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Abstract. Approximation Fixpoint Theory (AFT) is an abstract frame-
work based on lattice theory that unifies semantics of different non-
monotonic logic. AFT has revealed itself to be applicable in a variety of
new domains within knowledge representation. In this work, we present
a formalisation of the key constructions and results of AFT in the Coq
theorem prover, together with a case study illustrating its application to
propositional logic programming.

1 Introduction

Approximation Fixpoint Theory (AFT) is an abstract lattice-theoretic frame-
work originally designed to unify semantics of non-monotonic logics [12]. Its first
applications were on unifying all major semantics of logic programming [34],
autoepistemic logic (AEL) [27], and default logic (DL) [29], thereby resolving a
long-standing issue about the relationship between AEL and DL [13,14,22]. AFT
builds on Tarski’s fixpoint theory of monotone operators on a complete lattice
[32], but crucially moves from the original lattice ⟨L,≤⟩ to the bilattice3 ⟨L2,≤
,≤p⟩, where ≤ is just the pointwise extension of the order on L and ≤p is the
precision order defined by (x, y) ≤p (u, v) if x ≤ u and v ≤ y. Intuitively, a pair
(x, y) ∈ L2 approximates elements in the interval [x, y] = {z ∈ L | x ≤ z ≤ y}.

AFT generalizes Tarski’s study of monotone operators to non-monotone op-
erators using the notion of approximator : a monotone operator A : L2 → L2

approximates a (possibly non-monotone) O : L → L if A(x, x) = (O(x), O(x))
for all x ∈ L. This simple notion allows us to define a variety of different types
of fixpoints of interest; in particular:

– A partial supported fixpoint of A is a fixpoint of A.
⋆ This work was partially supported by Fonds Wetenschappelijk Onderzoek – Vlaan-

deren (project G0B2221N).
3 While a bilattice is usually defined as an arbitrary set with two compatible orders,

AFT is only concerned with bilattices that are in fact square lattices; i.e., the un-
derlying set is of the form L2.
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– The Kripke-Kleene fixpoint of A is the least fixpoint of A, denoted lfp(A).

– A partial stable fixpoint of A is a pair (x, y) such that x = lfp(A(·, y)1) and
y = lfp(A(x, ·)2), where A(·, y)1 denotes the function L → L : z 7→ A(z, y)1,
and analogously for A(x, ·)2.

– The well-founded fixpoint of A is the least precise partial stable fixpoint of A.

When applying this to logic programming, Denecker and his coauthors [12] found
that Fitting’s four-valued immediate consequence operator ΨP [16] is an approx-
imator of Van Emden & Kowalski’s [34] immediate consequence operator TP and
that all major semantics of logic programming correspond to the fixpoints de-
fined above. The same kind of situation is observed in other fields, such as AEL
and DL. Crucially, all that is required to apply AFT to a formalism and obtain
several semantics is to define an appropriate approximating operator L2 → L2

on this bilattice; often there is an obvious choice for such an approximating op-
erator. Once this is done, the algebraic theory of AFT directly defines different
types of fixpoints that correspond to different types of semantics of the applica-
tion domain. This immediately give insight into how this domain is positioned
with respect to other fields (semantically), but also internally within the domain
shines light on how different semantics are related.

The last decade has added new application domains to AFT, such as abstract
argumentation [31], extensions of logic programming [1,11,24,28], extensions of
autoepistemic logic [36], active integrity constraints [5], and constraint languages
for the semantic web [8]. The original theory of AFT has also been extended sig-
nificantly with new types of fixpoints [9,10], and results on stratification, [6,37],
predicate introduction [38], strong equivalence [33], and non-deterministic oper-
ators [20]. All of these results were developed in the highly general setting of
lattice theory, making them directly applicable to all application domains, and
such ensuring that researchers do not “reinvent the wheel”.

Given the success and wide range of applicability of AFT, it sounded natu-
ral to formalise this theory using a suitable theorem prover. We chose Coq [3]
for this purpose, as this is the theorem prover we are most familiar with. This
option poses some challenges: presentations of AFT routinely use classical rea-
soning principles and most proofs are by transfinite induction. Our option was
to develop constructive alternatives to standard proofs and explicitly include
some hypotheses that are classically trivially true where needed. We believe this
effort to be meaningful, since an important motivations for studying fixpoints in
computer science is their computability.

