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Abstract. Constructive definitions, including inductive and recursive definitions,
are ubiquitous in mathematical texts and occur in a wide variety of computer sci-
ence fields and Knowledge Representation applications. While in different areas
there is a high level of familiarity with certain types of constructive definitions,
fairly little interaction between different areas seems to exist, resulting in a lack of
deep understanding of principles and their applications. This paper aims to fill this
void by laying the foundations for a single unifying framework, bringing together
a wide variety of definitions. First, we recall the principle of (monotone) induc-
tive definition and its formalization in fixpoint theory. We discuss the constructive
and the non-constructive interpretation of inductive definitions and the induction
process. We then analyze examples, including but not limited to (co)inductive and
(co)recursive definitions, found in a wide range of areas through the lens of our
proposed framework.
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Introduction

In mathematics, there are perhaps few concepts so enigmatic as that of inductive or
recursive definitions.3 Students become familiar with them through examples such as
the transitive closure of a binary relation, the Fibonacci function or the satisfaction
relation of propositional or predicate logic.

Common to such definitions is that they define a concept by describing how to
construct it through iterated application of rules, starting from the empty set. This con-
struction process is often called the induction process. For definitions of sets, the de-
fined set is often explained non-constructively as the least set satisfying the rules; the
constructive and non-constructive ways are known to be equivalent. While usually, it
is not formally explained what inductive definitions mean, students apparently learn to
⋆ This work was supported by Fonds Wetenschappelijk Onderzoek – Vlaanderen (project

G0B2221N).
3 Is there a difference between inductive and recursive definition? According to some there is,

according to others not. In this paper, we propose a way to distinguish inductive and recursive
definitions that is sensible and seems to match with intuitions of some.
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understand them and reason with them. Brouwer [6], the famous constructionist, ob-
served that many fundamental objects in mathematics were defined by describing how
to construct them and that in understanding these constructions, we rely on our ba-
sic cognitive skills for temporal reasoning.4 It was later argued that also our skills for
causal reasoning play a role here [10, 13, 15]: the hypothesis is that our understand-
ing and reasoning capabilities for inductive definitions stem from our understanding of
the induction process as a causal process, idealized and generalized to an (often infi-
nite) universe of mathematical objects. This suggests a strong, but not well-known link
between mathematics and common sense knowledge. While recently a lot of effort in
the domain of large language models has resulted in surprisingly good commonsense
reasoners, it is well-known that these are not reliable enough for sensitive applications
where exactness and correctness are crucial. For these applications a logic-based ap-
proach that includes different constructive definitions is desired. Therefore the study
of the principle of inductive definition is a worthy topic in Knowledge Representation
(KR).

It is clear that the concept of inductive definition plays an important role in mathe-
matics and foundations of computer science. We claim it also plays an important role in
KR, at the meta-level (e.g., in the many inductive definitions used to define syntax and
semantics for logics in KR), and at the object-level, since definitions constitute an im-
portant, common and precise form of human knowledge. In an important class of appli-
cations, the definition is inductive, in which case it is often not expressible in first-order
logic (FO), yielding a second reason for studying inductive definitions [10]. A third
reason is the intuition of some researchers that inductive and recursive definitions form
the declarative understanding of two well-known declarative programming paradigms,
logic and functional programming [11, 19]. Finally, due to the close connection between
inductive definitions and causal information, studying inductive definitions is useful for
expressing common sense causal knowledge [10, 13].

There exists extensive research on inductive definitions [33, 18, 23, 24, 2]. Also (co-)
recursive definitions have received a lot of attention in relation to functional program-
ming languages [26, 32, 27], as well as in domain theory where the functions, and the
domain they are defined on are defined simultaneously [29, 1]. While there is a high
level of familiarity with certain types of constructive definitions, in the current state of
the art, fairly little interaction between research on different types of definitions seems
to exist, resulting in a lack of deep understanding of common principles and applica-
tions. Many researchers seem aware that their theories only cover part of the topic.
Already a long time ago, Moschovakis [24] explained how Kleene [21] in early papers
had consciously studied constructive definitions5 but explicitly had drawn back from
studying all of them. Another complicating factor has been that inductive/recursive def-
initions have often been studied from a recursion-theoretic point of view, as programs
to compute truth or function values, rather than as plain definitions of a concept.

4 While we follow Brouwer in his views on the nature and importance of constructive definitions,
we use standard mathematics and set theory (also in this paper) whenever suitable.

5 In his work, Kleene used the term inductive definitions to denote the overarching class which
we call constructive definitions.
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This paper contributes to the study of monotone constructive definitions by intro-
ducing some key concepts as the foundations for a unifying set-theoretical framework.
This offers the key insight that all these different types are instances of the same ba-
sic constructive principles. This has important practical implications. Firstly, it entails
that research on a particular type of definition might transcend its class and actually
be applicable to all constructive definitions. E.g., non-monotone inductive definitions
have been researched algebraically [14], but non-monotone recursive definitions re-
main uncharted territory. Our correspondence suggests a way to generalise the study
of non-monotonic definitions to other types of constructive definitions. Secondly, we
believe this framework will be instrumental to integrate different types of definitions in
a single knowledge representation language. The main contribution of this paper is to
show how a whole range of examples from different areas can be reduced to instanti-
ations of the same fundamental principles, using standard set-theoretic constructions.
First, we recall the principle of (monotone) inductive definition and its formalization
in fixpoint theory, which will involve a semantic operator on a so-called construction
space, which is often richer than the exact space, in which the defined object naturally
lives. We then analyze examples found in a wide range of areas. In each example, we
describe the exact space, the construction space, the monotone semantic operator and
the defined entity. We will see how the construction space can be used as the key factor
to distinguish between classes of definitions from different research areas. We focus
mostly on (co)inductive definitions of sets and (co)recursive definitions of functions,
but also briefly discuss some more complex types of constructive definitions.

