼I(x)
for all x ∈ F and I(ℓ) = ℓ for all ℓ ∈ L. I(x) is called the value of x in I.

Definition 2.15. Let JS = ⟨F ,Fd, R,B⟩ be a justification system, I an interpretation of F , and J a locally
complete justification in JS. Let x ∈ Fd be a node in J . The supported value of x ∈ Fd by J under I is
defined as240

supB(x, J, I) = min
b∈BJ (x)

I(B(b)),

where min is with respect to ≤t.

Definition 2.16. The supported value of x ∈ F in JS under I is defined as

SVJS(x, I) = max
J∈J(x)

supB(x, J, I)

for x ∈ Fd and SVJS(x, I) = I(x) for x ∈ Fo. If JS consists of JF and B, and JF is clear from context,
we write SVB for SVJS .

Since the branches starting at x in the justifications J and J |x are the same, it follows that for all245

justifications J ∈ J(x), supB(x, J, I) = supB(x, J |x, I). As a consequence, for determining the supported
value of x, it suffices to consider only the proper justifications of x, that is, the elements of PJ(x).

Models under justification semantics are determined by the supported value under B.

Definition 2.17. Let JF be a justification frame and B a branch evaluation. An F-interpretation I is a
B-model of JF if for all x ∈ F , SV⟨JF,B⟩(x, I) = I(x).250

A Bsp, BKK, Bst, or Bwf -model is called a supported, Kripke-Kleene, stable, or well-founded model.

In a B-model I of JF , there is a strong consistency property between the supported values of x and ∼x:

SVB(∼x, I) = I(∼x) = ∼I(x) = ∼SVB(x, I)

As such, the existence of models imposes a strong condition on justification systems. E.g., a branch evalu-
ation B mapping all branches to t cannot have models. E.g., a frame system with R = {a ← t,∼a ← t}
cannot have models under any sensible branch evaluation. In Section 3.3, this consistency is studied in detail255

and it is shown that complementation is important. In the examples that follow, the rules for negative facts
are derivable by complementation, and this is no coincidence.

Example 2.18. Let F = {p,∼p, q,∼q} ∪ L and take R to be the following set of rules: p← p ∼p← ∼p, q
p← ∼q
q ← q ∼q ← ∼q

 .

7

Note that the rules for ∼p and ∼q can be obtained through complementation starting from the rules for p
and q. The only proper locally complete justifications of p are the following:260

p

p

∼q

Under Bwf , the left justification has a value f for p, while the right justification has a value t for p. This
means that SVBwf

(p, I) = t for all interpretations I of F . The right justification also guarantees that
SVBwf

(∼q, I) = t for all interpretations I, hence the unique Bwf -model is the interpretation mapping p to t
and q to f . ▲

Example 2.19. Justification theory does not require finiteness of the set of facts, the set of rules, nor of265

the bodies of rules. To illustrate this, consider the infinite set of rules pn ← pn+1

pn ← ∼pn+1

∼pn ← ∼pn+1, pn+1

∣∣∣ n ∈ N

 .

This corresponds to (the complementation of) the logic program used by Fages (1994) to prove his Theorem
3.6. The corresponding logic program {. . . pn ← pn+1, pn ← ∼pn+1, . . . } is known to have no (exact) stable
models. We now show how this can be seen using justifications. To this end, assume that I is a Bst-model.
We will show that it must be so that I(pk) = u for all k (hence showing there are no two-valued Bst-models).270

We claim that

1. If I(pk) = f , then I(pk′) = t for all k′ > k.

2. If I(pk) = t, then I(pk′) = f for some k′ > k.

In other words, false atoms pk are followed only by true atoms pk+1, . . . , but any true atom is followed later
by a false atom pk′ . This is clearly a contradiction. Thus, these two claims together entail that I(pk) must275

be u for all k. We now prove the claims.
For the first claim (1), assume I(pk) = f . Since I is a Bst-model, ∼pk must be supported by some

justification. Each (proper) justification of ∼pk has the structure

∼pk

pk+1

...

∼pk+1

pk+2

...

∼pk+2

...

Since the value of a mixed branch is the element at its first sign switch, for any justification of the above
structure to evaluate to true, it must be so that I(pk′) = t for all k′ > k.280

For the second claim (2), assume I(pk) = t. In the Bst-model I, there must be a justification that

8

supports pk. Each proper justification of pk has one of these two forms:

pk

pk+1

pk+2

...

pk

pk+1

...

pk′

∼pk′+1

...
...

The first justification consists of a single branch with a positive tail. Hence, it evaluates to false and does not
support pk. For the second justification to be true, it must be so that I(∼pk′+1) = t, i.e., that I(pk′+1) = f .
Hence, we indeed find that for some k′ ≥ k that I(pk′+1) = f , which confirms the second claim. ▲285

2.1. Classes of Branch Evaluations

In this paper, we will prove properties of several classes of branch evaluations, such as splittable or tail-
determined branch evaluations (as introduced by Marynissen et al. (2018)); their definitions are included
next.

The length ℓ(b) of a branch b is defined in the following natural way: for a finite branch b : x0 → x1 →290

· · · → xn, ℓ(b) = n. If b is infinite, we say ℓ(b) = ∞. Two branches x0 → x1 → · · · and y0 → y1 → · · ·
are identical up to n if for all 0 ≤ i ≤ n, we have xi = yi. We say a JF-branch b : x0 → x1 → · · · is
head-determined8 under B at some integer n with 0 < n < ℓ(b) + 1 if for every JF-branch b′ identical to b
up to n, we have B(b) = B(b′). This means that to determine the value of b under B, we only need the first
n+1 elements, so all relevant information is located at the beginning of the branch. On the other hand, we295

define b to be tail-determined under B at 0 ≤ n < ℓ(b) if

B(b) = B(xn → xn+1 → · · ·).

Intuitively, a branch is tail-determined if all information needed to evaluate it is located in the tail starting
with the nth element. A branch b is called splittable under B at 0 ≤ n < ℓ(b) + 1 if it is either head-
determined or tail-determined under B at n. Intuitively, if a branch is splittable at n, then the information
to evaluate the branch is either in its tail or in its head, but not in a combination of both. If B is clear from300

context, ‘under B’ is left out.
A branch b is called first head-determined at n if n is the smallest position on b such that b is head-

determined at n.
We say that a branch b is totally head-determined if it is head-determined at i for every 0 < i < ℓ(b)+1.

Similarly, b is totally tail-determined if it is tail-determined at i for every 0 ≤ i < ℓ(b). A branch b is totally305

splittable if it is splittable at i for every 0 ≤ i < ℓ(b) + 1.

Definition 2.20. A branch evaluation B is called

• splittable if every JF-branch is totally splittable;

• tail-determined if every JF-branch is totally tail-determined;

8In earlier work, a head-determined branch was called decided, and a tail-determined branch was called transitive. We chose
here for a slightly different naming to better reflect the properties at hand.

9

• head-determined if every JF-branch is totally head-determined;310

for every justification frame JF .

Clearly, all tail-determined or head-determined branch evaluations are splittable.

Proposition 2.21. Bsp, BKK, Bst, and Bwf are splittable.

Proof. Bsp is totally head-determined on all branches, and thus is splittable.
BKK is splittable because it is tail-determined.315

Bst is totally tail-determined on positive branches and negative branches. Take a branch

b : x0 → x1 → · · ·

with a first sign switch at i. It is straighforward that b is head-determined at j ≥ i and tail-determined at
j < i. This proves that b is totally splittable; hence Bst is splittable.
Bwf is splittable because it is tail-determined.

3. Fundamental Results in Justification Theory320

In this section, we prove some results about JT that will be needed for developing our theory later on.
These results resolve several issues that were left open in prior work, but turn out to be crucial for studying
the relationship with AFT.

3.1. Analysis of Splittable Branch Evaluations

This section offers novel results to analyze and simplify the concepts of tail-determined and head-325

determined branches, arriving at an alternative, simplified and more insightful definition of splittable branch
evaluations.

To start this analysis, we rephrase the concept “head-determined” in terms of paths rather than positions
of branches. We observe that a branch b is head-determined at position i if and only if all branches with
initial segment x0 → . . .→ xi have the same value as b under B. This motivates the following definition:330

Definition 3.1. A JF-path p is decided under B if all JF-branches with initial segment p have the same
value under B. We extend the domain of B to the set of all decided JF-paths p by defining B(p) = B(b)
for some branch b extending p (the choice of b does not matter).

In the sequel we will drop the prefix JF and talk about paths and branches whenever JF is clear from
context. We say that a path p′ extends a path p if p is an initial segment of p′. According to this definition,335

a path extends itself.

Example 3.2. Under the stable branch evaluation, the path

x→ y → ∼z → u

is decided (that is, assuming x, y, z, u ∈ F+): for any branch b that extends this path, Bst(b) = ∼z. ▲

For a finite path p = x0 → . . . → xn and a path p′ = xn → . . . , we define the concatenation p ◦ p′ as
the path with initial segment p and tail p′ starting at position n. Notice that concatenation of paths and340

branches always produces branches.
Clearly, a branch b is head-determined at i > 0 if and only if its initial segment x0 → . . .→ xi is decided.

Also, every branch, finite or infinite, is an initial segment of itself and is its only extension. Therefore, every
branch is decided.

A next observation is that if branch b is head-determined at position i then also at every position j > i345

of b. Stated in terms of paths, if path p is decided, then each path p′ that extends p is decided. Indeed,
every branch that extends p′ also extends p and has the same value as every branch extending p.

10

Proposition 3.3. If a path p is decided under B, then every extension p′ of p is decided and B(p′) = B(p).

An interesting class of decided paths are the least ones: those that do not strictly extend other decided
paths. We call them core paths. Each decided path p extends a unique core path. Mathematically speaking,350

this follows from the fact that the set of decided paths extended by p is a well-order under the “is extended
by” relation and every well-order has a least element.9 Proposition 3.3 guarantees that all paths and branches
that extend a core path p are decided and have value B(p).

Definition 3.4. A path p is a core path under B if it is decided under B and it has no strictly smaller initial
segment that is decided under B. The core path of a path p is the least initial segment of p that is core, if355

such segment exists. It is denoted coreB(p).

Example 3.5. Assume p, q, r ∈ F+ and consider the (infinite) branch

r → p→ ∼q → p→ ∼q → p→ ∼q →

Under Bst, its core is the segment r → p → ∼q since any branch that starts with r → p → ∼q will be
mapped to ∼q. Under Bsp, its core is the segment r → p since any branch that starts with r → p will be
mapped to p. Under Bwf and BKK, this branch is its own core path. ▲360

The following proposition collects the properties of core paths observed above.

Proposition 3.6. A path p has a core coreB(p) if and only if p is decided. All paths and branches extending
a core path p are decided, have the same value as p, and the least decided path that they extend is p.

Proof. Straightforward.

These properties are relevant for totally splittable branches b, those branches that are head-determined365

or tail-determined at each position, as shown in the following theorem.

Theorem 3.7. Let B be an arbitrary branch evaluation. If a totally splittable branch b = x0 → . . . is
head-determined at some position, then there exists a j > 0 such that b is tail-determined at all positions
k < j and head-determined at all positions k ≥ j. In this case, x0 → . . .→ xj is the core of b. Alternatively,
if b has no head-determined positions, B is tail-determined at every position.370

Proof. Straightforward.

Based on this theorem, we obtain a novel characterisation of splittable branch evaluations.

Theorem 3.8. B is splittable if and only if for every core path p, for every path p′ that is a tail segment
of p, it holds that p′ is decided and B(p′) = B(p).

Proof. First assume the condition in the theorem is satisfied; we show that B is splittable. Take any branch375

b. Every branch is decided; therefore, b is decided and by Proposition 3.6 it is has a core and and b is
head-determined at each position i ≥ ℓ(coreB(b)). The condition in the theorem now guarantees that b is
tail-determined at each position i < ℓ(coreB(b)) Thus, b is totally splittable. Since b was arbitrary, B is
splittable indeed.

Now, assume B is splittable. Take an arbitrary core path p = x0 → . . .→ xk → . . . and an arbitrary tail380

path p′ = xk → . . . of p. We need to show that p′ is decided and B(p′) = B(p). To prove this, it suffices
to show that each branch b′ extending p′ has value B(p).

Take an arbitrary branch b′ extending p′. Its concatenation b = (x0 → . . . → xk) ◦ b′ is a branch
and is totally splittable. This branch extends p, therefore B(b) = B(p) (Proposition 3.3). Moreover, b is
tail-determined at xk (Theorem 3.7), hence B(b′) = B(b). Together, it follows that B(b′) = B(p).385

9A well-order is a total partial order ⟨S,≤⟩ without infinite strictly descending sequences.