A natural question that arises is whether there are constructive models of
our axioms, and this motivated including some examples in the formalisation.
We also point out that most practical applications of AFT (in particular, our
larger example described in Section 4) use the subset lattice of a finite base set
with decidable equality, where most of the working assumptions hold.
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2 Ordinals and lattices

AFT relies heavily on definitions of ordinals and lattices. We formalised these
as the first step in our development, choosing to use only results from Coq’s
standard library on lists and natural numbers. The primary reason for this choice
was that we did not initially find any existing formalisations that were easy to
reuse for our purposes. It was only later in the process that we discovered other
libraries close to our development – see Section 5 for a discussion.

Ordinals. We define a type Ordinal of (unbounded) ordinals as a record type
containing a support Type, an equivalence relation eq (defined equality), a dis-
tinguished element zero, a successor function succ and a strict total order lt
that is well-founded and compatible with eq.4

Record Ordinal : Type := { T :> Type;
eq : T → T → Prop;
zero : T;
succ : T → T;
lt : relation T;
... }

We require succ x to be the least element strictly greater than x, and that
we can decide for each element whether it is of the form succ x for some x,
or not; the elements for which this does not hold are called limits. This case
analysis, together with well-foundedness of lt, allows us to do proofs about
ordinals by transfinite induction, as long as the property being proved is stable
under equality (this is due to working with a defined equality).

Lemma transfinite_induction (P:O → Prop) :
(∀ x y, eq x y → P x → P y) →
(∀ x, P x → P (succ x)) →
(∀ x, limit x → (∀ y, lt y x → P y) → P x)
→ ∀ x, P x.

Intuitively, the elements of O:Ordinal are the ordinals smaller than O. As a
sanity check, we construct some typical examples, including the first infinite
ordinal ω (with support nat) and the type of all polynomials in ω (with support
list nat). We do not deal with arithmetic on ordinals, since this is immaterial
for our development.

Lattices. (Complete) lattices are similarly defined as a record type consisting of
a carrier type C with a defined equality (an equivalence relation compatible with
the order), a partial order, and an operator lub computing least upper bounds.

4 Throughout this presentation we write ... for additional arguments that are left
out for conciseness; we leave some arguments implicit when they can be inferred
from the context by a human (even if not by Coq); we omit universally quantified
variables at the top of lemmas; and we ignore namespace clashes that force us to
include module names in the Coq source.
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Requiring least upper bounds to be computable restricts the kind of lattices that
we can define; still we show that we capture e.g. powerset lattices (which appear
in all applications of AFT so far).

Record Lattice : Type := { C :> Type;
eq : relation C;
leq : relation C;
lub : (C → Prop) → C;
... }

Bottom and joins are defined using lub, while the strict order less is defined
as fun x y ⇒ leq x y ∧ ∼eq x y. We prove the usual properties of all these func-
tions, including uniqueness of lub modulo eq. Reversing the order in a lattice
yields a dual lattice, and we use a reflection technique to port results about leq
and lub to geq and glb.

A standard example of a complete lattice, ubiquous in AFT, is the powerset
lattice. We formalise this construction as an operator PowerSet: Type → Lattice,
such that PowerSet T has carrier T → Prop.

Given a lattice ⟨L,≤⟩, the corresponding precision lattice is the lattice
〈
L2,≤p

〉
where (x, y) ≤p (x′, y′) iff x ≤ x′ and y′ ≤ y. We formalise this construction as
an operator BiLattice: Lattice → Lattice.

Definition L2 : Type := L∗L.
Definition L2eq := fun x y ⇒ eq (fst x) (fst y) ∧ eq (snd x) (snd y).
Definition leqp := fun x y ⇒ leq (fst x) (fst y) ∧ leq (snd y) (snd x).
Definition L2lub := fun (S:L2 → Prop) ⇒ (lub (fun x ⇒ ∃ y, eq x (fst y) ∧ S y),

glb (fun x ⇒ ∃ y, eq x (snd y) ∧ S y)).
Definition BiLattice := Build_Lattice L2 L2eq leqp L2lub ... .