Algebraic Formalisation

We now introduce the algebraic formalism needed for an in-depth presentation of vari-
ous types of constructive definitions and illustrate them with a first detailed example.

A partially ordered set (poset) ⟨C,≤⟩ is a set C equipped with a partial order ≤,
i.e., a reflexive, antisymmetric, transitive relation. When≤ is clear from the context, we
sometimes just write C to refer to ⟨C,≤⟩. As usual, we write x < y for x ≤ y ∧ x ̸= y.
If S is a subset of C, then x is an upper bound of S if s ≤ x for each s ∈ S; it is a least
upper bound (lub(S)) of S if moreover it is smaller than every other upper bound. We
call a poset ⟨C,≤⟩ a chain-complete partial order (cpo) if every chain of C (i.e., every
subset of C for which ≤ is total) has a least upper bound. Each cpo has a least element
⊥, which is the least upper bound of ∅.

A function f : C1 → C2 between cpo’s is monotone if for all x, y ∈ C1 such that
x ≤1 y, it holds that f(x) ≤2 f(y). We refer to functions O : C → C with domain
equal to the codomain as operators. An element x ∈ C is a prefixpoint, resp. a fixpoint
of O if O(x) ≤ x, resp. O(x) = x [31]. By Tarski’s least fixpoint theorem [34], every
monotone operator O on a cpo has a least fixpoint, that we denote lfp(O). It is also the
least prefixpoint of O and it can be constructed as the limit of the possibly transfinite se-
quence (Oi)i≥0, where Oi+1 = O(Oi) and Oλ = lub({Oj | j < λ}) for limit ordinals
λ (in particular, this means O0 = ⊥). This allows for a first, algebraic formalization of
constructive definitions [2]. A constructive definition for a concept D is (formalized as)
an operator O : C → C on a cpo C. It defines the object D representing D by describ-
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ing how to construct it. The construction, normally called the induction process, is the
sequence (Oi)i≥0. The defined object D is the limit of this sequence. This limit can be
obtained by construction but it can also be characterized non-constructively, as the least
(pre)fixpoint of O, yielding the duality between the constructive and non-constructive
view on inductive definitions.

Let us illustrate this abstract formalization of constructive definitions on a prototyp-
ical example. To streamline the presentation of various examples, we initially present
a constructive definition as a set R of rules6 which resemble the style used in logic
programming, as well as in functional programming. We believe this will lead to an im-
proved understanding of our examples. Moreover, it gives an idea of how constructive
definitions in natural language can be formalised, which is essential when developing
knowledge representation languages that include them.

Example 1 (Transitive closure). Let G = (V,E) be a directed graph. The set F of
edges of the transitive closure T = (V, F ) of G is defined inductively:

– (x, y) ∈ F if (x, y) ∈ E;
– (x, y) ∈ F if there exists a vertex z such that (x, z) ∈ F and (z, y) ∈ F .

The set of rulesRF defining T = (V, F ) is as follows.⌊
∀x∀y : F (x, y)← E(x, y).
∀x∀y : F (x, y)← ∃z : F (x, z) ∧ F (z, y).

⌋
We expect this definition to construct a set F ⊆ V 2 of edges. Hence, we consider the
cpo CF = ⟨2V 2

,⊆⟩, with the power set of V 2 as underlying set with subsetorder. More-
over, the rules in RF suggest an operator OF : CF → CF showcasing rule application,
by mapping a set S ∈ CF to

OF (S) = E ∪ {(x, y) | (x, z), (z, y) ∈ S for some z ∈ V }.

It is not hard to prove that OF is monotoneand that its least fixpoint is the set F of edges
of the transitive closure of G.

Proposition 1 OF is a monotone operator.

Proof. Let S1 ⊆ S2 be two subsets of V 2. We have to show that OF (S1) ⊆ OF (S2). By
definition of OF , we have that OF (S1) = E ∪{(x, y) | ∃z : (x, z) ∈ S1∧ (z, y) ∈ S1}.
Let (x, y) ∈ OF (S1). If (x, y) ∈ E, then (x, y) ∈ OF (S2). If (x, y) /∈ E, then there
exists z ∈ V such that (x, z), (z, y) ∈ S1. Since S1 ⊆ S2, (x, y) ∈ OF (S2), as desired.

In other words, OF formalizes the constructive definition of F . The defined set F
can be characterised non-constructively as the least fixpoint of OF , or constructively as
the limit of the induction process, i.e., the sequence built by iterative application of OF

starting from the empty set.
Denecker, et al. [15] remarked that given the informal rules of Example 1, we most

likely picture the induction process as a sequence of applications of rule instances,
6 We use different brackets to indicate the kind of definition: inductive and recursive definitions

will be enclosed in floor-brackets ⌊R⌋, coinductive and corecursive definitions in ceil-brackets
⌈R⌉, and any other kind of constructive definition in curly brackets {R}.
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rather than iterations of OF . In this view of the induction process, the elementary step
is the application of a rule instance (or perhaps more generally, the application of a set
of rule instances). This natural view of the induction process raises two issues. First, it
identifies the rule as the modular unit of the definition and its induction process. This
modularity is abstracted away when formalizing the definition as an operator O. Sec-
ond, it leads to a highly non-deterministic notion of induction process, since rules can
be applied in different orders. This non-determinism is of great pragmatical use when
reasoning on the definition, since it allows us to steer the induction process towards
a particular goal, e.g., towards computing whether a specific pair (a, b) belongs to F .
On the other hand, the non-determinism raises the question whether all these different
induction processes are confluent (i.e., have the same limit). This should be the case,
otherwise the definition would be ambiguous!