11

Proposition 2.21 guarantees that Bsp,BKK,Bst and Bwf are splittable. The core paths of Bsp are paths
x0 → x1, those of BKK and Bwf are the branches, and those of Bst are positive and negative branches, and
paths of positive defined facts ending in a negative defined fact, and paths of negative facts ending in a
positive defined fact.

The condition in Theorem 3.8 is a strong condition, but it has a natural explanation. A branch x0 →390

x1 → x2 → . . . formalizes a linear sequence “x0 because x1 because x2 because . . . ” which goes on until the
question can be decided. By its nature, such a “Why? Therefore!” sequence for x0 comprises a sequence of
the same nature for x1, and then for x2, etc., and the value of one is the value of the next. This motivates
the constraint B(p) = B(p′) for all tails p′ of core paths p.

This explanation also suggests several other potentially interesting properties for branch evaluations.395

E.g., some branch evaluations go “all the way” with “why?” questions and do not stop asking “why?” in
the middle of a branch. These are the tail-determined branch evaluations such as BKK and Bwf . Also, the
process of asking “why?” has to end when an open fact o is reached, since such a fact is not explained by
the justification frame. In this case, the natural answer for “why?” seems to be o itself. Thus, a natural
property for a branch evaluation is that for a core path ending in an open fact o, the evaluation is o. This400

property is satisfied by all of Bsp,BKK,Bst and Bwf .
The tail-determined branch evaluations BKK and Bwf differ in the way they evaluate positive, respectively

negative loops, BKK mapping them to u, Bwf to f , respectively t. An intuitive explanation is as follows.
According to BKK, a fact x or ∼x can be justified to be true only if it has an argument from the ground
up. Infinite branches do not touch ground and are evaluated as u. On the other hand, Bwf incorporates an405

asymmetric vision on positive and negative facts. The default state of a positive fact is to be false; hence
that of a negative fact is to be true. For a positive fact to be true, a constructive argument must exist.
Infinite positive branches are not constructive and cannot be part of a good argument. Hence, any branch
with a positive tail is evaluated to f . On the other hand, a negative fact ∼x can be false by default and
does not need a constructive argument. To be true, it suffices that there is no constructive argument for410

x. A negative branch ∼x → ∼x1 → ∼x2 → . . . should be read as: there is no cause for x because there is
no cause for x1 because there is no cause for x2 because Such an infinite branch correctly reflects the
absence of a constructive argument or cause for x and is given value t.

We explore the properties of the concatenation operator ◦ on core paths.

Proposition 3.9. Assume B is splittable. Let p = x0 → . . . → xk,p
′ = xk → . . . be paths such that p is415

not decided and p′ is core. Then p ◦ p′ is core and B(p ◦ p′) = B(p′).

Proof. Take an arbitrary branch b extending p◦p′. We need to prove: (1) B(b) = B(p′), and (2) all decided
paths extended by b extend p ◦p′. Indeed, since the choice of b is arbitrary, we obtain from (1) that p ◦p′

is decided and from (2) that p ◦ p′ does not extend a strictly smaller path that is decided.
The core path pb of b strictly extends x0 → . . .→ xk since the latter is not decided and neither is any420

of its initial segments. It holds that B(b) = B(pb).
Since B is splittable, Theorem 3.8 guarantees that the tail path pk

b = xk → . . . of pb starting at xk is
decided and B(pb) = B(pk

b). Let bk be the tail of b starting from position k. Both p′ and pk
b are decided

initial paths of bk. Since p′ is core, pk
b extends p′ and B(pk

b) = B(p′). Combining all equalities, we obtain
(1) B(b) = B(pb) = B(pk

b) = B(p′). Moreover, since every decided initial path of b extends pb which425

extends p ◦ p′, we also proved (2).

Theorem 3.8 guarantees that the tail path of a core path is decided. The next proposition shows that,
stronger, such a tail is core as well.

Proposition 3.10. Let B be splittable. If p is core and p′ is a tail path of p, then p′ is core.

Proof. Let p′ be the tail of p starting at position k ≥ 1. Theorem 3.8 guarantees that p′ is decided. Assume430

that p′ extends a strictly smaller core path p′′. Then by Proposition 3.9, (x0 → . . . → xk) ◦ p′′ is a core
path strictly extended by p. This yields a contradiction.

12

In summary, a tail of a core path is core, and vice versa, the concatenation of a non-decided path and a
core path is a core path.

The notions of decided and core paths suggest to define a special class of partial justifications that are435

not locally complete but do contain enough information to be evaluated.

Definition 3.11. Let B be splittable. A justification J is decided (under B) if every J-branch p is decided.
A justification J is decided in x (under B) if x is justified in J and every p ∈ BJ(x) is decided.

Decided justifications contain enough information to evaluate all their branches, and hence to derive the
supported value of their justified facts. This allows us to extending the definition of supported value to440

decided justifications.

Definition 3.12. For each justified node x of a decided justification J , for each interpretation I, we define

supB(x, J, I) = min
p∈BJ (x)

I(B(coreB(p))),

where min is with respect to ≤t.

The following proposition shows that this extension is safe: the supported value of a justified fact in a
decided justification equals the support in any justification that extends it.445

Proposition 3.13. For each justified node x of a decided justification J , for each locally complete extension
K of J , for each interpretation I, it holds that supB(x,K, I) = supB(x, J, I).

Proof. Each branch b in K starting at x extends a core path p present in J . It holds that B(p) = B(b),
and hence that I(B(b)) = I(B(p)).

Proposition 3.14. A locally complete justification J is decided.450

Proof. Every J-branch is a JF-branch, which is trivially decided.

Definition 3.15. Let B be splittable. For every locally complete JF-justification J justifying x ∈ Fd, we
define the core of J for x (under B), denoted coreB(x, J), as the graph obtained from J by restricting its
nodes and its edges to those that occur on core paths from x in J .

The sets of nodes and of edges on core paths in J are well-defined, therefore coreB(x, J) is a well-defined455

graph that exists and is unique. But is it a justification? Yes, as shown in the next proposition.

Proposition 3.16. For every locally complete JF-justification J justifying x ∈ Fd, J
′ = coreB(x, J) is a

proper, decided justification of x.

Proof. By definition, coreB(x, J), contains only nodes on (core) paths reachable from x, so J ′ is proper.
If y → z is an edge of J ′, it occurs on a core path p = x→ There is a rule y ← B in JF such that460

B is the set of children of y in J . Since the initial segment x→ . . .→ y is not core, it follows that all edges
y → u in J occur on a core path from x and belong to J ′. Hence, B is also the set of children of y in J ′. It
follows that J ′ is a justification.

Take any J ′-branch p′, take its first edge y → z. There is a core path x → . . . → y → z → . . . in J
and in J ′, and its initial segment py = x → . . . → y is non-decided. Then p = py ◦ p′ is also a path of465

J and there is a branch b in J that extends p. This branch has a core path which extends py and all its
edges belong to J ′. Its tail y → . . . is also core. Since p′ is maximally long in J ′, p′ extends this core path
starting at y, hence p′ is decided.

Definition 3.17. We call a justification J a core justification of x if all its nodes and edges lie on core paths
from x in J .470

13

It follows that J is a core justification of x if and only if J = coreB(x, J). The core justifications of x are
the minimal justifications that allow to assign a supported value to x in every interpretation. Every locally
complete justification for x extends such a core justification. As such, one could say that core justifications
are the building blocks of justifications.

Proposition 3.18. Let B be a splittable branch evaluation, K a core justification for x and I an interpre-475

tation. For each y justified by K, it holds that supB(x,K, I) ≤t supB(y,K, I).

Proof. Since K is decided, every K-branch from y has a core. Every core path p′ of y in K is a tail path of
a core path p of x in K. Since B is splittable, B(p′) and B(p) are equal. As such the set of values B(p) of
core paths p from y in K is a subset of the set of such values of core paths from x in K. The proposition
now easily follows.480

The core justifications of x according to Bsp are the justifications of depth 1, corresponding to rules
x← A. The core justifications under BKK and Bwf are proper locally complete justifications of x. The core
justifications of x according to Bst are justifications where all justified facts have the same sign as x and all
branches are infinite or end in an open fact or in a fact of the opposite sign.

Definition 3.19. A justification J offers best support for x in I if supB(x, J, I) = SVB(x, I).485

Proposition 3.20. Assume B is splittable. For each interpretation I, for each defined fact x, there exists
a core justification Jx

I of x that offers best support for x in I.

Proof. There exists a locally complete justification J such that SVB(x, I) = supB(x, J, I). We can define
Jx
I = coreB(x, J) since Proposition 3.13 guarantees that supB(x, J, I) = supB(x, J

x
I , I).

3.2. Constructing Complete Justifications490

As shown in Proposition 3.20, for every interpretation I and defined fact x there exists a core justification
Jx
I of x that explains the supported value of x in I, i.e., supB(x, Jx

I , I) = SVB(x, I). In this section, we
investigate how to paste together such core justifications in one justification JI that offers best support for
all facts x ∈ Fd in I. Such justifications will prove to be of tremendous use in the rest of the paper.

Definition 3.21. We call J a complete support justification for I (under B) if J is complete and moreover495

for every x ∈ Fd, J offers best support in I: supB(x, J, I) = SVB(x, I).

The first step towards the construction of JI is to define the operator to paste justifications together.
We have defined a justification J as a graph ⟨N,E⟩. Recall that a justification J can also be viewed as a
partial function from Fd to R with domain dom(J) the set of justified facts. The definition below uses the
latter view.500

Definition 3.22. For any two justifications J and K, we define J ↑ K as the unique justification with
domain dom(J) ∪ dom(K) that extends J and coincides with K on dom(K) \ dom(J).

Clearly, J ↑K is an extension of J but it is only an extension of K in case the domains of J and K
are disjoint. The following proposition shows that the pasting operation maps decided justifications to a
decided one. Also, to some extent, the operation preserves the support value for justified facts.505

Proposition 3.23. Let J,K be decided justifications. The following claims hold.

(a) J ↑K is a decided justification.

(b) For every interpretation I, for every x ∈ dom(J), it holds that supB(x, J, I) = supB(x, J ↑K, I).

(c) For every ν ∈ {t,u, f}, if supB(x, J, I) ≥ ν for every x ∈ dom(J), and supB(y,K, I) ≥ ν for every
y ∈ dom(K), then for every justified z of J ↑K, it satisfies supB(z, J ↑K, I) ≥ ν.510

14

Proof. (a) By construction, L = J ↑ K is a justification which justifies exactly the nodes z ∈ dom(J) ∪
dom(K). We need to prove that for any such z, each L-branch p = z → . . . extends a core path. First,
assume z ∈ dom(J). In that case, p is or extends a J-branch, which in turn extends a core path. Second,
assume z ∈ dom(K). There are two possibilities for p. The first is that p extends a decided path p′ in K
which in turn extends a core path. The second is that p has an undecided initial path pK := z → . . .→ u515

in K and then crosses into J at u. We can write p as pK ◦ pu. Now, pu extends a J-branch from u,
which extends a core path p′

u from u. It follows from Proposition 3.9 that pK ◦ p′
u is a core of p. Thus, all

L-branches extend some core path. It follows that L is decided. This finishes (a).
(b) follows from the fact that concatenation preserves all edges and core paths of J .
To show (c), we observe that every core path p in J and K has I(B(p)) ≥ ν. Furthermore, each core520

path in L is either a core of J or of K or it is a core path composed from an undecided initial segment in
K and a core tail in L. Thus, all core paths p of L have I(B(p)) ≥ ν. (c) follows immediately.

We now prove a main theorem of this section.

Theorem 3.24. Let JS be justification system with splittable B; let I be an interpretation. There exists a
complete support justification JI for I. That is, for every x ∈ Fd: supB(x, JI , I) = SVJS(x, I).525

Proof. We select for each x ∈ Fd a core justification Jx
I that provides best support for x in I (that is,

supB(x, J
x
I , I) = SVB(x, I)). By Proposition 3.20 such core justifications exist. To obtain JI , we paste all

these justifications together in the way described next.
For each truth value ν ∈ {t,u, f}, by the well-ordering theorem,10 there exists a (possibly transfinite)

sequence that contains all facts x with SVB(x, I) = ν. By composing these three sequences, we obtain a530

(possibly transfinite) sequence ⟨xα⟩α≥0 that contains every defined fact and in which the supported value
of facts xα in I decreases: if α ≤ β then SVB(xα, I) ≥t SVB(xβ , I).