We now prove our first set of results about fixpoints, starting with the
Knaster–Tarski theorem. Given a monotonic function f on a lattice L, we de-
fine lfp f as the glb of all its prefixpoints, and show that this is the smallest
fixpoint of f.

Definition prefp : (f:L → L) → L → Prop := fun x ⇒ leq (f x) x.
Definition lfp (f:L → L) := glb (prefp f).

Lemma fp_lfp : monotonic f → fixpoint f (lfp f).
Lemma lfp_lfp : fixpoint f x → leq (lfp f) x.

Next, we define chain f as a predicate over L that holds for those elements
of L that are reachable from bot L by repeated application of f and lubs. We
prove that, if f is monotonic, lub (chain f) also satisfies chain, and that it co-
incides with lfp f. All these proofs mostly follow the standard pen-and-paper
argumentation.

Inductive chain (f:L → L) : L → Prop :=
| base x : eq x (bot L) → chain f x
| succ x y : chain y → eq x (f y) → chain f x
| lim x (S:L → Prop) : (∀ y, S y → chain f y) → eq x (lub S) → chain f x.

Lemma lub_chain_lfp : monotonic f → eq (lfp f) (lub (chain f)).
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Finally, given a function f that respects equality, we define iteration of a
function f an ordinal number of times using well-founded recursion. This defini-
tion is not very informative, and we show that the resulting definition coincides
with what is expected, and only generates elements in chain f.

Definition iterate_fun (f: L → L) {O:Ordinal} :=
fun (x:O) (F:( ∀ (y:O), lt y x → C L)) ⇒
match (succ_or_limit x) with
| inleft (existT _ y H) ⇒ f (F y (succ_lt' _ _ _ H))
| _ ⇒ (lub (fun z ⇒ ∃ y (H:lt y x), eq z (F y H)))
end.

Definition iterate {O:Ordinal} (t:T O) :=
Fix (lt_wf O) _ iterate_fun t.

Lemma iterate_succ : eq (iterate f (succ x)) (f (iterate f x)).
Lemma iterate_limit : limit x →
eq (iterate f x) (lub (fun z ⇒ ∃ y, lt y x ∧ eq z (iterate f y))).

Lemma iterate_zero : eq (iterate f zero) (bot L).

Lemma iterate_chain : chain f (iterate f t).

O-inductions. In this section, we fix a lattice L, an ordinal o and an operator
O:L → L. We write eqL for the equality on L and eqO for the equality on o.

AFT provides an alternative characterisation of lfps using what are called
O-inductions, which relax the definition of chain by allowing the sequence to
grow “slower”. In the application of AFT to logic programming this boils down
to not necessarily applying all applicable rules at every step.

Definition O_refinement (x y:L) := leq x y ∧ leq y (join x (O x)).
Definition O_induction (i:o → L) := (∀ y, O_refinement (i y) (i (succ y)))
∧ (∀ y, limit y → eqL (i y) (lub (fun l ⇒ ∃ z, lt z y ∧ eqL l (i z))))
∧ ∀ x y, eqO x y → eqL (i x) (i y).

An O_induction that cannot be refined further is called terminal. We for-
malise this notion by explicitly identifying an ordinal that returns its last ele-
ment. If O is monotonic, then all O_inductions converge to its least fixpoint.

Definition terminal (i:o → L) (o':o) := ∀ y, O_refinement (i o') y → eqL y (i o').
Lemma terminal_O_induction_limit : terminal i o' → eqL (i o') (lfp O).

One of the classic results in AFT states that every monotonic operator has
an O_induction that is terminal. The proof uses the fact that any chain can be
injected in some “large enough” ordinal.

Definition large_enough := ∀ f, increasing f →
∃ (i:O → L), O_induction f i ∧ ∀ y, chain f y → ∃ o, eqL y (i o).

Lemma large_enough_terminal : large_enough → ∀ f, monotonic f →
∃ i o, O_induction f i ∧ terminal f i o.
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We also prove a weaker version of this result, where the size of the ordinal is
allowed to depend on f.

Lemma large_enough_terminal' : monotonic f → O_induction f O i →
(∀ y, chain f y → ∃ o, eqL y (i o)) → ∃ o, terminal L f O i o.

We discuss the existence of such ordinals separately. In particular, we prove
that the hypotheses of the last lemma hold for any monotonic function on any
lattice assuming (i) that the chain is a total order and (ii) a restricted form of
Markov’s principle.