In Fig. 1, the start of two such induction processes for Example 1 are visualized.
In the top sequence (F0, . . . , F3), all applicable rules are applied at every step of the
construction, making it the fastest process. This corresponds to (O0

F , . . . , O
3
F ), the first

four iterations of the operator OF . In the bottom sequence, a slower induction process
(F ′

0, . . . , F
′
3) is shown, one that first applies all instances of the base rule, then a single

instance of the transitivity rule per iteration.
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Fig. 1. A graph G (left) and the start of two monotone inductions of the definition of its transitive
closure (right). Dotted red arrows indicate newly derived edges at each state.

This more natural approach is formalized as a monotone induction of O: an increas-
ing sequence (xi)i≤β satisfying

– xi ≤ xi+1 ≤ O(xi) , for successor ordinals i+ 1 ≤ β,
– xλ = lub({xi | i < λ}), for limit ordinals λ ≤ β (in particular, O0 = ⊥).

Here, xi ≤ xi+1 ≤ O(xi) formalizes the idea of applying some rule instances in xi,
but not necessarily all. We say a monotone induction of O is terminal if there does not
exist a strictly greater refinement of its limit, i.e., if xβ ̸< O(xβ). It is straightforward to
prove that all terminal monotone inductions are confluent (see, e.g., [5, Corollary 3.7]).

In the next section, we present several examples of constructive definitions. While
they originate from very different fields, they can be presented in a uniform way using
the following mathematical objects:

– A mathematical object D corresponding to the concept defined by the constructive
definition. We call D the defined object.

– A set E where D lives. This should be naturally identified by the specifications in
the constructive definition. We call E the exact space.
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– A cpo C = ⟨C,≤⟩ with an injection θ : E ↪→ 2C \ {∅} such that for all e1, e2 ∈ E
with e1 ̸= e2, θ(e1) ∩ θ(e2) = ∅, i.e., different elements of the exact space are
mapped to disjoint subsets of C. The elements of θ(e) are (potentially different)
representations of e ∈ E in C. We call C the construction space.

– An operator O : C → C on the construction space, of which the least fixpoint coin-
cides with the defined object D: lfp(O) ∈ θ(D). We call O the semantic operator.

The elements of the construction space are meant to approximate the elements of the
exact space. Some, or all, elements c ∈ C are representations of exact elements e ∈ E ,
namely those for which c ∈ θ(e). Inversely, θ determines a surjective partial function
π : C → E such that for c ∈ C, π(c) exists and is equal to e iff c ∈ θ(e). In practice, we
will use π to project away any additional information that was needed for construction
and to derive the associated value in the exact space from the least fixpoint of the op-
erator, i.e., D = π(lfp(O)). Often but not always, the exact and the construction space
are the same and π is the identity function. E.g., in Example 1, the defined object is the
set F of edges of the transitive closure, the exact space EF is the set 2V

2

of all sets of
possible edges; the construction space is CF = ⟨2V 2

,⊆⟩; the semantic operator is OF .

Different Flavours of Constructive Definitions

In this section, we instantiate the earlier introduced framework for a range of con-
structive definitions coming from different areas. We bring them together to show that
indeed, in different fields, the design of the exact and construction space is the key
point. Once this choice is made explicit, typically the definition of the operator follows
straightforwardly, and the defined object is constructed by the fixpoint theory. The final
step may be to project the fixpoint from the construction space to an element of the ex-
act space, i.e., the defined object, using π. In the majority of the proposed examples, this
is not needed, since the injection θ just sends an exact element e ∈ E to the singleton
{e} ∈ 2C . However, Example 7 illustrates where the projection π plays a role.

(Co)inductive Definitions of Sets

Inductive definitions are ubiquitous in mathematical texts. Concepts such as the tran-
sitive closure, the natural numbers, ordinals, and formulas in logic, are usually defined
inductively [3, 2]. On the other hand, many common infinite datatypes such as infinite
streams, infinite trees and coterms, are typically defined coinductively [22]. In general,
these definitions define sets of elements of a certain type T , given by the context. Natu-
rally, the exact space then consists of all sets of elements of T , i.e., it is 2T . Intuitively,
the construction process associated with inductive definitions gradually grows the de-
fined set, starting from the empty set. In contrast, the construction process for coinduc-
tive definitions puts stronger restrictions on the defined set in every step, resulting in
a gradually shrinking set. In both cases the power set contains all elements necessary
for the construction, since we are only adding or removing elements from a subset of
T . By endowing the exact space with the subset order ⊆ and the superset order ⊇, we
capture the respective behaviours of growing and shrinking associated with induction
and coinduction. For inductive definitions we obtain the power set lattice ⟨2T ,⊆⟩ as a
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construction space. This is a complete lattice and thus a cpo. The same holds for the
construction space ⟨2T ,⊇⟩.