We construct the following sequence of justifications ⟨Jα⟩α≥0, defined by transfinite induction:

1. J0 is the empty justification.

2. Jα+1 = Jα ↑Jxα

I .535

3. Jλ = ∪α<λJα for limit ordinal λ.

For each α in this sequence, we prove the following properties:

(a) Jα is a decided justification justifying at least all xβ , β < α.

(b) Jα offers best support for all x ∈ dom(Jα) in I: supB(x, Jα, I) = SVB(x, I).

The proof is by transfinite induction.540

For the base case 0, J0 trivially satisfies (a) and (b).
For the successor case α+ 1, assume Jα satisfies (a) and (b). According to Proposition 3.23(a), pasting

decided justifications produces a decided justification. Hence, Jα+1 = Jα ↑Jxα

I is decided and it obviously
justifies at least every xβ , β < α+ 1. This proves (a) for α+ 1.

According to Proposition 3.23(b), Jα and Jα+1 offer the same supported value for all facts y ∈ dom(Jα)545

in all interpretations (supB(y, Jα, I) = supB(y, Jα+1, I)), and Jα offers best support for these facts y in I
(supB(y, Jα, I) = SVB(y, I)). Hence, Jα+1 offers best support in I for all y ∈ dom(Jα). It remains to show
the same for each y ∈ dom(Jxα

I) \ dom(Jα).
Recall from Proposition 3.18, that each y ∈ dom(Jxα

I) satisfies supB(y, J
xα

I , I) ≥ supB(xα, J
xα

I , I)(=
SVB(xα, I)), which entails SVB(y, I) ≥t SVB(xα, I). If SVB(y, I) >t SVB(xα, I), then y occurs earlier in the550

sequence than xα and y ∈ dom(Jα). Thus, any y ∈ dom(Jxα

I) \ dom(Jα) has the same supported value as
xα in I. It follows from Proposition 3.23(c) that supB(y, Jα+1, I) = SVB(y, I). Thus, (b) holds for α+ 1.

The final case is for a limit ordinal λ. It is easy to see that Jλ = ∪β<λJβ is a justification with domain
∪β<λ dom(Jβ). For each y in its domain, there exists a least β < λ such that Jβ justifies y. This justification

10The well-ordering theorem is equivalent to the axiom of choice (Hazewinkel, 2007), which we assume in this paper.

15

contains a core justification Jy for y which offers best support for y in I (supB(y, Jy, I) = SVB(x, I)); Jy is555

present in all later justifications in the sequence, including in Jλ. Since this holds for every y ∈ dom(Jλ), it
follows that Jλ is decided and offers best support for all its justified facts in I.

We define JI as the limit of the sequence. It justifies all defined facts and satisfies (a) and (b). Thus, J
is a complete support justification for I.

The following theorem has already been proven in a slightly different context by Marynissen et al. (2018).560

It is a corollary of the previous Theorem 3.24 and Proposition 2.21.

Theorem 3.25. Take B ∈ {Bsp,BKK,Bst,Bwf}. For every justification frame JF and every interpretation
I, there exists a complete support justification J for I under B.

3.3. Complementary justification frames and consistency

Several results in justification theroy hold only for a particular class of justification frames, called comple-565

mentary frames. This concept is related to the complementation operation defined in Definition 2.2. Recall
that for a justification frame JF , a selection function s for defined fact x ∈ Fd is a function JF(x) → F
that maps the body A of a rule x ← A to an element of A, denoted s(A). We call ∼x ← ∼ Im(s) the rule
of s. Its body ∼ Im(s) consists of the complement ∼a of all facts a in the image of s. We say that a rule
x← A subsumes a rule x← B if A ⊆ B, i.e., if A has fewer conditions than B.570

Definition 3.26. A justification frame JF (or its rule set R) is complementary if for every x ∈ Fd, (1)
for every x ← A ∈ R, there exists a selection function s for ∼x such that ∼ Im(s) ⊆ A and (2) for every
selection function s for ∼x there exists a rule x← A such that A ⊆ ∼ Im(s).

Thus, a justification frame is complementary if every rule x← A is subsumed by the rule of a selection
function s of ∼x and vice versa, every rule of a selection function s of ∼x is subsumed by a rule x← A.575

Example 3.27. Consider the following rule set:

x← a

x← a, b

∼x← ∼a

The rule ∼x ← ∼a is the rule of the selection function that selects a in both rules of x and subsumes the
rule of the second selection function selecting a and b. The rule of the unique selection function of ∼x is the
first rule for x and subsumes the second one. Hence, this rule set (or the justification frame that contains
it) is complementary. ▲580

The following proposition shows that the complementation operation of Definition 2.2 can be used to
produce complementary justification frames. It can be applied to create a complementary justification frame
from a logic program, taking for F the set of atoms and R the set of rules of the program.

Proposition 3.28. Let F be a subset of Fd such that {F,∼F} is a partition of Fd. Let R be a rule set
defining all and only facts of F . Then the complementation R ∪R∗ of R is complementary.585

Proof. Recall R∗ is the set of rules of selection functions of facts x ∈ F within the rule set R.
We observe that for facts x ∈ ∼F , R ∪ R∗ satisfies conditions (1) and (2) by construction. Thus, it

suffices to verify them for x ∈ F .
(1) Every x ← A ∈ R is the rule of a selection function s for ∼x. Indeed, take the selection s for ∼x

that selects the negation of a fact of A in the body of every rule ∼x← B ∈ R∗. The body of each such rule590

indeed contains the negation of a fact a ∈ A. Moreover, for every a ∈ A, there is at least one rule ∼x← B
that contains ∼a in its body. Hence ∼ Im(s) = A.

(2) Assume towards contradiction that there exists a rule of a selection function s for ∼x in R∗ that is
not subsumed by some rule x ← A ∈ R. Then, for every rule x ← A ∈ R, there exists aA ∈ A \ ∼ Im(s).
Consider the selection function s′ for x that selects aA in A, for every rule x ← A ∈ R. Then R∗ contains595

the rule ∼x← ∼ Im(s′) of s′ and s selects some value ∼aA in that rule. This yields a contradiction.

16

Proposition 3.29. Let R be a complementary rule set. For each pair of rules x ← A and ∼x ← B in R,
A ∩ ∼B ̸= ∅.

Proof. Take x← A,∼x← B ∈ R. By complementarity, there exists a selection function s of ∼x such that
∼ Im(s) ⊆ A. Therefore, ∼s(B) ∈ A. On the other hand, s(B) ∈ B.600

This property has a useful extension to justifications.

Proposition 3.30. Let R be a complementary rule set. Let J and K be locally complete justifications
justifying x, respectively ∼x. There exists a J-branch b starting in x such that ∼b is a K-branch.

Proof. This proposition follows by iterated application of Proposition 3.29. Indeed, the latter entails that
there exist edges x→ x1 in J and ∼x→ ∼x1 in K. If x1 ∈ Fo, then both edges are branches in respectively605

J and K. If x1 ∈ Fd then by repeating the argument there are edges x1 → x2 in J and ∼x1 → ∼x2 in K.
By further iterating this argument, using transfinite induction, we obtain two branches b in J and ∼b in
K.

The following proposition was proven by Marynissen et al. (2020).

Proposition 3.31. Let JS be a complementary justification system such that B respects negation. For each610

x ∈ Fd, for each interpretation I, it holds that SVB(∼x, I) ≤t ∼SVB(x, I).

Proof. Let v = SVB(x, I) and let J be a locally complete justification justifying x such that supB(x, J, I) = v.
Each branch b′ = x→ . . . in J satisfies I(B(b′)) ≥t v. By Proposition 3.30, each justification K justifying
∼x contains a branch b = ∼x → . . . such that ∼b is a branch of J . It follows that supB(∼x,K, I) ≤t

I(B(b)) = ∼I(B(∼b)) ≤t ∼v. Since this holds for everyK, it follows that SVB(∼x, I) ≤t ∼v = ∼SVB(x, I).615

Proposition 3.32. Let JS be a complementary justification frame and x a defined fact. The following two
conditions are equivalent.

• There exists a rule x← A ∈ R such that I(a) = t for all a ∈ A.

• For all rules ∼x← B ∈ R there is an a ∈ B such that I(a) = f .620

Proof. Let x be a defined fact. First let there be a rule x← A ∈ R such that all a ∈ A are true in I. Since
R is complementary, Proposition 3.29 entails that every rule ∼x← B ∈ R contains a fact a ∈ B such that
∼a ∈ A and I(a) = f .

Vice versa, assume that for every ∼x← B ∈ R, there exists an element a ∈ B such that I(a) = f . Take
the selection function s that selects these false a’s from each such rule for ∼x. Since R is complementary,625

there is a rule x ← A ∈ R that subsumes the rule of s, i.e., A ⊆ ∼ Im(s). It follows that all facts of A are
true in I.

For complementary justification frames, some useful properties hold. The next lemma gives a convenient
way to prove that that an interpretation is a model.

Lemma 3.33. Take JS = ⟨F ,Fd, R,B⟩ be a complementary justification system and assume B respects630

negation. Every interpretation I such that SVJS(x, I) ≥t I(x) for all x ∈ Fd, is a B-model of JF .

Proof. For all x ∈ Fd we have that SVJS(∼x, I) ≥t I(∼x). It follows immediately from Proposition 3.31
that SVJS(∼x, I) ≤t ∼SVJS(x, I). Therefore, I(∼x) ≤t ∼SVJS(x, I) or SVJS(x, I) ≤t ∼I(∼x) = I(x).
This completes the proof that SVJS(x, I) = I(x), i.e., I is a B-model of JF .

One might expect that when a justification frame is complementary and B respects negation, the jus-635

tification system is always guaranteed to be consistent, meaning that SVB(∼x, I) = ∼SVB(x, I). This is,
however not the case and it remains an open question for which classes of branch evaluations consistency

17

is guaranteed.11 We refer the reader to the PhD of the first author (Marynissen, 2022) for details on this
consistency question. What is important for the current paper is that for all branch evaluations considered
here, consistency is indeed guaranteed.640

Definition 3.34. A justification system JS is consistent if for every interpretation I, for every x ∈ Fd,
SVB(∼x, I) = ∼SVB(x, I).
Theorem 3.35 ((Marynissen, 2022, Corollary 3.3.10)). Assume JF is complementary and B is one of the
standard branch evaluations (B ∈ {Bsp,Bst,Bwf ,BKK}). It holds that ⟨JF ,B⟩ is consistent: for each I,

SVB(∼x, I) = ∼SVB(x, I).

3.4. Links between Different Justification Models645

Our next set of results is concerned with the relation between different semantics induced by JT. In the
context of logic programming, it is well-known that there is a unique well-founded model, what the relation is
between stable and well-founded models, or between the Kripke-Kleene and the well-founded model. Several
such results will follow immediately by establishing the correspondence with AFT, but some of them will be
needed in our proof. They are given explicitly, and sometimes in higher generality, in the current section.650

First of all, in logic programming, it is well-known that the well-founded and Kripke-Kleene semantics
induce a single model. In JT, we can prove that for each interpretation Io of the open facts, there is a
unique BKK and Bwf model expanding Io. This result does not only hold for BKK and Bwf but for the
so-called class of parametric branch evaluations. A branch evaluation B is called parametric if B(b) ∈ Fo

for all JF-branches b and all justification frames JF .655

Proposition 3.36. If JF is a justification frame and B a parametric branch evaluation, for each interpre-
tation Io of Fo, JF has at most one B-model I expanding Io. The model exists if and only if the system is
consistent.

Proof. The value of a justification with respect to a parametric branch evaluation only depends on the
interpretation Io of the open facts; hence supB(x, J, I) = supB(x, J, I ′) for every two interpretations I and660

I ′ expanding Io. As such, supB(x, J, Io) is well-defined.
If there exists a model I expanding Io, then it is the one such that I(x) = SVB(x, Io) for each x ∈ Fd.

This model is only well-defined if for all x ∈ Fd, the supported values of x and ∼x are consistent, that is,
SVB(∼x, Io) = ∼SVB(x, Io).

In other words, for any parametric B, every interpretation Io of the open facts induces at most one665

model. Theorem 3.35 guarantees that for BKK and Bwf the model exists.

Corollary 3.37. For every complementary justification frame, for every interpretation Io of Fo, there exists
a unique BKK-model and a unique Bwf-model expanding Io. When Fo = ∅, then there is a unique BKK-model
and a unique Bwf-model.

Similar to the situation in logic programming, the BKK-model is the least precise Bsp-model expanding670

some Io. This is proven in the next two propositions.

Proposition 3.38. The BKK-model of a complementary justification system is also a Bsp-model.