Hypothesis Hf : ∀ x y:L, chain f x → chain f y → leq x y ∨ ∼leq x y.

Hypothesis forall_exists: ∀ (S:L → Prop),
(∼∀ x, S x → leq x y) → ∃ x, S x ∧ less y x.

Lemma chain_has_large_enough : monotonic f →
∃ O i, O_induction f O i ∧ (∀ y, chain f y → ∃ o, eqL y (i o)).

The construction of the ordinal is a bit involved, and due to space restrictions
we omit it here.

3 Approximators and fixpoints

The bulk of AFT is built on the notion of approximator of an operator O: a
(precision-)monotonic function on the billatice that coincides with O on exact
values. Throughout this section we assume the lattice L to be fixed, as well as
O:L → L and A:BiLattice L → BiLattice L.

Definition approximator O A := monotonic A ∧ ∀ x, eqL (A (x,x)) (O x,O x).

Two types of fixpoints used in AFT are defined directly from the approxima-
tor: supported fixpoints are simply fixpoints of A; the Kripke-Kleene fixpoint is
the least fixpoint of A.

Definition supported_fp (x:BiLattice L) := fixpoint A x.
Definition Kripke_Kleene_fp := lfp A.

Stable and well-founded fixpoints are defined using the stable revision opera-
tor stable_revision, which maps (x, y) to (lfpA(·, y)1, lfpA(x, ·)2). The two com-
ponents of this operator are defined separately using two operators partial_A_1
and partial_A_2. Reasoning about the monotonicity of these allows us to show
that stable_revision is monotonic, after which we can define the above-mentioned
fixpoints and prove their usual relationships.

Definition stable_fp (x:BiLattice L) := fixpoint (stable_revision A) x.
Definition wf_fp := lfp (stable_revision A).

Lemma stable_fp_fp_A : monotonic A → ∀ x, stable_fp A x → supported_fp A x.
Lemma wf_fp_stable : monotonic A → stable_fp A (wf_fp A).
Lemma wf_fp_fp : monotonic A → supported_fp A (wf_fp A).
Lemma Kripke_Kleene_wf_fp : monotonic A → leq (Kripke_Kleene_fp A) (wf_fp A).
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An element (x,y) of BiLattice L is consistent (L_consistent) if leq x y, i.e.,
if the set of elements z it approximates is non-empty, and an operator is con-
sistent (A_consistent) if it maps consistent elements to consistent elements. In
particular, all approximators are A_consistent. If A_consistent A, then all val-
ues in an O_induction over A are L_consistent; furthermore, if A is symmetric
(meaning A(x, y)1 = A(y, x)2 for all x and y), then the stable revision operator
is consistent as well: A_consistent (stable_revision A).

To prove additional results on preservation of consistency we needed to as-
sume the existence of a large enough ordinal.

Hypothesis Ho : large_enough o (BiLattice L).
Lemma consistent_lfp : monotonic A → A_consistent A → L_consistent (lfp A).
Lemma consistent_Kripke_Kleene_fp : L_consistent (Kripke_Kleene_fp A).
Lemma wf_consistent : A_symmetric A → L_consistent (wf_fp A).

These lemmas also follow from the fact that every element in chain A is
L_consistent; however, we were not able to prove this result without assuming
existence of a large-enough ordinal, either.

Lastly, we show that well-founded fixpoints can be computed via well-founded
inductions (wf_induction), first defined by Denecker and Vennekens [15]. These
are transfinite sequences over BiLattice L that generalise O-inductions: a re-
finement either updates (x, y) by following the approximator (to something at
most as precise as A(x, y)), or it decreases the second component, intuitively
by removing elements that could only ever be derived by means of ungrounded
(self-supporting) reasoning.

Inductive A_refinement (x y : BiLattice L) : Prop :=
| A_application : leq x y → leq y (join x (A x)) → A_refinement x y
| A_unfounded : eqL (fst x) (fst y) → leq (snd y) (snd x) →

leq (snd (A y)) (snd y) → A_refinement x y.

The definition of wf_induction is similar to the definition of O_induction,
using A_refinement instead of O_refinement. We can similarly define a notion of
wf_terminal, and use it to relate each wf_induction with fixpoints of A.