Let us consider the domain of (finite or infinite) lists of natural numbers. The set
of all such lists is denoted by List . We use a well-known notation for lists where Nil
represents the empty list and [x | y] represents the list starting with x ∈ N (often
referred to as the head) followed by the list y (often referred to as the tail of the list).

Example 2 (Prime array). The set PA of all prime arrays is defined inductively:
– Nil ∈ PA.
– If x is a prime number and y ∈ PA, then [x | y] ∈ PA.

This is a monotone inductive definition, formally represented by the set of rules⌊
∀y ∈ List : PA(y)← y = Nil .
∀x ∈ N,∀y ∈ List : PA([x | y])← P (x) ∧ PA(y).

⌋
with P the set of prime numbers. The exact space is the power set 2List . As construction
space we then have CPA = ⟨2List ,⊆⟩. The semantic operator for this example is OPA :
CPA → CPA , defined by mapping a set of lists S ⊆ CPA to

OPA(S) = {l | l = Nil or l = [x | y] for some x ∈ P, y ∈ S}

Proposition 2 The operator OPA is monotone.

Proof. Let S1 ⊆ S2 be two subsets of List , and let l ∈ OPA(S1). Either l = Nil , in
which case x ∈ OPA(S2), or there exist x ∈ P and y ∈ S1 such that l = [x | y]. Since
S1 ⊆ S2, we have y ∈ S2, which implies that x ∈ OPA(S2) also for the latter case.

The fastest induction process corresponds to the sequence ∅ = PA0 ⊆ PA1 ⊆
. . . ⊆ PA, with PAi =

⋃
m<i{[n0, . . . , nm] | n0, . . . , nm ∈ P}, the set of lists of

primes with length at most i. Thus, the defined set of prime arrays consists of all finite
lists containing only prime numbers. Interestingly, the same set of rules gives rise to a
sensible coinductive definition.

Example 3 (Prime lists). The set PL of all prime lists is defined coinductively:
– Nil ∈ PL.
– [x | y] ∈ PL, if x is a prime number and y ∈ PL.

As suggested before, this definition corresponds to exactly the same formal set of rules
as the previous example after replacing PA by PL⌈

∀y ∈ List : PL(y)← y = Nil .
∀x ∈ N,∀y ∈ List : PL([x | y])← PL(y) ∧ P (x).

⌉
Unsurprisingly, we consider the same exact space 2List as in Example 2, and the

construction space with inverted order, namely ⟨2List ,⊇⟩. Except for its signature, the
inverted order does not influence the semantic operator OPL , which equals OPA .

Proposition 3 The operator OPL is monotone.
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Proof. Clear by the defintion of OPL and Proposition 2.

Here, the fastest induction process results in the sequence List = PL0 ⊇ PL1 ⊇
. . . ⊇ PL, with PLi =

⋃
m<i{[n0, . . . , nm] | n0, . . . , nm ∈ P} ∪ {[n0, . . . , ni, . . .] |

n0, . . . , ni ∈ P} where [n0, . . . , ni, . . .] denotes a list with length greater than i − 1.
Intuitively, this set corresponds to all lists l of natural numbers such that no non-primes
occur within the first i elements of the list. Clearly, this sequence converges to the set
of all finite and infinite lists of prime numbers. A final adaptation of the list-example
restricts the defined object to only the infinite lists of prime numbers.

Example 4 (Prime streams). The set PS of all prime streams is defined coinductively:
– [x | y] ∈ PS if x is a prime number and y ∈ PS .

By excluding the case for the empty list Nil , we obtain only the infinite lists, i.e., the
streams. The definition is formalised by the following coinductive rule:⌈

∀x ∈ N,∀y ∈ List : PS ([x | y])← PS (y) ∧ P (x).
⌉

We keep the same exact space and construction space as in Example 3. Here, the
difference lies with the semantic operator OPS which maps a set of lists S to

OPS (S) = {[y | z] | z ∈ S, y ∈ P}

Proposition 4 The operator OPS is monotone.

Proof. Let S1 ⊆ S2 be two subsets of List , and let l ∈ OPS (S1), i.e. l = [y, z] for some
y ∈ P and z ∈ S1. Since S1 ⊆ S2, we have y ∈ S2, which implies that x ∈ OPS (S2),
as desired.

The fastest induction process for this definition starts from List , since by default
everything belongs to the set. During the first step it will delete the empty list and all
lists with a head a such that a ̸∈ P . At each subsequent step i it will remove all lists
for which the ith element either does not exist, or it is not a prime number, giving us
the sequence The fastest induction process then gives us the sequence List = PS 0 ⊇
PS 1 ⊇ . . . ⊇ PS , with PS i = {[n0, . . . , ni, . . .] | ∀j < i, nj ∈ P}, i.e., the set of all
lists of length at least i of which the first i elements are primes. Note that interpreting
this set of rules inductively rather than coinductively will not be able to derive the
inclusion of a single element, i.e., the defined object would be the empty set.

Now, let us turn our attention to a different type of examples that uses an aggregate
expression, known as the “company controls” problem [20].

Example 5 (Company control-relation). Given a set C of companies, each of which
owns a percentage of the shares of the other companies, the control-relation is defined
inductively as follows: a company x controls another company y, if the sum of the
shares of y owned by x or by companies controlled by x, is strictly more than half.

In formal rule notation:⌊
∀x, y ∈ C : Cont(x, y)←

( ∑
z∈Contx

Sh(z, y)

)
> 0.5.