Proof. Let I be a BKK-model of JF . By Theorem 3.25, there is a complete support justification J for I
under BKK. The justification system is complementary and Bsp respects negation, hence Lemma 3.33 applies
for it. In particular, it suffices to prove that supBsp

(x, J, I) ≥t I(x) for all x ∈ Fd.675

Since BKK is tail-determined, we have for every node y reachable from x in J that

I(x) = supBKK
(x, J, I) ≤t supBKK

(y, J, I) = I(y).

The branch evaluation Bsp maps a branch to its second node which is reachable from the start node.
Therefore, supBsp

(x, J, I) ≥t I(x), which concludes the proof.

11However, for tree-like justifications, this question has recently been resolved (Marynissen and Bogaerts, 2022).

18

In the following, the order ≤p is extended to interpretations, I ≤p I ′ if I(x) ≤p I ′(x) for all x ∈ F .

Proposition 3.39. The BKK-model expanding Io is the ≤p-least Bsp-model expanding Io.680

Proof. Let IBKK
be the (unique) Kripke-Kleene model expanding Io and let I be any Bsp-model expanding

Io. We show that IBKK
(x) ≤p I(x) for all x. Take any fact x.

If IBKK(x) = u, then clearly IBKK(x) ≤p I(x), since u is the ≤p-least truth value.
If IBKK(x) = t, then SVBKK(x, I) = SVBKK(x, IBKK) = t. Let J be a proper justification for x such that

supBKK
(x, J, I) = t. By definitions of BKK, this guarantees that J only has finite branches. We claim that685

for any node y in J , I(y) = t and we prove this by induction on the depth of the subtree rooted in y. Clearly,
the property holds for leaves (since supBKK

(x, J, I) is t only if all leaves of J are true in Io). By induction,
for other nodes, we know that the property holds for all nodes in J(y) (which have a lower depth). Hence,
supBsp

(y, J, I) = t. Since we assumed that I is a Bsp-model, it must be that I(y) = t indeed. In particular,
the property holds for x and thus I(x) = t as desired.690

If IBKK
(x) = f , then IBKK

(∼x) = t and we can use the same argument as above to conclude that also
I(∼x) = t.

The relation between well-founded and stable models is similar: the Bwf -model expanding an interpre-
tation Io of the open facts, is the least precise Bst-model, as proven next.

Proposition 3.40. The Bwf-model of JF expanding Io is a Bst-model of JF .695

Proof. Let I be the unique Bwf -model of JF expanding Io. By Theorem 3.25, there is a complete support
justification J under Bwf . By Lemma 3.33, it suffices to prove that SVBst

(x, J, I) ≥t I(x) for all x ∈ Fd.
For any internal node y reachable from x in J we have that I(x) ≤t I(y). Indeed, since Bwf is tail-

determined, we have that for every b ∈ BJ(y) there is a branch b′ in BJ(x) so that B(b) = B(b′). This
means that I(y) = supBwf

(y, J, I) ≥t supBwf
(x, J, I) = I(x).700

For every b in BJ(x) we have that Bst(b) is mapped to an element in b or that Bst(b) = Bwf(b). In
both cases, we know that I(x) ≤t I(Bst(b)). This means that I(x) ≤t supBst

(x, J, I) ≤t SVBst
(x, I). This

concludes the proof that I is a Bst-model of JF .

s

Lemma 3.41. Let I be a Bst-model. For every x ∈ Fd, it holds that SVBwf
(x, I) ≤p I(x).705

Proof. By Theorem 3.25, there is a complete support justification J for I under Bst.
Assume SVBwf

(x, I) = f . Since supBwf
(x, J, I) = f this means that BJ(x) contains a branch b with an

(infinite) positive tail or ending in a false open fact. In any case, there are only finitely many internal sign
switches y1, . . . , yn in b, and let y0 = x. It is easy to see that supBst

(yn, J, I) = f since BJ(yn) contains a
positive branch or a finite branch (without sign switches) ending in a false open fact. For i with 0 ≤ i < n710

we have that I(yi) = SVBst
(yi, I) = supBst

(yi, J, I) ≤t I(yi+1). Therefore, we obtain that I(x) = f .
Second, assume SVBwf

(x, I) = t. By consistency of Bwf (Theorem 3.35), this is equivalent to

SVBwf
(∼x, I) = f ,

which implies I(∼x) = f and I(x) = t.
Combining the two statements, we get that SVBwf

(x, I) ≤p I(x).

Proposition 3.42. The Bwf-model expanding Io is the ≤p-least Bst-model expanding Io.715

Proof. Let IBwf
be the Bwf -model and I a Bst-model expanding Io. Lemma 3.41 entails for all x ∈ Fd that

IBwf
(x) = SVBwf

(x, Io) ≤p I(x). Hence, IBwf
≤p I, for every Bst-model. By Proposition 3.40, IBwf

is a
Bst-model, hence it is the ≤p-least one.

Finally, it holds that Bst-models are always supported, again, analogously to well-known results in logic
programming.720

19

Proposition 3.43. Every stable model is a supported model.

Proof. Take a Bst-model I. By Theorem 3.25, there is a complete support justification J for I under Bst.
Take any edge x → y in J . If we can prove that I(x) ≤t I(y) it will follow I(x) ≤t SVBsp

(x, I). Applying
Lemma 3.33, we obtain that I is a Bsp-model.

We do a case analysis on y. First, assume y is an open fact or has different sign than x. Then x → y725

is the core of every J-branch x → y → . . . under Bst. This means that I(x) ≤t I(Bst(x → y)) = I(y).
Second, assume x and y are defined facts of the same sign. Then for every b ∈ BJ(y), it holds that
Bst(x → b) = Bst(b). It follows that I(x) ≤ minb∈BJ (y) I(Bst(b)) = I(y). In both cases, it holds that
I(x) ≤t I(y).

4. Embedding JT in AFT730

We now turn our attention to the main topic of this paper, namely formally proving the correspondence
between JT and AFT. We start with a brief recall of the basic definitions that constitute AFT, next show
how to obtain an approximator out of a justification frame, and finally prove that indeed, all major semantics
are preserved under this correspondence.

4.1. Preliminaries: AFT735

Given a complete lattice ⟨L,≤⟩, Approximation Fixpoint Theory (Denecker et al., 2000) uses the bilattice
L2 = L×L. We define projection functions as usual: (x, y)1 = x and (x, y)2 = y. Pairs (x, y) ∈ L2 are used
to approximate elements in the interval [x, y] = {z | x ≤ z ≤ y}. We call (x, y) ∈ L2 consistent if x ≤ y,
i.e., if [x, y] is not empty. The set of consistent pairs is denoted Lc. A pair (x, x) is called exact since it
approximates only the element x. The precision order ≤p on L2 is defined as (x, y) ≤p (u, v) if x ≤ u and740

y ≥ v. If (x, y) and(u, v) are consistent, this means that [u, v] ⊆ [x, y]. If ⟨L,≤⟩ is a complete lattice, then so
is
〈
L2,≤p

〉
. AFT studies fixpoints of operators O : L→ L through operators approximating O. An operator

A : L2 → L2 is an approximator of O if it is ≤p-monotone and has the property that A(x, x) = (O(x), O(x))
for all x ∈ L. Approximators are internal in Lc (i.e., map Lc into Lc). We often restrict our attention to
symmetric approximators: approximators A such that, for all x and y, A(x, y)1 = A(y, x)2. Denecker et al.745

(2004) showed that the consistent fixpoints of interest of a symmetric approximator are uniquely determined
by an approximator’s restriction to Lc and hence, that it usually suffices to define approximators on Lc.
Such a restriction is called a consistent approximator. As mentioned before, AFT studies fixpoints of O
using fixpoints of A. The main type of fixpoints that concern us are given here.

• A partial supported fixpoint of A is a fixpoint of A.750

• The Kripke-Kleene fixpoint of A is the ≤p-least fixpoint of A; it approximates all fixpoints of A.

• A partial stable fixpoint of A is a pair (x, y) such that x = lfp(A(·, y)1) and y = lfp(A(x, ·)2), where
A(·, y)1 denotes the function L → L : z 7→ A(z, y)1 and analogously A(x, ·)2 stands for L → L : z 7→
A(x, z)2.

• The well-founded fixpoint of A is the ≤p-least partial stable fixpoint of A.755

The adjective “partial” in this definition refers to “non-exact”, in line with terminology used for instance
in logic programming, where partial stable models are also defined. Uncoincidentally, partial stable models
in logic programming correspond to what are called partial stable fixpoints here. Partial supported fixpoints
of A are not necessarily fixpoints of O. However, in case they are exact, i.e., of the form (x, x), we call them
supported fixpoints; in this case x is a fixpoint of O as well. We similarly define stable fixpoints as partial760

stable fixpoints that happen to be exact.

20

Example 4.1. As a small example12 of the different constructions introduced here, we consider an operator
and approximator as induced by the set of rules{

p← p
q ← ∼p.

}
.

The operator we use is the well-known immediate consequence operator of van Emden and Kowalski (1976)
and the approximator is Fitting’s three-valued immediate consequence operator (Fitting, 2002); the lattices765

they operate on, and the operators are visualised below. Dashed arrows represent the order (on the lattice
and the consistent part of the bilattice), and dotted arrows the operator and approximator.

O : ⊤ = {p, q}

uu{p}

::

%%
{q}

dd

yy

⊥ = ∅

99ee
55

A : ({p}, {p})
��

({p, q}, {p, q})oo (∅, ∅) // ({q}, {q})
��

({p}, {p, q})

OO 66II

(∅, {p})

hh
22

%%

({q}, {p, q})

ll 77

zz

(∅, {q})

gg OOII

⊥≤p
= (∅, {p, q})

66
33

hhkk

ZZ

We see that there are three (partial) supported fixpoints, namely (∅, {p, q}) and ({p}, {p}) and ({q}, {q}).
The latter two are exact and correspond to the two fixpoints of O. The former is not exact and is the Kripke-770

Kleene fixpoint. We claim that ({q}, {q}) is a (partial) stable fixpoint (that happens to be exact). To see this
we should verify (among others) that {q} = lfp(A(·, {q})1). This is indeed the case, since A(·, {q})1 maps ∅
to {q} (indeed, A(∅, {q})1 = ({q}, {q})1 = {q}) and maps {q} to itself.13 In fact, ({q}, {q}) is the only partial
stable fixpoint since the other two partial supported fixpoints are not stable: (∅, {p, q}) is not a stable fixpoint
since lfp(A(∅, ·)2) = {q} ≠ {p, q} and ({p}, {p}) is not a stable fixpoint since lfp(A(·, {p})1) = ∅ ≠ {p}. ▲775

4.2. The Approximator

Let JF = ⟨F ,Fd, R⟩ be a justification frame, fixed throughout this section. Our first goal is to define
an approximator on a suitable lattice for JF . Following the correspondence with how this is done in logic
programming, we will take as lattice the set of exact interpretations (interpretations that map no facts to
u except for u itself). It is easy to see that such interpretations correspond directly to subsets of F+. In780

other words, we will use the lattice ⟨L = 2F+ ,⊆⟩. Now, the set Lc is isomorphic to the set of three-valued
interpretations of F ; under this isomorphism, a consistent pair (I, J) ∈ Lc corresponds to the three-valued
interpretation I such that for positive facts x ∈ F+, I(x) = t if x ∈ I, I(x) = f if x ̸∈, and I(x) = u
otherwise.

12Many more examples can be found in the PhD thesis of Bogaerts (2015).
13Readers familiar with logic programming semantics might have observed that A(·, {q})1 is actually the immediate conse-

quence operator of the reduct (Gelfond and Lifschitz, 1988) of the program with respect to {q}. This holds in general.

21

Definition 4.2. The operator OJF : L→ L of JF maps a subset I of F+ to785

OJF (I) = {x ∈ F+ | ∃x← A ∈ R : ∀a ∈ A : (I, I)(a) = t} .

The approximator AJF : Lc → Lc of JF is defined as follows

AJF (I)1 = {x ∈ F+ | ∃x← A ∈ R : ∀a ∈ A : I(a) = t}
AJF (I)2 = {x ∈ F+ | ∃x← A ∈ R : ∀a ∈ A : I(a) ≥t u}

Remark 4.3. This operator defined here is indeed well-defined: its image is in Lc, i.e., AJF (I)1 ≤ AJF (I)2.
To see this, note that whenever ∀a ∈ A : I(a) = t, clearly also ∀a ∈ A : I(a) ≥t u. ▲

Proposition 4.4. If no rule body in JF contains u, then AJF is a consistent approximator of OJF .