Lemma wf_induction_fp : wf_terminal i o' → fixpoint A (i o').
Lemma wf_terminal_stable_fp : wf_terminal i o' → stable_fp A (i o').
Lemma wf_terminal_wf_fp : wf_terminal i o' → eqL (i o') (wf_fp A).

The last two results are proved in two steps. First, we use transfinite induction
to show that any wf_induction always stays below those fixpoints. Secondly, we
define an auxiliary notion

Definition prudent a := ∀ x, leq (fst (A (x,snd a))) x → leq (fst a) x.

Intuitively, this tells us that fst a is derived for a “good” reason. Indeed, a is not
prudent in case there is some x smaller than fst a that is a prefixpoint of A(·, a2),
meaning that the only way to derive a would be starting from something larger
than x in the first place: fst a could not be derived from the ground up.

We then show that all elements of a wf_induction are prudent, which follows
from the definition of prudent.
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This concludes the first part of the formalisation. After fine-tuning the def-
initions of ordinals and lattices and finishing the respective formalisations, the
development of AFT described in this section was then relatively straightfor-
ward. The main challenges were (a) identifying the results that depend on the
possibility of building a large-enough ordinal and (b) developing direct argu-
ments for several results where the classical proof is by contradiction. The latter
turned out sometimes to be a tricky exercise, but always possible.

4 An example: propositional logic programming

We now formalise a complete example, to show that our theory is applicable.
We focus on propositional logic programming with negation, and show that the
standard, classical, semantics correspond to fixpoints in AFT.

Throughout this section we assume a fixed non-empty set symb:Set of propo-
sitional symbols with decidable equality. The type of literals is defined as
an inductive type with two constructors pos,neg:symb → literal, and rule as
a list literal (the body of the rule) paired with a single symb (the head of the
rule). We add the standard notation h :− b for (b,h): rule. Finally, a program is
a list of rules. We define predicates pos_L, pos_R and pos_P for positive literals,
rules and programs – those where all literals are built using the constructor
pos. We also define the list symbs_in_P P of all symbols in P:program; this list
is defined straightforwardly by going through the program and appending any
symbols found, with no efforts to remove duplicates.

The next step is defining the standard semantics of logic programming.
The type interpretation is simply defined as symb → Prop; this is also the car-
rier type of the lattice PowerSet symb, on which we work later on. Interpreta-
tions map literals, rules and programs to propositions in the natural way, and
I:interpretation is a model of P:program if I maps P to a true proposition. We also
define supported_model: an interpretation I where all true propositional symbols
are supported by some rule whose body is also true in I – the function intlL
generalizes an interpretation to a list of literals.

Definition supported_model (I:interpretation) (P:program) : Prop :=
model P ∧ ∀ s, I s → ∃ b, In (s :− b) P ∧ int_lL I b.

A least_model is a model that is smaller (wrt the order in PowerSet symb)
than all other models, and a minimal_model is one that is not strictly larger than
any other model.

The semantics of programs with negation is classically defined using the
notion of reduct [17]. Computing the reduct of a program requires being able
to decide whether an interpretation satisfies the negative literals in the body
of a rule; instead, we define what it means for a program Pr to be a reduct
of another program P, and show that there is at most one program with this
property (up to reordering and duplication of rules). Furthermore, this program
is always positive.

Definition reduct_R (r:rule) := (head r :− pos_atoms (body r)).
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Definition reduct (I:interpretation) (P Pr:program) : Prop :=
∀ r, In r Pr ↔ ∃ r', In r' P ∧ all_negs_true r' I ∧ r = reduct_R r'.

Lemma reduct_unique : reduct I P Pr → reduct I P Pr' → ∀ r, In r Pr → In r Pr'.
Lemma reduct_pos : reduct I P P' → pos_P P'.

We can now define stable models, van Emden and Kowalski’s immediate con-
sequence operator, and Fitting’s consequence operator. The latter works on
BiLattice (PowerSet symb), viewing the pair (I,J) as the knowledge that every-
thing in I holds and nothing outside J holds.

Definition stable (I:interpretation) (P:program) :=
∃ Pr, reduct I P Pr ∧ minimal_model I Pr.