⌋
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where Sh : C2 → [0, 1] is a function that maps a pair of companies (x, y) to the fraction
of shares of y owned by x and Contx = {x} ∪ {u | Cont(x, u)}. Under the (natural)
assumption that Sh(x, y) ≥ 0, this definition is monotone. The more companies that
are determined to be under control of a company x, the higher the fraction of shares
controlled by x in any (other) company y. The exact space is now given by the set
of binary relations over C, i.e., 2C

2

, as the construction space we choose CCont =

⟨2C2

,⊆⟩. Once again, the semantic operator OCont : CCont → CCont results from rule
application, i.e., it maps a binary relation R to

OCont(R) =

(x, y)

∣∣∣∣∣ ∑
z∈{x}∪{u|(x,u)∈R}

Sh(z, y) > 0.5

 .

Proposition 5 The operator OCont is monotone.

Proof. Let S1 ⊆ S2 be two subsets of C2, and let (x, y) ∈ OCont(S1), i.e.∑
z∈{x}∪{u|(x,u)∈S1}

Sh(z, y) > 0.5.

Since S1 ⊆ S2, we also have the inclusion {x} ∪ {u | (x, u) ∈ S1} ⊆ {x} ∪ {u |
(x, u) ∈ S2}. Since Sh(z, w) ≥ 0 for all (z, w) ∈ C2, we have∑

z∈{x}∪{u|(x,u)∈S2}

Sh(z, y) > 0.5,

i.e. (x, y) ∈ OCont(S2).

Fig. 2 visualizes the induction process for an example share-function Sh represented
by a labeled directed graph. Coincidentally, the depicted induction is the only possible
induction with strict increments since at every step exactly one rule is applicable.
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Fig. 2. An edge (a, b) in the leftmost graph indicates that Sh(a, b) > 0 and its label shows the
exact value of Sh(a, b). The other graphs show an induction process. Newly derived company
pairs (represented by edges) are indicated with dotted red lines. At first only the base case is
added. Later, combined ownership is derived.

(Co)recursive Definitions of Functions

We now present another set of examples, this time regarding the definition of functions.
Recursion and its dual corecursion are extensively used as methods to define functions
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in a wide variety of mathematical and computer scientific fields [26, 32, 27]. Some well-
known mathematical functions, like the factorial or the greatest common divisor, can be
defined recursively, and (co)recursive definitions of functions are supported in most
functional programming languages [16, 28, 17].

For our formalization, the exact space of (co)recursive definitions of functions is
obtained in a natural way: if we want to define a function f : X → Y , then the exact
space is the set of functions from X to Y , denoted by Y X . Contrary to (co)inductive
definitions, here we cannot just choose the construction space to equal the exact space.
The main reason for this is that in intermediate steps of the construction process only
partial functions have been constructed.

Example 6 (Fibonacci sequence). The Fibonacci sequence is viewed here as the func-
tion Fib : N → N, where Fib(n) is the nth Fibonacci number. Its recursive definition,
in the formal notation, is the following:⌊

Fib(0) := 0. Fib(1) := 1.
∀n ∈ N : Fib(n+ 2) := Fib(n) + Fib(n+ 1).

⌋
Clearly, the exact space is NN. Moreover, we can get some insight into the construction
process from the rules above. Note that the image of n + 2 under Fib depends on the
image of n and n+1. As long as the latter are not derived, it is impossible to determine
Fib(n+2). Hence, it is natural to think of Fib at an intermediate step of the construction
as a partial function, defined on a subset S of N. Equivalently, we can view such a partial
function as a function from N to N⊥ := N ∪ {⊥}, where ⊥ denotes “undefined”. The
set N⊥ is naturally equipped with the definedness order ≤d, given for all n,m ∈ N by
n ≤d m iff n = m or n = ⊥. We take the construction space CFib = ⟨(N⊥)

N,≤d⟩ to be
the set of functions (N⊥)

N, equipped with the pointwise extension of ≤d. This indeed
forms a cpo.

Lemma 1. ⟨N⊥,≤⟩ is a cpo.

Proof. Let S ⊆ N⊥ be a chain. By the definition of the order ≤, S has at most two
elements. Hence, the lub(S) = n where {n} = S ∩ N if S ∩ N ̸= ∅, or ⊥ otherwise.

Proposition 6 CFib is a cpo.

Proof. Let S ⊆ CFib be a chain. Since the order≤d is defined pointwise, for all n ∈ N,
Sn := {f(n) | f ∈ S} ⊆ N⊥ is a chain. By Lemma 1, for all n ∈ N, there exists
lub(Sn). It is easy to see that the function F : N→ N⊥ defined by F (n) := lub(Sn) is
the least upper bound of S.

It remains to define a monotone operator on CFib . First, the sum +: N2 → N can be
extended to N⊥ × N⊥ by defining for each n ∈ N⊥, ⊥ + n = n + ⊥ = ⊥. Then, the
operator OFib : CFib → CFib is defined to map a function f ∈ CFib to

OFib(f) :=

{
n 7→ n (for n ∈ {0, 1})
n+ 2 7→ f(n+ 1) + f(n)
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Proposition 7 The operator OFib is monotone.

Proof. Let f, g ∈ CFib such that f ≤d g, i.e. for all n ∈ N, f(n) ≤ g(n). Notice that
we have

OFib(f)(0) = 0 = OFib(g)(0)

OFib(f)(1) = 1 = OFib(g)(1)

∀n ∈ N \ {0, 1}, OFib(f)(n) = f(n− 1) + f(n− 2)

≤ g(n− 1) + g(n− 2)

= OFib(g)(n).