Proof. To see that it is ≤p-monotonic, note that if I1 ≥p I2, and x ∈ AJF (I2)1, then there is a rule x← A790

such that ∀a ∈ A : I2(a) = t. Since I1 ≥p I2, then also ∀a ∈ A : I1(a) = t and hence x ∈ AJF (I1)1 as well,
i.e., AJF (I2)1 ⊆ AJF (I1)1 The argument for showing that AJF (I1)2 ⊆ AJF (I2)2 is similar. To see that
AJF coincides with OJF on exact interpretations, we only need to show

that AJF (I)(x) ̸= u if I is exact. This follows directly from the fact that no rule body in JF contains
u.795

The requirement that rule bodies cannot contain u is needed if we wish to follow the convention that
approximators in AFT ought to be symmetric. Quoting Denecker et al. (2004, page 14):

“While it is possible to develop a generalisation of the theory presented in this paper without the
symmetry assumption, we chose to adopt it because the motivating examples, that is, operators
occurring in knowledge representation, are symmetric.”800

Similarly, we are not aware of practical examples with bodies containing u in unnested justification systems.14

However, in nested systems, as demonstrated by Marynissen (2022, Chapter 6), bodies containing u can
occur quite easily due to the construction of the so-called compression. No proof, except for Proposition 4.4,
in this paper makes use of the fact that u does not appear in bodies of rules. This means that once consistent
AFT is worked out for asymmetric operators, we can remove this restriction. In the rest of this paper, we805

assume that every justification frame does not have u in a rule body.
For a justification system, under certain conditions, we can derive a second operator on interpretations,

based on the supported values under the branch evaluation of the system.

Definition 4.5. Let JS be a complementary justification system such that SVJS(∼x, I) = ∼ SVJS(x, I) for
all x and I. With JS, we associate a support operator SJS on F-interpretations. For any F-interpretation810

I, SJS(I) is the F-interpretation that maps every x to SVJS(x, I). If JS consists of JF and B, then we
write S⟨JF,B⟩ for SJS .

As shown by Marynissen (2022, Theorems 3.2.6 and 3.3.9), the condition on JS in Definition 4.5 is
satisfied for all the major branch evaluations (BKK, Bst, Bsp, and Bwf) whenever the justification frame is
complementary, meaning that the support operator is well-defined for all the branch evaluations of interest815

in the current paper. Moreover, it turns out that in case our justification frame behaves well with respect
to negation (if it is complementary), the approximator equals the support operator induced by the branch
evaluation Bsp.

Lemma 4.6. For a complementary justification frame JF , the function AJF and the support operator
S⟨JF,Bsp⟩ are equal.820

Proof. Take an interpretation I. For any x ∈ F+, it is obvious that AJF (I)(x) = S⟨JF,Bsp⟩(I)(x). Take
x ∈ F−. We have that AJF (I)(x) = ∼AJF (I)(∼x) = ∼S⟨JF,Bsp⟩(I)(∼x) = S⟨JF,Bsp⟩(I)(x), where the first
step follows since interpretations commute with negation and the last step is by the consistency of S⟨JF,Bsp⟩
as shown by Marynissen et al. (2018).

14You and Yuan (1990) argue that u itself is needed only for a very special type of logic programs.

22

4.3. Semantic Correspondence825

The central result of this section is the following theorem, which essentially states that for all major
semantics, the branch evaluation in JT corresponds to the definitions of AFT.

Theorem 4.7. Take a complementary justification frame JF .

1. The partial supported fixpoints of AJF are exactly the supported models of JF .
2. The Kripke-Kleene fixpoint of AJF is the unique Kripke-Kleene model of JF .830

3. The partial stable fixpoints of AJF are exactly the stable models of JF .
4. The well-founded fixpoint of AJF is the unique well-founded model of JF .

These four points are proven independently; the first follows directly from our observation that AJF and
S⟨JF,Bsp⟩ are in fact the same operator.

Proposition 4.8 (Item 1 of Theorem 4.7). The partial supported fixpoints of AJF are exactly the supported835

models of JF .

Proof. Follows directly from Lemma 4.6.

Recall from Proposition 3.39 that the BKK-model of JF is the ≤p-least Bsp-model. Given the correspon-
dence of supported semantics of AJF and JF , the result for the Kripke-Kleene semantics follows.

Proposition 4.9 (Item 2 of Theorem 4.7). The Kripke-Kleene fixpoint of AJF is equal to the unique BKK-840

model of JF .

Proof. This follows directly from Proposition 3.39 and Proposition 4.8 using the fact that the Kripke-Kleene
fixpoint of AJF is defined as the least fixpoint of AJF .

The proof of the third point of Theorem 4.7 is split in two parts, proven separately in the following
propositions.845

Proposition 4.10 (Item 3 of Theorem 4.7; first direction). Each stable model of JF is a partial stable
fixpoint of AJF .

Proof. Let I = (I1, I2) be a Bst-model of JF . We prove that lfp(AJF (·, I2)1) = I1 and that lfp(AJF (I1, ·)2) =
I2. By Proposition 3.43, it holds that AJF (I) = S⟨JF,Bsp⟩(I) = I. Therefore, we have that AJF (I1, I2)1 = I1
and AJF (I1, I2)2 = I2.850

Take I ′1 ⊊ I1 and assume by contradiction that AJF (I
′
1, I2)1 = I ′1. Define I ′ = (I ′1, I2). Therefore,

I ′ <p I and I(x) = t and I ′(x) = u for all x ∈ I ′1 \ I1. By Theorem 3.25, there is a complete support
justification J for I under Bst. Define the partial order ⪯J on I1: y ⪯J x if y is reachable in J from
x through positive facts. Since J does not contain infinite positive branches starting from a fact x ∈ I1,
we have that ⪯J does not have infinitely descending chains; hence ⪯J is well-founded. The set I1 \ I ′1 is855

not empty, hence has a minimal element x with respect to ⪯J . Take a child y of x in J . We prove that
I ′(y) = t. If y is open, then t = I(x) = supBst

(x, J, I) ≤t I(y) = I ′(y). If y has a different sign than x,
then t = I(x) = supBst

(x, J, I) ≤t I(y). This means that ∼y /∈ I2 since y ∈ F−; hence I ′(y) = t. If y
has the same sign as x, then t = I(x) = supBst

(x, J, I) ≤t supBst
(y, J, I) = I(y). Therefore, y ∈ I1, which

implies that y ≺J x. This means that y /∈ I1 \ I ′1. We can conclude that y ∈ I ′1; hence I ′(y) = t. This shows860

that supBsp
(x, J, I ′) = t, hence SVBsp

(x, I ′) = t. This implies that x ∈ AJF (I
′
1, I2)1 = I ′1, which contradicts

that x /∈ I ′1; hence I1 = lfp(AJF (·, I2)1).
Take I1 ⊆ I ′2 ⊊ I2 and assume by contradiction that AJF (I1, I

′
2)2 = I ′2. Define I ′′ = (I1, I

′
2). Therefore,

I <p I ′′ and I(x) = u and I ′′(x) = f for all x ∈ I2 \ I ′2.
Define the partial order ⪯′

J on I2 the same as before. This order is also well-founded for a similar865

reason. The set I2 \ I ′2 is not empty, hence has a minimal element x with respect to ⪯′
J . Take a child y

of x in J . We prove that I ′′(y) ≥t u. If y is open, then u = I(x) = supBst
(x, J, I) ≤t I(y) = I ′′(y).

If y has a different sign as x, then u = I(x) = supBst
(x, J, I) ≤t I(y). This means that ∼y /∈ I2 or

23

∼y ∈ I2 \ I1. Therefore, ∼y /∈ I ′2 or ∼y ∈ I ′2 \ I1, thus I ′′(y) ≥t u. If y has the same sign as x, then
u = I(x) = supBst

(x, J, I) ≤t supBst
(y, J, I) = I(y). Therefore, y ∈ I2, which implies that y ≺′

J x. This870

means that y /∈ I2 \ I ′2, hence y ∈ I ′2. We conclude that I ′′(y) ≥t u. This shows that supBsp
(x, J, I ′′) ≥t u,

hence SVBsp
(x, I ′′) ≥t u. This implies that x ∈ AJF (I1, I

′
2)2 = I ′2, which contradicts that x /∈ I ′2, concluding

that I2 = lfp(AJF (I1, ·)2). This finishes the proof that I is a partial stable fixpoint of AJF .

For the other direction, we first need the following lemma.

Lemma 4.11. Let I be a Bsp-model and x ∈ F+ with SVBsp
(x, I) = f . It holds that SVBst

(x, I) = f .875

Proof. Take an arbitrary justification J with x as internal node. There is a child y of x with I(y) = f .
If y has a different sign than x, then supBst

(x, J, I) = f . Otherwise, by iterating this argument, we can
construct either a finite branch ending in a z with I(z) = f or an infinite branch such that every element
z in b has I(z) = f and z has the same sign as x. Since x is positive, this means that supBst

(x, J, I) = f .
This concludes the proof that SVBst

(x, I) = f .880

We are now ready to prove the second part of the third point of Theorem 4.7.

Proposition 4.12 (Item 3 of Theorem 4.7; second direction). Each partial stable fixpoint of AJF is a stable
model of JF .

Proof. Let I = (I1, I2) be a partial stable fixpoint of AJF . We prove that SVBst
(x, I) = I(x) for x ∈ F+.

By consistency of S⟨JF,Bst⟩ (Marynissen et al., 2018), this proves that I is a stable model of JF . We prove885

our claim in three parts.
Part 1: SVBst

(x, I) = I(x) = t for all x ∈ I1. Since I1 is lfp(AJF (·, I2)1), there is a sequence (Ki)i≤β

for some ordinal number β so that

• K0 = ∅;

• Ki+1 = AJF (Ki, I2)1 for all i < β;890

• Kα =
⋃

i<α Ki for all limit ordinals α ≤ β;

• Kβ = I1.

Now, for every x ∈ I1, there is a least ordinal ix such that x /∈ Kix , while x ∈ Kix+1. This means that there
is a rule x← Ax such that for all y ∈ Ax we have that (Kix , I2)(y) = t. Since (Kix , I2) ≤p I we have that
I(y) = t for all y ∈ Ax.895

We now define J to be the justification with exactly the rules x ← Ax for x ∈ I1. Every J-branch is
finite and ending in an element in F− ∪ Fo. Indeed, an infinite J-branch x = x0 → x1 → · · · implies the
existence of a strictly decreasing sequence of ordinals (ix0

, ix1
, . . .), which cannot be the case. Since every

J-branch is finite, and Bst maps each finite branch to a fact occurring on that branch, the value of J-branch
starting from x is an element of J , hence supBst

(x, J, I) = t.900

Part 2: SVBst
(x, I) = I(x) = u for all x ∈ I2 \ I1. Since I2 is lfp(AJF (I1, ·)2), there is a sequence

(Mi)i≤β for some ordinal number β so that

• M0 = I1;

• Mi+1 = AJF (I1,Mi)2 for i < β;

• Mα =
⋃

i<α Mi for limit ordinal α ≤ β;905

• Mβ = I2.

24

For every x ∈ I2 \ I1, there is a least ordinal jx such that x /∈ Mjx , while x ∈ Mjx+1. Therefore, there is a
rule x ← Cx such that for all y ∈ Cx we have that (I1,Mjx)(y) ≥t u. Since I ≤p (I1,Mjx) we have that
I(y) ≥t u for all y ∈ Cx.

Define J ′ to be the justification with exactly the rules x ← Cx for x ∈ I2 \ I1. By a similar reasoning910

as in the first part, we have that every J ′-branch is finite and ending in I1 ∪ F− ∪ Fo. Define J∗ as J ′ ↑J ,
with J the justification from the first part. A J∗-branch is either a J ′-branch or a concatenation of a
J ′-branch with a J-branch. This means that J∗ does not have infinite branches. By construction, we have
for every element y in J∗ that I(y) ≥t u. The evaluation of a J∗-branch is equal to an element in J∗; hence
supBst

(x, J∗, I) ≥t u.915

However, every justification for x has a branch b such that I(Bst(b)) ≤t u; hence SVBst
(x, I) = u = I(x).

Indeed, for every y with I(y) ≤t u and rule y ← C there is a c ∈ C with I(c) ≤t u. This constructs a
branch b such that for every element y in b we have that I(y) ≤t u. We know that Bst(b) ̸= t; otherwise
b is completely negative or ending in t. Therefore, Bst maps b to an element in b or to f or u. This proves
that I(Bst(b)) ≤t u.920

Part 3: SVBst
(x, I) = I(x) = f for all x ∈ F+ \ I2. This is immediate from Lemma 4.11.

Example 4.13. Let F = {x,∼x, y,∼y, z,∼z} ∪ L, F+ = {x, y, z}, and let R be the (complementary) set
of rules x← y ∼x← ∼y

y ← ∼z ∼y ← z
z ← ∼x,∼y ∼z ← x ∼z ← y

 .