Definition consequence (P:program) : PowerSet symb → PowerSet symb :=
fun I s ⇒ ∃ r, In r P ∧ s = head r ∧ int_lL I (body r).

Definition comb_int_L (I J:interpretation) (l:literal) :=
match l with pos s ⇒ I s | neg s ⇒ ∼J s end.

Definition comb_int_P (P:program) (I J:interpretation) : interpretation :=
fun s ⇒ ∃ r, In r P ∧ s = head r ∧ ∀ l, In l (body r) → comb_int_L I J l.

Definition Fitting_cons (P:program) :
BiLattice (PowerSet symb) → BiLattice (PowerSet symb) :=
fun X ⇒ match X with (I1,I2) ⇒ (comb_int_P P I1 I2,comb_int_P P I2 I1) end.

From these definitions we can show the classical results that all models of
a program are prefixpoints of the associated immediate consequence operator,
and all supported models are fixpoints. The converse implications require some
classical reasoning.

Lemma model_prefp : model I P → prefp (immediate_cons P) I.
Lemma supp_model_fp : supported_model I P → fixpoint (immediate_cons P) I.

Hypothesis I_classical : ∀ I symb, I symb ∨ ∼I symb.

Lemma prefp_model : prefp (immediate_cons P) I → model I P.
Lemma fp_supp_model : fixpoint (immediate_cons P) I → supported_model I P.

With this assumption we can also show that positive programs have a unique
minimal model, which coincides with lfp (immediate_cons P).

Lemma pos_P_minimal_lfp :
pos_P P → minimal_model I P → eqL (lfp (immediate_cons P)) I.

We then move to the Fitting consequence operator. We show that it is
monotonic and that it approximates the immediate consequence operator. Fur-
thermore, stable models of a program are stable fixpoints of the Fitting conse-
quence operator; the converse holds provided that reducts always exist.
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Lemma stable_model_stable_fp_Fitting :
stable I P → stable_fp (Fitting_cons P) (I,I).

Hypothesis P_has_reduct : ∀ I, ∃ P', reduct I P P'.

Lemma stable_fp_Fitting_stable_model :
stable_fp (Fitting_cons P) (I,I) → stable I P.

Next, we turn our attention to the well-founded semantics of logic programs.
We formalise the construction of well-founded models described in [35], which
we now describe.

Well-founded models are built using a notion of partial interpretation – two
disjoint5 lists of propositional symbols, those known to be true, and those known
to be false. We define this a record type. Partial interpretations are ordered by
knowledge.

Record partial_int := { ppos : list symb;
pneg : list symb;
pcons : disjoint ppos pneg }.

Definition p_le (I J: partial_int) : Prop :=
incl (ppos I)(ppos J) ∧ incl (pneg I) (pneg J).

Satisfaction of literals simply reduces to checking whether the underlying propo-
sitional symbol is included in the corresponding list. This notion generalises to
rules and programs in the natural way. Satisfaction is decidable, since it is based
on finite lists over a decidable type. Falsification (stronger than the negation of
satisfaction) is defined similarly, but checking whether the symbol underlying a
positive (respectively, negative) literal is in the negative (resp. positive) list of
symbols in the partial interpretation.

Well-founded models are built as fixpoints of an operator that works dis-
tinctly on the positive and negative parts of a partial interpretation. For the
positive part, the authors use an operator T that naturally generalises the im-
mediate consequence operator. (We prepend the authors’ initials to the name of
the Coq counterparts to these operators.)

Fixpoint GRS_T (P: program) (I: partial_int) : list symb :=
match P with
| nil ⇒ nil
| (b,h) :: P' ⇒ if satisfy_lL_dec I b then (h :: GRS_T P' I) else (GRS_T P' I)
end.

GRS_T simply iterates through a program and collects the heads of the rules whose
bodies are satisfied in I. We show that it behaves as expected.

Lemma GRS_T_char : In s (GRS_T P I) → ∃ b, In (b,s) P ∧ satisfy_lL I b.
Lemma GRS_T_char' : In (b,s) P → satisfy_lL I b → In s (GRS_T P I).