Hence, OFib(f) ≤d OFib(g), as desired.

By the definition of OFib , it is easy to see that the desired function Fib is the least
fixpoint of OFib . The element lfp(OFib) can also be constructed as the limit of the
increasing sequence of functions f0, f1, . . . in CFib obtained by iterating OFib on the
bottom element of CFib . We write here the functions in the first iterations of the process:

f0(n) := ⊥ f1(n) := f2(n) :=
0 if n = 0

1 if n = 1

⊥ otherwise


0 if n = 0

1 if n ∈ {1, 2}
⊥ otherwise

The enrichment of the exact space with ⊥ allows us to deal with partially defined
concepts, providing us with a suitable choice for the construction space. Nevertheless,
such choice may be even more subtle, as we show next.

Example 7 (Ackermann function ). Ack : N2 → N is defined recursively as follows:∀y ∈ N : Ack(0, y) := y + 1.

∀x ∈ N : Ack(x+ 1, 0) := Ack(x, 1).

∀x, y ∈ N : Ack(x+ 1, y + 1) := Ack(x,Ack(x+ 1, y)).


The exact space is again the set of functions with the right signature, namely N2 → N.
Analogously to Example 6, the function Ack is defined on every element of its domain
only after infinitely many steps. Hence, it may seem natural to consider as construction
space the functions from N2 to N⊥. However, this enlargement of the construction space
is not sufficient: due to the third rule of the definition, during the construction, the
Ackermann function might be invoked on an output of a partially constructed object,
which can possibly be ⊥. This prompts us to add ⊥ to the domain of the functions in
the construction space.

Just as before, we can order this expanded space N⊥
N⊥×N⊥ by the pointwise exten-

sion of the definedness order≤d on N⊥. However, the operator induced by the definition
of Ack is not monotone on the full set of functions. Fortunately, it was shown that this
operator is monotone on a sufficiently large subset defined next. We expand the defined-
ness order ≤d to N⊥ × N⊥ as the product order of ≤d on N⊥, and consider the subset
CAck of monotone functions of NN⊥×N⊥

⊥ . It turns out that the operator of the Acker-
man definition, and the limit operation for increasing sequences of monotone functions
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both preserve monotoniticy of functions, making CAck ⊆ NN⊥×N⊥
⊥ a suitable space to

perform the induction process. In other words, we choose the construction space to be
the cpo CAck := ⟨CAck ,≤d⟩. The proof of the fact that the construction space CAck is a
cpo analogous to the proof of Proposition 6, given that ⟨N⊥ ×N⊥,≤d⟩ is a cpo, which
follows easily from Lemma 1.

It is important to note that for the first time, the injection θ is nontrivial, since
we have enlarged the domain of the considered functions to N⊥ × N⊥. In particular,
θ : NN2 → 2CAck sends a function f : N2 → N to the set of functions

θ(f) :={g :(N⊥)
2→N⊥ | ∀(x, y) ∈ N2, f(x, y) = g(x, y)}.

Hence, it is easy to see that the surjective partial function π : CAck → NN2

associated
to θ is defined only on the set of of functions whose restriction to N2 maps into N and
maps each such function to its restriction to N2.

By the above recursive definition of Ack , the choice for the operator OAck : CAck →
CAck is clear: for all f ∈ L,

OAck (f) :=


(0, y) 7→ y + 1

(x+ 1, 0) 7→ f(x, 1)

(x+ 1, y + 1) 7→ f(x, f(x+ 1, y))

where + is extended to N⊥ × N⊥ as in Example 6. Note that OAck (f) is indeed an
element of CAck , since the composition of monotone functions is monotone.

Proposition 8 The operator OAck is monotone.

Proof. Let f, g ∈ CAck such that f ≤d g. Then we have

∀y ∈ N⊥, OAck (f)(0, y) = y + 1 = OAck (g)(0, y),

OAck (f)(⊥, 0) = f(⊥,0) ≤d g(⊥, 0) = OAck (g)(⊥, 0),
∀x ∈ N \ {⊥, 0}, OAck (f)(x, 0) = f(x− 1, 0)

≤d g(x− 1, 0) = OAck (g)(x, 0).

Moreover, for all x, y ∈ N⊥,

OAck (f)(x+ 1, y + 1) = f(x, f(x+ 1, y))

≤d f(x, g(x+ 1, y))

≤d g(x, g(x+ 1, y))

= OAck (g)(x+ 1, y + 1),

where the first inequality holds by the monotonicity of f . Hence, OAck (f) ≤d OAck (g),
as desired.

The construction process starts from the bottom element ⊥Ack of CAck , namely the
function ⊥Ack : N⊥ × N⊥ → N⊥ sending every pair to ⊥. By iteratively applying the
operator OAck , we obtain an increasing sequence of monotone functions f0, f1, . . . in
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CAck , representing the partial functions of the intermediate steps of the recursion. At the
first steps of the process we get the functions defined on (x, y) ∈ N⊥ ×N⊥ as follows:

f0(n) := ⊥ f1(x, y) := f2(x, y) :={
y + 1 if x = 0

⊥ otherwise


y + 1 if x = 0

2 if (x, y) = (1, 0)

⊥ otherwise
Only after transfinitely many steps, we reach the least fixpoint of OAck . Finally, it

is not hard to see that applying the projection π on the least fixpoint yields the defined
object, i.e., π(lfp(OAck )) = lfp(OAck )

∣∣
N2 = Ack .