The approximator AJF has three partial stable fixpoints, namely ({x, y} , {x, y}), ({z} , {z}) and (∅, {x, y, z}).
Let us take a look at the fixpoint ({x, y} , {x, y}). Since it is a stable fixpoint, we know that ({x, y} , {x, y})925

is a least fixpoint of AJF (·, {x, y}). This operator is monotone with respect to ⊆; hence we can construct
the fixpoint by iteratively applying the operator on (∅, {x, y}). This produces the following sequence.

(∅, {x, y})→ ({y} , {x, y})→ ({x, y} , {x, y})

The first step uses the rule y ← ∼z, while the second step uses the rule x← y. Combining the two we get
the justification x → y → ∼z. All nodes of this justification are true in the model ({x, y} , {x, y}); all its
internal nodes are positive, and each defined leaf is negative. This illustrates the first step of the proof of930

Proposition 4.12. By extending the found justification, we get a locally complete justification with the same
value as the supported value. ▲

The last point now follows immediately.

Proposition 4.14 (Item 4 of Theorem 4.7). The well-founded fixpoint of AJF is the unique well-founded
model of JF .935

Proof. This follows directly by combining item 3 of Theorem 4.7 with Proposition 3.42.

5. Ultimate Semantics for Justification Frames

When applying AFT to new domains, there is not always a clear choice of approximator to use; the
operator on the other hand is often clearer. Denecker et al. (2004) studied the space of approximators and
observed that consistent approximators can naturally be ordered according to their precision. Specifically,940

if A and B are approximators of O, we call A more precise than B if A(x, y) ≥p B(x, y) for all (x, y) ∈ LC .
It then holds that a more precise approximator yields more precise results: for instance, if A is more precise
than B, then the A-well-founded fixpoint is guaranteed to be more precise than the B-well-founded fixpoint.
They also observed that the space of consistent approximators of O has a most precise element, called
the ultimate approximator, denoted U(O). This induces ultimate versions of the various AFT fixpoints.15945

15This added precision has an increased computational cost (Denecker et al., 2004, Theorems 6.12 and 6.13).

25

In the context of logic programming, the step from the standard approximator (which is Fitting’s partial
immediate consequence operator (Fitting, 2002)) to the ultimate approximator roughly boils down to using
supervaluations (Fitting, 1994; van Fraassen, 1966) instead of Kleene’s truth tables (Kleene, 1938). The
ultimate approximator of an operator O : L→ L has the following form (Denecker et al., 2004):

U(O) : Lc → Lc : (x, y) 7→

 ∧
x≤z≤y

O(z),
∨

x≤z≤y

O(z)

 ,

where
∧

(respectively
∨
) are the greatest lower (respectively least upper) bound with respect to ≤. If an950

approximator A approximates an operator O, then we abuse notation by defining U(A) := U(O).
In the context of justification theory, the justification frame uniquely determines the approximator at

hand. Still, we show that it is possible to obtain ultimate semantics here as well. To do so, we will develop
a method to transform a justification frame JF into its ultimate frame U(JF). We will then show that
the approximator associated to U(JF) is indeed the ultimate approximator of OJF . The result is a generic955

mechanism to go from any semantics induced by justification theory (for arbitrary branch evaluations – not
just for those that have an AFT counterpart) to an ultimate variant thereof. Our construction is as follows:

Definition 5.1. Let JF be a complementary justification frame. Let X be the set of rules with a positive
head. Let X∗ be the least (w.r.t. ⊆) set containing X that is closed under the addition of rules x← A

• if there is a rule x← B with B ⊆ A, or960

• if there are rules x← {y} ∪A and x← {∼y} ∪A.

Let Y be the complementation of X∗. Then U(JF) is defined to be the complementary justification frame
⟨F ,Fd, Y ⟩. We call U(JF) the ultimate frame of JF .

The first rule in the construction of X∗ contains several redundant rules that would strictly speaking
not be required. However, it is sometimes convenient to know that the rule set is closed under the first rule965

as well.

Example 5.2. Let Fd = {x,∼x} and Fo = {a,∼a, b,∼b} ∪ Fo. Take R to be the (complementary) set of
rules {

x← a, x ∼x← ∼a,∼b ∼x← ∼a, x
x← b,∼x ∼x← ∼b,∼x ∼x← x,∼x

}
.

A rule x ← A is minimal, if there is no rule x ← B with B ⊂ A. For determining the supported value,
one only needs to take minimal rules into account. The justification frame U(JF) has exactly the following970

minimal rules:

x← a, x x← b,∼x x← a, b

∼x← ∼a,∼b ∼x← ∼a, x ∼x← ∼b,∼x

Of course, it contains many non-minimal rules, for example x← a, b, x.
The justifications in the original system containing x as an internal node are exactly the following:

x

a

x

b ∼x

∼a∼b

x

b ∼x

∼a

x

b ∼x

x

b ∼x

∼b

26

Assume from now on we are working under Bst. The value of the leftmost justification for x is f in every975

interpretation. The values of the other justifications for x are at most u in Bst-models. If it would be t,
then the value of these justifications for x is equal to the value of ∼x, which is f .

In the ultimate justification frame, the minimal rule x ← a, b is added and (as a consequence) on the
negative side the minimal rule ∼x← x,∼x is removed.16 This allows for the justification

x

b a
980

If the interpretation of a and b is t, then the value of this justification for x is t. Therefore, ({a, b, x} , {a, b, x})
is an ultimate stable model, while not a stable model. Note that the rightmost justification of JF is not a
justification in U(JF), due to the removal of the rule ∼x← x,∼x. ▲

Remark 5.3. The ultimate semantics intuitively “joins” multiple rules for the same fact. That is, if there
are two rules for p, say985

p← p p← ∼p,

it treats these two as one monolithic rule
p← (p ∨ ∼p),

where it can reason powerfully over the propositional formula in the body. Of course, such disjunctive
bodies cannot formally be expressed in justification theory. However, there are formalisms (such as aggregates
(Faber et al., 2011) and abstract constraint atoms (Marek and Truszczyński, 2004)) in which such complicated
bodies can be represented. Moreover, ultimate semantics has been used to characterize and classify semantics990

of logic programs with aggregates (Mariën, 2009; Vanbesien et al., 2022). ▲

It can be seen that the construction adds rules to JF in two cases. For the first type, if x ← B is a
rule in R with B ⊆ A, then if B is sufficient to derive x, clearly so is A. The second type of rule addition
essentially performs some sort of case splitting. It states that if a set of facts A can be used with either y
or ∼y to derive x, then the essence for deriving x is the set A itself. In that case, the rule x← A is added995

to the ultimate frame. It turns out that this rule of case splitting is indeed sufficient to reconstruct the
ultimate semantics in JT. This is formalised in the main theorem of this section:

Theorem 5.4. For any frame JF , AU(JF) = U(OJF).

An immediate corollary is, for instance that the set of stable models of U(JF) equals the set of ultimate
stable fixpoints of OJF , and similarly for other semantics. Recall that, in the context of lattices with the1000

subset order, which is what we are concerned with here, the ultimate approximator is defined as follows
(Denecker et al., 2004):

U(O)(I1, I2) =

 ⋂
I1⊆K⊆I2

O(K),
⋃

I1⊆K⊆I2

O(K)

 . (1)

The proof of Theorem 5.4 makes use of the following intermediate results.

Lemma 5.5. Let I be an interpretation and x ∈ Fd.
If OJF (I ′)(x) = t (respectively f) for all exact interpretations I ′ with I ′ ≥p I, then AU(JF)(I)(x) = t1005

(resp. f).

Proof. Let I = (I1, I2). We first prove this for the case t. Define X = I2 \ I1, then we know that
X = {y ∈ Fd | I(y) = u}. We prove for all Y ⊆ X and all complete consistent subsets A over X \Y that the
rule x← {t} ∪ I1 ∪∼(F+ \ I2)∪A is a rule in U(JF). A complete consistent subset A of Z is a subset such

16Technically, the definition of the ultimate frame does not say that this rule is “removed” but it recomputes the rules for
negative facts by complementing X∗. The net effect is that this rule is removed.

27

that for each z ∈ Z exactly one of z and ∼z is in A. If Y = X, then we get that x← {t} ∪ I1 ∪∼(F+ \ I2)1010

is a rule in U(JF) with every element y in its body we have I(y) = t, completing our proof. We prove our
claim by well-founded induction.

Assume Y = ∅. Take a complete consistent setA overX. DefineK = I1∪(A∩F+). Since I ≤p (K,K), we
have a rule x← B in JF with (K,K)(b) = t for all b ∈ B. The true facts in (K,K) are {t}∪I1∪∼(F+\I2)∪A.
So we have a rule x ← B with B ⊆ {t} ∪ I1 ∪ ∼(F+ \ I2) ∪ A. By the construction of the ultimate fame1015

(Definition 5.1), we can extend it to the rule x← I1 ∪ ∼(F+ \ I2) ∪A in U(JF).
Take Y ̸= ∅. Assume by induction the claim holds for all Y ′ ⊊ Y . Take any y ∈ Y and a complete

consistent set A over X \ Y . Then A ∪ {y} and A ∪ {∼y} are complete consistent sets over X \ (Y \ {y}).
So by induction there are rules x← I1 ∪ (F+ \ I2) ∪A ∪ {y} and x← I1 ∪ (F+ \ I2) ∪A ∪ {∼ y} in U(JF).
This means that x← I1 ∪ (F+ \ I2) ∪A is a rule in U(JF).1020

The case for f follows easily from the t case. We have for all exact interpretations I ′ with I ≤p I ′ that
AJF (I ′)(x) = f , i.e., by consistency that AJF (I, I)(∼x) = t. By the first part of the lemma, we have that
AU(JF)(I)(∼x) = t; hence AU(JF)(I)(x) = f .

Combining this lemma with Eq. (1) of the ultimate approximator immediately yields that the operator
AU(JF)(I) is as least as precise as the ultimate approximator of OJF .1025

Lemma 5.6. For all I we have U(OJF)(I) ≤p AU(JF)(I).

Proof. Take x ∈ F+.
If U(OJF)(I)(x) = u, then it is obvious that AU(JF)(I)(x) ≥p u = U(OJF)(I)(x).
If U(OJF)(I)(x) = t, then x ∈ ∩I1⊆K⊆I2OJF (K,K)1; hence OJF (K,K)(x) = t for all exact interpreta-

tions (K,K) ≥p I. Therefore, by Lemma 5.5, we have that AU(JF)(I)(x) = t = U(OJF)(I)(x).1030

If U(OJF)(I)(x) = f , then x /∈ ∪I1⊆K⊆I2OJF (K,K)1; hence OJF (K,K)(x) = f for all exact interpreta-
tions (K,K) ≥p I. By Lemma 5.5 it follows that AU(JF)(I)(x) = f = U(OJF)(I)(x).

Similarly, we can prove for all x ∈ F− that U(OJF)(I)(x) ≤p AU(JF)(I)(x).

Since the ultimate approximator is the most precise approximator of any given operator, all that is left
to prove, to indeed obtain Theorem 5.4 is that AU(JF) indeed approximates OJF . That is the content of1035

the last lemma.

Lemma 5.7. AU(JF) is an approximator of OJF .

Proof. Take I ⊆ F+. Adding a rule x ← B to JF if x ← A is in JF with A ⊊ B, does not change
AJF (I, I). Similarly, adding a rule x ← A to JF if x ← A ∪ {y} and x ← A ∪ {∼y} are in JF does not
change AJF (I, I). This means that OJF (I) = AJF (I, I) = AU(JF)(I, I).1040

6. Discussion and Conclusion

In this paper, we presented a general mechanism to translate justification frames into approximating
operators and showed that this transformation preserves all semantics the two formalisms have in com-
mon. The correspondence we established provides ample opportunity for future work and in fact probably
generates more questions than it answers.1045

By embedding JT in AFT, JT gets access to a rich body of theoretical results developed for AFT. One
example of this is stratification: we have a good understanding of when an approximator is stratifiable
(Vennekens et al., 2006) and what this means for the computation of the fixpoints at hand (essentially,
they can be computed “piece by piece” following the stratification). If we can now identify syntactic
conditions on the justification frame at hand that guarantee that the induced operator is stratifiable, then1050

we immediately know that those semantics that have a counterpart in AFT can indeed be computed following
the stratification. Of course, there is a major limitation here: these results are only directly applicable to
branch evaluations that have a counterpart in AFT. A question that immediately arises is whether results
such as stratification results also apply to other branch evaluations, and which assumptions on branch
evaluations would be required for that.1055

28

Another question that pops up on the justification side is whether concepts such as groundedness (Bo-
gaerts et al., 2015a,b) or safety (Bogaerts et al., 2018) can be transferred to JT.