For the negative part, the authors use the notion of unfounded set wrt a
partial interpretation I – a set of atoms that can never be proven by extending
5 Disjointness of this lists is called consistency in the original reference.
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I – and define the greatest unfounded set wrt I as the union of all these sets.
The latter definition is not directly translatable to Coq; instead, we construct
this set directly and prove that it has the desired property.

Definition unfounded_R (l: list symb) (I: partial_int) (s: symb) (r: rule) :=
match r with (b,h) ⇒ s = h → falsify_lL I b ∨ ∃ s', In (pos s') b ∧ In s' l end.

Definition unfounded_P (l: list symb) (I: partial_int) (s: symb) :=
∀ r, In r P → unfounded_R l I s r.

Definition unfounded (l: list symb) (I: partial_int) : Prop :=
∀ s, In s l → In s (symbs_in_P P) ∧ unfounded_P l I s.

To construct the greatest unfounded set wrt I, we first define a function
remove_not_unfounded that removes all elements from a list l:list symb that are
unfounded wrt I. We then define another function remove_n_times that iterates
the previous function, and prove that this reaches a fixpoint when given length l
as an argument. Finally, gus I is defined by computing this fixpoint from the list
of symbols in P. We show that this is indeed the greatest unfounded set wrt I
according to [35].

Lemma gus_unfounded : unfounded (gus I) I.
Lemma gus_greatest: unfounded l I →

(∀ s, In s l → In s (symbs_in_P P)) → ∀ s, In s l → In s (gus I).

In the second lemma, the extra condition is needed to account for the fact that
our type symb may include symbols not in the Herbrand base of P.

The operator U maps each interpretation to its greatest unfounded set.

Definition GRS_U : partial_int → list symb := fun I ⇒ gus I.

Combining T and U yields an operator W whose iterations from the empty
partial interpretation are always partial interpretations (i.e., consistent – cf.
Lemma 3.4 in [35]). In general, though, W does not preserve consistency, and
the proof of the lemma cited uses some properties that hold specifically for
iterates of W . We call partial interpretations with this properties rich partial
interpretations.

Record rich_pint : Set :=
{ rpint :> partial_int;
rgen : ∀ s, In s (ppos rpint) → ∃ b, In (b,s) P ∧ satisfy_lL rpint b;
runf : ∀ s, In s (pneg rpint) →

∃ l, (∀ s, In s l → In s (symbs_in_P P))
∧ In s l ∧ unfounded l rpint;

rprop : ∀ J l p, rpint ≤ p J → In p (ppos rpint) → unfounded l J → ∼In p l}.

For I:rich_pint, property rgen imposes that all elements in ppos I are supported
by some rule that is true in I; dually, runf ensures that all elements in pneg I
must be in some unfounded set wrt I. The last property states that no element
of ppos I can ever become unfounded, in the sense that it can not be in any
unfounded set wrt a partial interpretation J extending I.
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We show that, for I:rich_pint, the lists GRS_T I and GRS_U I are disjoint and
satisfy the properties rgen, runf and rprop. This allows us to define GRS_W_rich
as an operator over rich_pints, and iterating it from the empty partial inter-
pretation we obtain GRS_W_aux : nat → rich_pint (the partial interpretation Wn

in [35]). Finally, we define GRS_W : nat → partial_int by forgetting the extra
structure in GRS_W_aux n.

The next step is showing that GRS_W reaches a fixpoint (the well-founded
model of the program). We employ a counting trick: we show that the num-
ber of decided symbols in GRS_W n (i.e. the number of symbols appearing in
either ppos (GRS_W n) or pneg (GRS_W n)) increases unless GRS_W n and GRS_w (S n)
are equal as partial interpretations.

Lemma GRS_W_conv_1 : ∀ (I:rich_pint), ∼I =p preW I →
∃ s, decided s (preW I) ∧ ∼decided s I.

Lemma GRS_W_conv_2 : ∼GRS_W n =p GRS_W (S n) →
S n ≤ size_as_set (ppos (GRS_W (S n)) ++ pneg (GRS_W (S n))).

Lemma GRS_W_fp_char :
GRS_W (length (symbs_in_P P)) =p GRS_W (length (symbs_in_P P) + 1).

Definition wf_model : partial_int := GRS_W (length (symbs_in_P P)).

The last step is showing that wf_model P and wf_fp (Fitting_cons P) coincide.
The hard part of the proof is relating the second component of the stable revision
operator built from Fitting_cons P with the notion of greatest unfounded set.