We now move to examples of co-recursive definitions of functions. Once again, the
choice of a suitable construction space turns out to be non-trivial.

Example 8 (Co-Fibonacci). The co-Fibonacci function co Fib : N2 → List , which
maps a pair (x, y) of natural numbers to the Fibonacci sequence starting with x, y, is
defined co-recursively to send (x, y) to [x | co Fib(y, x+ y)].

We can present the corecursive definition of co Fib by⌈
∀x, y ∈ N : co Fib(x, y) := [x | co Fib(y, x+ y)].

⌉
In particular, co Fib(0, 1) is the list corresponding to the Fibonacci sequence, defined
recursively in Example 6. The exact space is again clear from the signature of the func-
tion we want to define: it is the set of functions from N2 to List .

As in Example 6, we need to enlarge the codomain of the considered functions in
order to represent intermediate steps of the process. Thus, we define a set Listo, con-
taining lists of natural numbers and finite lists of natural numbers ending with o. A list
[x1, . . . , xn | o] of the latter type represents a list of natural numbers with overdefined o
as tail. In other words, the list [x1, . . . , xn | o] represents the set {[x1, . . . , xn | l] : l ∈
List} of lists of natural numbers. In particular, the list o represents the overdefined list,
i.e., the set of all lists of natural numbers.7 Accordingly, on Listo, definedness order≤d

is defined inductively as follows:
– for all t ∈ Listo: t ≤d o
– for all x ∈ N, t1, t2 ∈ Listo: [x | t1] ≤d [x | t2] if t1 ≤d t2

In this order, o is indeed “more defined” than any list. The set Listo with the order ≤d

is not a cpo since it has no least element, however, with the inverted order ≥d it indeed
is a cpo, with “least” element o.

Lemma 2. ⟨Listo,≥d⟩ is a cpo.

Proof. Let S ⊆ Listo be a chain. We have to show that S has a least upper bound. If S
has finite cardinality, the claim is trivial. Suppose S has an infinite number of elements.
By the definition of ≥d and since S is a chain, if S contains an infinite list l, then l is
the least upper bound of S. Suppose otherwise, i.e. all elements in S are finite lists of
natural numbers or finite lists of natural numbers ending with o. We denote the length

7 Note that the earlier introduced notation [x | y] is used now to denote a list of Listo with head
a finite list x of natural numbers, and tail a list y of Listo.



14 L. Vanbesien, S. Pollaci, B. Bogaerts, M. Denecker

of a list l ∈ S by length(l) ∈ N. We can order the lists in S following the total order,
and we denote by li the i-th list in S with such ordering, i.e. i1 ≤ i2 if and only if
li1 ≤ li2 . Notice that if length(li) = length(li+1), then li must end with o and li+1

with a natural number. In particular, length(li+2) is strictly greater than length(li). Let
l ∈ S be a list and n ≤ length(l), we denote by ln the n-th element of l We define an
infinite list L := [Lj ]j∈N where

∀j ∈ N : Lj := l2j+2
length(l2j+2)−1.

Notice that, for all i ∈ N, the first min(length(li), length(li+1)) − 1 elements of li

and li+1 coincide. Hence, it is not hard to see that for any l ∈ S we have l ≥d L by
construction. Let U be an upper bound for S, i.e. U is an infinite sequence of natural
numbers such that l ≥d U for all l ∈ S. By the definition of the order, for all l ∈ S, the
first length(l)− 1 elements of l and U coincide. Hence, it is easy to see that L = S. In
particular, L is the least upper bound of S.

The order ≥d can be extended in the standard, pointwise way to (Listo)N
2

. We
define the construction space Cco Fib = ⟨(Listo)N2

,≥d⟩. The inversion of the defined-
ness order, often used for recursion, mimics the order inversion between inductive and
coinductive definitions (hence the term corecursion).

Finally, we define the operator Oco Fib : Cco Fib → Cco Fib by sending a function
f ∈ Cco Fib to

Oco Fib(f) : N2 → Listo : (x, y) 7→ [x | f(y, x+ y)].

By the definition of ≥d, it is easy to see that Oco Fib is a monotone operator. More-
over, the desired function co Fib is the least fixpoint of the operator Oco Fib . This co-
incides with the limit of the increasing sequence f0, f1, . . . constructed by iterating
Oco Fib on the bottom element⊥Cco Fib

of Cco Fib , i.e., the function⊥Cco Fib
: N2 → Listo

sending every tuple to o. We report here the images of the functions in the first iterations
of the process, depending on (x, y) ∈ N2:

f0(x, y) =⊥Cco Fib
(x, y) = o f2(x, y) =[x, y | o]

f1(x, y) =[x | o] f3(x, y) =[x, y, x+ y | o]

Definitions with Custom-Designed Cpo’s

In this third and last subsection, we present a final example of a constructive definition
of a function. Even though this definition deviates from the standard (co)recursive ac-
count, it can indeed be formalized using our proposed framework. Just like Example 5,
the definition illustrated here falls under the company controls domain: in this case, we
want to define the number of shares of a company that another company controls.

Example 9 (Controlled shares). If x and y are two companies, we say that x controls n
shares of y if n is the sum of the shares of y owned by x or any company z of which x
controls more than half of the shares.
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We can formally define the desired function Csh : C2 → [0, 1] as follows:{
∀x∀y : Csh(x, y) :=

∑
z∈{x}∪{u|Csh(x,u)>0.5}

Sh(z, y).
}

where Sh : C2 → [0, 1] is still the function mapping a pair of companies (x, y) to the
fraction of shares of y owned by x. The exact space is the set of functions from S2 to
the interval [0, 1]. The construction process is more complex than before: we now need
to be able to decide whether Csh(x, y) > 0, 5 is true before Csh(x, y) is determined.