On the AFT side, this embedding calls for a general algebraic study of explanations. Indeed, for certain
approximators, namely those that are induced by a justification frame, our results give us a method for
answering certain why questions in a graph-based manner (justifications allow us to answer why a fact is1060

true or false in a given model). Lifting this notion of explanation to general approximators would benefit
domains of logics that are covered by AFT but not by JT, such as auto-epistemic logic (Moore, 1985) and
default logic (Reiter, 1980). A difficulty in doing so is that AFT is defined over arbitrary lattices, that do
not necessarily need to be subset-lattices.

Another question that emerges naturally is how nesting of justification frames fits into this story. This1065

notion of nesting was originally defined by Denecker et al. (2015) in order to capture semantics of nested least
and greatest fixpoints (Hou et al., 2010). Denecker et al. defined the semantics of such nested justification
systems using an operation called compression, which turns a nested system into an unnested one. Our
embedding would in principle apply to the result of this operation, were it not that compression can result
in rules with u in their body, thus violating the condition of Proposition 4.4. Recently, we have shown1070

that the semantics of nested systems can also be characterized without compression, but using a different
branch evaluation that makes a distinction between different levels of nesting (Marynissen et al., 2022).
Our embedding now raises the question whether this new branch evaluation gives rise to new fixpoint
constructions or a notion of nested operator on the algebraic side.

Finally, justifications have appeared in many different forms in the literature. The formal connection1075

between these different types of justifications has not yet been investigated. It would be interesting to find
out if there are any formal connections, and to which extent the results of the current paper carry over to
the framework of Fages (1990), Schulz and Toni (2013), or Cabalar et al. (2014). An important remark
here is that these three frameworks all focus on providing justifications for a single semantics, whereas JT
supports uniformly characterizing all major semantics of logic programming, through the use of different1080

branch evaluations.

References

Antic, C., 2020. Fixed point semantics for stream reasoning. Artif. Intell. 288, 103370. URL: https://doi.org/10.1016/j.
artint.2020.103370, doi:10.1016/j.artint.2020.103370.

Antić, C., 2023. Neural logic programs and neural nets. doi:10.13140/RG.2.2.16109.46568. preprint.1085

Bi, Y., You, J., Feng, Z., 2014. A generalization of approximation fixpoint theory and application, in: Kontchakov, R.,
Mugnier, M. (Eds.), Web Reasoning and Rule Systems - 8th International Conference, RR 2014, Athens, Greece, September
15-17, 2014. Proceedings, Springer. pp. 45–59. URL: http://dx.doi.org/10.1007/978-3-319-11113-1_4, doi:10.1007/
978-3-319-11113-1_4.

Bogaerts, B., 2015. Groundedness in logics with a fixpoint semantics. Ph.D. thesis. Department of Computer Science, KU1090

Leuven. URL: https://lirias.kuleuven.be/handle/123456789/496543. denecker, Marc (supervisor), Vennekens, Joost and
Van den Bussche, Jan (cosupervisors).

Bogaerts, B., 2019. Weighted abstract dialectical frameworks through the lens of approximation fixpoint theory, in: The
Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI1095

2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, AAAI Press. pp. 2686–2693. URL: https://doi.org/10.
1609/aaai.v33i01.33012686, doi:10.1609/aaai.v33i01.33012686.

Bogaerts, B., Cruz-Filipe, L., 2018. Fixpoint semantics for active integrity constraints. Artif. Intell. 255, 43–70. URL:
https://doi.org/10.1016/j.artint.2017.11.003, doi:10.1016/j.artint.2017.11.003.

Bogaerts, B., Cruz-Filipe, L., 2021. Stratification in approximation fixpoint theory and its application to active integrity1100

constraints. ACM Trans. Comput. Log. 22, 6:1–6:19. URL: https://doi.org/10.1145/3430750, doi:10.1145/3430750.
Bogaerts, B., Jakubowski, M., 2021. Fixpoint semantics for recursive SHACL, in: Formisano, A., Liu, Y.A., Bogaerts, B.,

Brik, A., Dahl, V., Dodaro, C., Fodor, P., Pozzato, G.L., Vennekens, J., Zhou, N. (Eds.), Proceedings 37th International
Conference on Logic Programming (Technical Communications), ICLP Technical Communications 2021, Porto (virtual
event), 20-27th September 2021, pp. 41–47. URL: https://doi.org/10.4204/EPTCS.345.14, doi:10.4204/EPTCS.345.14.1105

Bogaerts, B., Van den Broeck, G., 2015. Knowledge compilation of logic programs using approximation fixpoint theory. TPLP
15, 464–480. URL: http://journals.cambridge.org/article_S1471068415000162, doi:10.1017/S1471068415000162.

Bogaerts, B., Vennekens, J., Denecker, M., 2015a. Grounded fixpoints and their applications in knowledge representation.
Artif. Intell. 224, 51–71. URL: http://dx.doi.org/10.1016/j.artint.2015.03.006, doi:10.1016/j.artint.2015.03.006.

29

https://doi.org/10.1016/j.artint.2020.103370
https://doi.org/10.1016/j.artint.2020.103370
https://doi.org/10.1016/j.artint.2020.103370
http://dx.doi.org/10.1016/j.artint.2020.103370
http://dx.doi.org/10.13140/RG.2.2.16109.46568
http://dx.doi.org/10.1007/978-3-319-11113-1_4
http://dx.doi.org/10.1007/978-3-319-11113-1_4
http://dx.doi.org/10.1007/978-3-319-11113-1_4
http://dx.doi.org/10.1007/978-3-319-11113-1_4
https://lirias.kuleuven.be/handle/123456789/496543
https://doi.org/10.1609/aaai.v33i01.33012686
https://doi.org/10.1609/aaai.v33i01.33012686
https://doi.org/10.1609/aaai.v33i01.33012686
http://dx.doi.org/10.1609/aaai.v33i01.33012686
https://doi.org/10.1016/j.artint.2017.11.003
http://dx.doi.org/10.1016/j.artint.2017.11.003
https://doi.org/10.1145/3430750
http://dx.doi.org/10.1145/3430750
https://doi.org/10.4204/EPTCS.345.14
http://dx.doi.org/10.4204/EPTCS.345.14
http://journals.cambridge.org/article_S1471068415000162
http://dx.doi.org/10.1017/S1471068415000162
http://dx.doi.org/10.1016/j.artint.2015.03.006
http://dx.doi.org/10.1016/j.artint.2015.03.006

Bogaerts, B., Vennekens, J., Denecker, M., 2015b. Partial grounded fixpoints, in: Yang, Q., Wooldridge, M. (Eds.), Proceedings1110

of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July
25-31, 2015, AAAI Press. pp. 2784–2790. URL: http://ijcai.org/papers15/Abstracts/IJCAI15-394.html.

Bogaerts, B., Vennekens, J., Denecker, M., 2018. Safe inductions and their applications in knowledge representation. Artificial
Intelligence 259, 167 – 185. URL: http://www.sciencedirect.com/science/article/pii/S000437021830122X, doi:10.1016/
j.artint.2018.03.008.1115

Bogaerts, B., Vennekens, J., Denecker, M., Van den Bussche, J., 2014. FO(C): A knowledge representation language of causality.
TPLP 14, 60–69. URL: https://lirias.kuleuven.be/handle/123456789/459436.

Bogaerts, B., Weinzierl, A., 2018. Exploiting justifications for lazy grounding of answer set programs, in: Lang, J. (Ed.),
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018,
Stockholm, Sweden., ijcai.org. pp. 1737–1745. URL: https://doi.org/10.24963/ijcai.2018/240, doi:10.24963/ijcai.1120

2018/240.
Cabalar, P., Fandinno, J., Fink, M., 2014. Causal graph justifications of logic programs. TPLP 14, 603–618. URL: http:

//dx.doi.org/10.1017/S1471068414000234, doi:10.1017/S1471068414000234.
Charalambidis, A., Rondogiannis, P., Symeonidou, I., 2018. Approximation fixpoint theory and the well-founded semantics

of higher-order logic programs. TPLP 18, 421–437. URL: https://doi.org/10.1017/S1471068418000108, doi:10.1017/1125

S1471068418000108.
Clark, K.L., 1978. Negation as failure, in: Logic and Data Bases, Plenum Press. pp. 293–322.
Damásio, C.V., Analyti, A., Antoniou, G., 2013. Justifications for logic programming, in: Cabalar, P., Son, T.C. (Eds.), Logic

Programming and Nonmonotonic Reasoning, 12th International Conference, LPNMR 2013, Corunna, Spain, September
15-19, 2013. Proceedings, Springer. pp. 530–542. URL: http://dx.doi.org/10.1007/978-3-642-40564-8_53, doi:10.1007/1130

978-3-642-40564-8_53.
Denecker, M., Brewka, G., Strass, H., 2015. A formal theory of justifications, in: Calimeri, F., Ianni, G., Truszczyński, M. (Eds.),

Logic Programming and Nonmonotonic Reasoning - 13th International Conference, LPNMR 2015, Lexington, KY, USA,
September 27-30, 2015. Proceedings, Springer. pp. 250–264. URL: http://dx.doi.org/10.1007/978-3-319-23264-5_22,
doi:10.1007/978-3-319-23264-5_{}22.1135

Denecker, M., De Schreye, D., 1993. Justification semantics: A unifying framework for the semantics of logic programs, in:
Pereira, L.M., Nerode, A. (Eds.), LPNMR, MIT Press. pp. 365–379. URL: https://lirias.kuleuven.be/handle/123456789/
133075.

Denecker, M., Marek, V., Truszczyński, M., 2000. Approximations, stable operators, well-founded fixpoints and applica-
tions in nonmonotonic reasoning, in: Minker, J. (Ed.), Logic-Based Artificial Intelligence. Springer US. volume 597 of The1140

Springer International Series in Engineering and Computer Science, pp. 127–144. URL: http://dx.doi.org/10.1007/
978-1-4615-1567-8_6, doi:10.1007/978-1-4615-1567-8_6.

Denecker, M., Marek, V., Truszczyński, M., 2003. Uniform semantic treatment of default and autoepistemic logics. Artif.
Intell. 143, 79–122. URL: http://dx.doi.org/10.1016/S0004-3702(02)00293-X.

Denecker, M., Marek, V., Truszczyński, M., 2004. Ultimate approximation and its application in nonmonotonic knowledge1145

representation systems. Information and Computation 192, 84–121. URL: https://lirias.kuleuven.be/handle/123456789/
124562, doi:10.1016/j.ic.2004.02.004.

Denecker, M., Vennekens, J., 2007. Well-founded semantics and the algebraic theory of non-monotone inductive defini-
tions, in: Baral, C., Brewka, G., Schlipf, J.S. (Eds.), LPNMR, Springer. pp. 84–96. URL: http://dx.doi.org/10.1007/
978-3-540-72200-7_9, doi:10.1007/978-3-540-72200-7_9.1150

Faber, W., Pfeifer, G., Leone, N., 2011. Semantics and complexity of recursive aggregates in answer set programming. Artif.
Intell. 175, 278–298. URL: http://dx.doi.org/10.1016/j.artint.2010.04.002, doi:10.1016/j.artint.2010.04.002.

Fages, F., 1990. A New Fixpoint Semantis for General Logic Programs Compared with the Well-Founded and the Stable Model
Semantics, in: ICLP, MIT Press. p. 443.

Fages, F., 1994. Consistency of Clark’s completion and existence of stable models. Methods Log. Comput. Sci. 1, 51–60.1155

Fitting, M., 1994. Tableaux for logic programming. Journal of Automated Reasoning 13, 175–188. URL: https://doi.org/
10.1007/BF00881954, doi:10.1007/BF00881954.

Fitting, M., 2002. Fixpoint semantics for logic programming — A survey. Theoretical Computer Science 278, 25–51. URL:
http://dx.doi.org/10.1016/S0304-3975(00)00330-3, doi:10.1016/S0304-3975(00)00330-3.

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., 2009. On the implementation of weight constraint rules in conflict-driven1160

ASP solvers, in: Hill, P.M., Warren, D.S. (Eds.), ICLP, Springer. pp. 250–264. doi:10.1007/978-3-642-02846-5.
Gelfond, M., Lifschitz, V., 1988. The stable model semantics for logic programming, in: Kowalski, R.A., Bowen, K.A. (Eds.),

ICLP/SLP, MIT Press. pp. 1070–1080. URL: http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.6050.
Hazewinkel, M., 2007. Encyclopaedia of Mathematics, Supplement III. Encyclopaedia of Mathematics, Springer Netherlands.