Lemma gus_Fitting : In s (symbs_in_P P) → In s (gus I) ↔
∼snd (stable_revision (Fitting_cons P) (p_int_to_pair_int I)) s.

This lemma relies heavily on the fact that I is built from two lists, and there-
fore we can always decide whether I s or ∼I s holds; this implies that the
fixpoint constructions inside the computation of stable_revision converge in
a (computable) number of iterations, and that the result is also decidable in
the same sense. From this lemma, we prove the final result in our formalisa-
tion. The function p_int_to_pair_int is the natural map from partial_ints to
BiLattice (PowerSet symb).

Lemma wf_model_wf_fp :
eqL (p_int_to_pair_int wf_model) (wf_fp (Fitting_cons P)).

5 Related work

To the best of our knowledge, this is the first time that AFT has been formalised
using a theorem prover. The most closely related works that we are aware of
deal are formalisations of ordinal theory and transfinite induction, or of results
in lattice theory.
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Several authors have formalised transfinite induction in Coq [2,19,26,30]. Due
to the difficulty of developing such a formalisation satisfactorily in a constructive
setting, several of them [26,30] are based on classical set theory.

Barras [2] discusses formalising a model of the Calculus of Inductive Con-
structions in Coq. His work uses an impredicative definition of ordinals as the
least collection of transitive sets such that any set of members of the collection
also belongs to the collection, and proves the Knaster-Tarski theorem.

Grimm [19] formalises three different types of ordinals in Coq, including
arithmetic operations on them and a notion of order. To be comparable, ordinals
need to be reduced to a normal form. The formalisation also includes principles
for reasoning using transfinite induction, and the author proves a correspondence
to van Neumann ordinals.

Due to the authors’ different purposes, all these works end up being difficult
to use in our setting, which motivated us to include a novel definition of ordinals
in our current contribution.

Other formalisations of Tarki’s fixed point theorem are included in the work
of Grall [18] and in the CoLoR library [4,25]. However, these works do not deal
with ordinals, and even though their approach to lattice theory is similar to ours
the overlap is very reduced.

Ordinals have also been formalised in Agda using Homotopy Type Theory
(HoTT), where extensional equality occurs naturally. In particular, it has been
shown [21] that, in HoTT, the constructive definition of ordinals as a heredi-
tarily transitive set coincides with their definition as a type with a transitive,
wellfounded and extensional order relation.

One may question whether formalising AFT requires using ordinals and
transfinite induction at all, as the latter can often be replaced by well-founded
induction [23]. We chose not to investigate this alternative path, as we were
trying to follow existing references on AFT as closely as possible. Furthermore,
several concepts in AFT are defined directly using ordinals (e.g. well-founded
inductions), so bypassing ordinals would require major changes to the theory.

6 Conclusions

We described a formalisation of approximation fixpoint theory in the theorem
prover Coq, together with an example of how it can be applied to propositional
logic programming. In our work, we tried to work constructively as much as
possible, in the sense that we developed alternative, direct, proofs instead of the
standard proofs by contradiction or case analysis that are found in the literature.
Where such an approach was not possible, we opted for explicitly identifying our
classical assumptions (e.g., decidability of equality on some types). We believe
there is value in this exercise, as it increases our understanding of how much
AFT depends on classical reasoning.

As an example, we formalised the classical theory of propositional logic pro-
gramming, including the immediate consequence operator, Fitting’s consequence
operator and the construction of well-founded models as fixpoints of an operator
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based on unfounded sets, and showed that these can be characterised through
corresponding concepts in AFT. Again, we assume some principles of classical
reasoning in these proofs, namely decidability of equality on propositional sym-
bols.

We included a few examples throughout our work to show that there we can
actually construct objects of the types we define constructively – in particular,
we can construct ordinals such as ω or any polynomial on ω. Our example on
propositional logic programming also illustrates that, for the kind of finite struc-
tures that are often used in practice, our development applies without resorting
to full-blown classical reasoning.

Our development consists of 6850 lines of Coq code divided into 6 files, con-
taining 166 definitions and 426 lemmas. The source code was developed using
Coq version 8.18, and is available at https://zenodo.org/records/10709614 [7].
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