We can think about this construction process as a gradual refinement of each tuple’s
image. At the beginning of the process, we have no information about the image of
Csh except that Csh(x, y) ∈ [0, 1] for all x, y ∈ C. At every rule application we get
new information on the lower bounds of the images of elements of C2. Since the upper
bounds remain constant equal to 1, we may as well identify the interval in which an
image is contained with its lower bound. Now, the choice for a construction space CCsh

becomes clear, namely we consider the cpo of functions from C2 to [0, 1], with the
pointwise extension of the standard order ≤ on real numbers.

Proposition 9 CCsh is a cpo.

Proof. Since ([0, 1],≤) is a cpo, the proof is analogous to the proof of Proposition 6.

Finally, we can consider the monotone operator OCsh : CCsh → CCsh , which maps a
function f : C2 → [0, 1] to OCsh(f), defined by

OCsh(f)(x, y) :=
∑

z∈{x}∪{u|f(x,u)>0,5}

Sh(x, y).

Proposition 10 The operator OCsh is monotone.

Proof. Let f, g : C2 → [0, 1] such that f ≤L g. In particular, for all x ∈ C, we have
{u | f(x, u) > 0, 5} ⊆ {u | g(x, u) > 0, 5}. Since Sh(z, y) ≥ 0 for all z, y ∈ C, we
have OCsh(f) ≤L OCsh(g), as desired.

As anticipated, we can start the recursion from the bottom element of CCsh , namely
the function f0 sending every pair of companies to 0. By iteratively applying the oper-
ator OCsh we get an increasing sequence of functions f0 ≤CCsh

f1 ≤CCsh
f2 ≤CCsh

· · · ,
whose limit is the desired defined function Csh and coincides with the least fixpoint of
OCsh . Notice that at any step t of the construction process, for each pair (x, y) ∈ C2,
the image ft(x, y) may not be the correct value of Csh(x, y). Only in the last step,
when the fixpoint is reached, certainty is reached of the correct value Csh(x, y), for all
pairs (x, y) at once. This is much unlike previous examples. This type of construction,
using increasingly more precise bounds, lies at the basis of bound-founded ASP [4, 8].

Conclusion and Future Work

We investigated a heterogeneous set of monotone constructive definitions, coming from
different domains and never brought together before, in a uniform framework. Our anal-
ysis confirms the power of fixpoint theory for abstract formalization, but also points to a
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key distinguishing factor: the construction space, the set of objects that serve as approxi-
mations of the object being defined. We propose the general term monotone constructive
definitions for a class of definitions that includes recursive and inductive definitions and
developed a framework that clearly emphasises how different types of definitions can be
classified according to different types of construction spaces. This is a crucial step to-
wards the development of knowledge representation languages that include a variety of
constructive definitions. Our framework suggests such language requires a formal syn-
tax for definitions such that one can automatically and uniformly derive a suitable exact
space, semantic operator and construction space. As shown by the examples, while the
first two are straightforward, the latter may be non-trivial. We have illustrated different
types of definitions by example, allowing us to handpick the most convenient, natural
construction space. The challenge is that a uniformly derived construction space needs
to be strong enough to handle all considered definitions, and the defined object should
coincide with the one obtained with the handpicked construction space.8 This paper of-
fers an important first step towards solving this issue by classifying different types of
definitions based on the kind of construction space they require. This means identifying
the correct type of definition will be an essential part of the syntax of the considered
knowledge representation language.

By no means do we claim our list of types of constructive definitions to be exhaus-
tive. Other types of constructive definitions not considered here are nested inductive and
coinductive definitions where multiple objects are defined in a hierarchy of inductive
and coinductive definitions [30, 25] or non-monotone “iterated” inductive definitions
which have been researched in mathematical logic [18, 23, 7]. In iterated inductive def-
initions, e.g., over a well-founded order, multiple objects are defined in terms of other
defined objects on a lower or equal level. Once all objects on some level are well-
defined, their values can be used to derive the value of any object on a higher level.
This is the natural principle of stratification. It has been argued that this principle is
implemented by the well-founded semantics of logic programming [11, 14, 15]. Thus,
the declarative logic underlying logic programming can be seen as a logic of this type
of constructive definition.

In this paper, we focused on monotone constructive definitions. Non-monotone in-
ductive definitions have been studied intensively, including in a fixpoint-theoretic set-
ting (known as Approximation Fixpoint Theory (AFT) [12]). In the terminology of the
current paper, dealing with this non-monotonicity requires switching to a different con-
struction space (a space of approximations). A natural next question we wish to tackle
is whether this framework can also be of use for studying non-monotone recursive def-
initions.

As a final remark, we argued that constructive definitions are an important form of
human knowledge. Of course, many other types of knowledge are important as well.
Contrary to the languages of logic and functional programming, which support mainly
definitions used as programs, expressive KR languages should offer language constructs
for expressing a broad range of knowledge. In this respect, an example is the logic FO(·),

8 In the supplementary material of the appendices, the suitable notion of isomorphism between
construction spaces is introduced allowing to relate operators and defined objects in different
construction spaces.
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which extends FO with among others an expressive rule-based language construct for
definitional knowledge, inspired by logic programming [10, 9].
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