URL: https://books.google.be/books?id=47YC2h295JUC.1165

Hou, P., De Cat, B., Denecker, M., 2010. FO(FD): Extending classical logic with rule-based fixpoint definitions. TPLP 10,
581–596. doi:10.1017/S1471068410000293.

Inoue, K., Sakama, C., 1998. Negation as failure in the head. J. Log. Program. 35, 39–78. URL: https://doi.org/10.1016/
S0743-1066(97)10001-2, doi:10.1016/S0743-1066(97)10001-2.

Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S., 2009. Modularity aspects of disjunctive stable models. J. Artif. Intell.1170

Res. (JAIR) 35, 813–857.
Kleene, S.C., 1938. On notation for ordinal numbers. The Journal of Symbolic Logic 3, 150–155. URL: http://www.jstor.

org/stable/2267778.
Lapauw, R., Bruynooghe, M., Denecker, M., 2020. Improving parity game solvers with justifications, in: Beyer, D., Zuf-

30

http://ijcai.org/papers15/Abstracts/IJCAI15-394.html
http://www.sciencedirect.com/science/article/pii/S000437021830122X
http://dx.doi.org/10.1016/j.artint.2018.03.008
http://dx.doi.org/10.1016/j.artint.2018.03.008
http://dx.doi.org/10.1016/j.artint.2018.03.008
https://lirias.kuleuven.be/handle/123456789/459436
https://doi.org/10.24963/ijcai.2018/240
http://dx.doi.org/10.24963/ijcai.2018/240
http://dx.doi.org/10.24963/ijcai.2018/240
http://dx.doi.org/10.24963/ijcai.2018/240
http://dx.doi.org/10.1017/S1471068414000234
http://dx.doi.org/10.1017/S1471068414000234
http://dx.doi.org/10.1017/S1471068414000234
http://dx.doi.org/10.1017/S1471068414000234
https://doi.org/10.1017/S1471068418000108
http://dx.doi.org/10.1017/S1471068418000108
http://dx.doi.org/10.1017/S1471068418000108
http://dx.doi.org/10.1017/S1471068418000108
http://dx.doi.org/10.1007/978-3-642-40564-8_53
http://dx.doi.org/10.1007/978-3-642-40564-8_53
http://dx.doi.org/10.1007/978-3-642-40564-8_53
http://dx.doi.org/10.1007/978-3-642-40564-8_53
http://dx.doi.org/10.1007/978-3-319-23264-5_22
http://dx.doi.org/10.1007/978-3-319-23264-5_{}22
https://lirias.kuleuven.be/handle/123456789/133075
https://lirias.kuleuven.be/handle/123456789/133075
https://lirias.kuleuven.be/handle/123456789/133075
http://dx.doi.org/10.1007/978-1-4615-1567-8_6
http://dx.doi.org/10.1007/978-1-4615-1567-8_6
http://dx.doi.org/10.1007/978-1-4615-1567-8_6
http://dx.doi.org/10.1007/978-1-4615-1567-8_6
http://dx.doi.org/10.1016/S0004-3702(02)00293-X
https://lirias.kuleuven.be/handle/123456789/124562
https://lirias.kuleuven.be/handle/123456789/124562
https://lirias.kuleuven.be/handle/123456789/124562
http://dx.doi.org/10.1016/j.ic.2004.02.004
http://dx.doi.org/10.1007/978-3-540-72200-7_9
http://dx.doi.org/10.1007/978-3-540-72200-7_9
http://dx.doi.org/10.1007/978-3-540-72200-7_9
http://dx.doi.org/10.1007/978-3-540-72200-7_9
http://dx.doi.org/10.1016/j.artint.2010.04.002
http://dx.doi.org/10.1016/j.artint.2010.04.002
https://doi.org/10.1007/BF00881954
https://doi.org/10.1007/BF00881954
https://doi.org/10.1007/BF00881954
http://dx.doi.org/10.1007/BF00881954
http://dx.doi.org/10.1016/S0304-3975(00)00330-3
http://dx.doi.org/10.1016/S0304-3975(00)00330-3
http://dx.doi.org/10.1007/978-3-642-02846-5
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.6050
https://books.google.be/books?id=47YC2h295JUC
http://dx.doi.org/10.1017/S1471068410000293
https://doi.org/10.1016/S0743-1066(97)10001-2
https://doi.org/10.1016/S0743-1066(97)10001-2
https://doi.org/10.1016/S0743-1066(97)10001-2
http://dx.doi.org/10.1016/S0743-1066(97)10001-2
http://www.jstor.org/stable/2267778
http://www.jstor.org/stable/2267778
http://www.jstor.org/stable/2267778

ferey, D. (Eds.), Verification, Model Checking, and Abstract Interpretation - 21st International Conference, VMCAI 2020,1175

New Orleans, LA, USA, January 16-21, 2020, Proceedings, Springer. pp. 449–470. URL: https://doi.org/10.1007/

978-3-030-39322-9_21, doi:10.1007/978-3-030-39322-9_21.
Marek, V., Truszczyński, M., 2004. Logic programs with abstract constraint atoms, in: In Proceedings of the 19th National

Conference on Artificial Intelligence (AAAI-04, AAAI Press. pp. 86–91.
Mariën, M., 2009. Model Generation for ID-Logic. Ph.D. thesis. Department of Computer Science, KU Leuven. Belgium.1180

Marynissen, S., 2022. Advances in Justification Theory. Ph.D. thesis. Department of Computer Science, KU Leuven. URL:
https://lirias.kuleuven.be/3646147. denecker, Marc and Bart Bogaerts (supervisors).

Marynissen, S., Bogaerts, B., 2022. Tree-like justification systems are consistent, in: Lierler, Y., Morales, J.F., Dodaro, C.,
Dahl, V., Gebser, M., Tekle, T. (Eds.), Proceedings 38th International Conference on Logic Programming, ICLP 2022
Technical Communications / Doctoral Consortium, Haifa, Israel, 31st July 2022 - 6th August 2022, pp. 1–11. URL:1185

https://doi.org/10.4204/EPTCS.364.1, doi:10.4204/EPTCS.364.1.
Marynissen, S., Bogaerts, B., Denecker, M., 2020. Exploiting game theory for analysing justifications. Theory Pract. Log.

Program. 20, 880–894. URL: https://doi.org/10.1017/S1471068420000186, doi:10.1017/S1471068420000186.
Marynissen, S., Bogaerts, B., Denecker, M., 2021. On the relation between approximation fixpoint theory and justification

theory, in: Zhou, Z. (Ed.), Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021,1190

Virtual Event / Montreal, Canada, 19-27 August 2021, ijcai.org. pp. 1973–1980. URL: https://doi.org/10.24963/ijcai.
2021/272, doi:10.24963/ijcai.2021/272.

Marynissen, S., Heyninck, J., Bogaerts, B., Denecker, M., 2022. On nested justification systems. Theory Pract. Log. Program.
22, 641–657. URL: https://doi.org/10.1017/S1471068422000266, doi:10.1017/S1471068422000266.

Marynissen, S., Passchyn, N., Bogaerts, B., Denecker, M., 2018. Consistency in justification theory, in: Proceedings of 17th1195

International Workshop on Non-Monotonic Reasoning (NMR 2018), Tempe, Arizona, USA, Oct. 27-29, 2018, AAAI Press
2018. pp. 41–52. URL: http://www4.uma.pt/nmr2018/NMR2018Proceedings.pdf.

Moore, R.C., 1985. Semantical considerations on nonmonotonic logic. Artif. Intell. 25, 75–94. URL: http://dx.doi.org/10.
1016/0004-3702(85)90042-6, doi:10.1016/0004-3702(85)90042-6.

Reiter, R., 1980. A logic for default reasoning. Artif. Intell. 13, 81–132. URL: http://dx.doi.org/10.1016/0004-3702(80)1200

90014-4, doi:10.1016/0004-3702(80)90014-4.
Schulz, C., Toni, F., 2013. ABA-based answer set justification. TPLP 13.
Strass, H., 2013. Approximating operators and semantics for abstract dialectical frameworks. Artif. Intell. 205, 39–70. URL:

http://dx.doi.org/10.1016/j.artint.2013.09.004, doi:10.1016/j.artint.2013.09.004.
Tarski, A., 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics .1205

van Emden, M.H., Kowalski, R.A., 1976. The semantics of predicate logic as a programming language. J. ACM 23, 733–742.
URL: http://dx.doi.org/10.1145/321978.321991, doi:10.1145/321978.321991.

van Fraassen, B., 1966. Singular terms, truth-value gaps and free logic. Journal of Philosophy 63, 481–495.
Van Hertum, P., Cramer, M., Bogaerts, B., Denecker, M., 2016. Distributed autoepistemic logic and its application to

access control, in: Kambhampati, S. (Ed.), Proceedings of the Twenty-Fifth International Joint Conference on Artificial1210

Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, IJCAI/AAAI Press. pp. 1286–1292. URL: http://www.
ijcai.org/Abstract/16/186.

Vanbesien, L., Bruynooghe, M., Denecker, M., 2022. Analyzing semantics of aggregate answer set programming using approx-
imation fixpoint theory. Theory Pract. Log. Program. 22, 523–537.

Vennekens, J., Gilis, D., Denecker, M., 2006. Splitting an operator: Algebraic modularity results for logics with fixpoint1215

semantics. ACM Trans. Comput. Log. 7, 765–797. URL: http://dx.doi.org/10.1145/1182613.1189735, doi:10.1145/
1182613.1189735.

Vennekens, J., Mariën, M., Wittocx, J., Denecker, M., 2007. Predicate introduction for logics with a fixpoint semantics. Parts
I and II. Fundamenta Informaticae 79, 187–227.

You, J., Yuan, L., 1990. Three-valued formalization of logic programming: Is it needed?, in: Proceedings of the Ninth ACM1220

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, April 2-4, 1990, Nashville, Tennessee, USA,
ACM Press. pp. 172–182. URL: http://doi.acm.org/10.1145/298514.298559, doi:10.1145/298514.298559.

31

https://doi.org/10.1007/978-3-030-39322-9_21
https://doi.org/10.1007/978-3-030-39322-9_21
https://doi.org/10.1007/978-3-030-39322-9_21
http://dx.doi.org/10.1007/978-3-030-39322-9_21
https://lirias.kuleuven.be/3646147
https://doi.org/10.4204/EPTCS.364.1
http://dx.doi.org/10.4204/EPTCS.364.1
https://doi.org/10.1017/S1471068420000186
http://dx.doi.org/10.1017/S1471068420000186
https://doi.org/10.24963/ijcai.2021/272
https://doi.org/10.24963/ijcai.2021/272
https://doi.org/10.24963/ijcai.2021/272
http://dx.doi.org/10.24963/ijcai.2021/272
https://doi.org/10.1017/S1471068422000266
http://dx.doi.org/10.1017/S1471068422000266
http://www4.uma.pt/nmr2018/NMR2018Proceedings.pdf
http://dx.doi.org/10.1016/0004-3702(85)90042-6
http://dx.doi.org/10.1016/0004-3702(85)90042-6
http://dx.doi.org/10.1016/0004-3702(85)90042-6
http://dx.doi.org/10.1016/0004-3702(85)90042-6
http://dx.doi.org/10.1016/0004-3702(80)90014-4
http://dx.doi.org/10.1016/0004-3702(80)90014-4
http://dx.doi.org/10.1016/0004-3702(80)90014-4
http://dx.doi.org/10.1016/0004-3702(80)90014-4
http://dx.doi.org/10.1016/j.artint.2013.09.004
http://dx.doi.org/10.1016/j.artint.2013.09.004
http://dx.doi.org/10.1145/321978.321991
http://dx.doi.org/10.1145/321978.321991
http://www.ijcai.org/Abstract/16/186
http://www.ijcai.org/Abstract/16/186
http://www.ijcai.org/Abstract/16/186
http://dx.doi.org/10.1145/1182613.1189735
http://dx.doi.org/10.1145/1182613.1189735
http://dx.doi.org/10.1145/1182613.1189735
http://dx.doi.org/10.1145/1182613.1189735
http://doi.acm.org/10.1145/298514.298559
http://dx.doi.org/10.1145/298514.298559

	Introduction
	Approximation Fixpoint Theory
	Justification Theory
	Correspondence
	Contributions

	Preliminaries: Justification Theory
	Classes of Branch Evaluations

	Fundamental Results in Justification Theory
	Analysis of Splittable Branch Evaluations
	Constructing Complete Justifications
	Complementary justification frames and consistency
	Links between Different Justification Models

	Embedding JT in AFT
	Preliminaries: AFT
	The Approximator
	Semantic Correspondence

	Ultimate Semantics for Justification Frames
	Discussion and Conclusion

