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Abstract. It is well-known that highly symmetric problems can often be
challenging for combinatorial search and optimization solvers. One tech-
nique to avoid this problem is to introduce so-called symmetry breaking
constraints, which eliminate some symmetric parts of the search space. In
this paper, we focus on pseudo-Boolean optimization problems, which are
specified by a set of 0–1 integer linear inequalities (also known as pseudo-
Boolean constraints) and a linear objective. Symmetry breaking has al-
ready been studied in this context; however previous work could only
deal with symmetries of the entire optimization problem. In this paper,
we show how to handle weak symmetries: symmetries of the constraints
that do not necessarily need to respect the objective. We show that weak
symmetries induce a dominance relation and that pseudo-Boolean con-
straints are a natural target formalism to write the dominance breaking
constraints in. We implemented these ideas on top of a state-of-the-art
symmetry breaking tool for SAT, and in doing so also transfer mod-
ern symmetry breaking techniques to pseudo-Boolean optimization. We
experimentally validate our approach on the latest pseudo-Boolean com-
petition, as well as on hard combinatorial instances and conclude that
the effect of breaking (weak) symmetries depends greatly on the type of
solving algorithm used.

1 Introduction

Hard combinatorial decision and optimization problems often exhibit symme-
tries. It is well-known that when these symmetries are not properly taken into
account, solvers can easily get stuck exploring many symmetric versions of the
search space. To overcome this limitation, a variety of techniques has been de-
veloped; we here make the distinction between static (prior to the search) and
dynamic (during search) symmetry handling techniques.

Static symmetry handling techniques all perform symmetry breaking : that
is, they add new constraints that eliminate some, but not all symmetric assign-
ments. One way to achieve this is by adding so-called lex-leader constraints,
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which discard all assignments that are lexicographically larger than their sym-
metric counterpart. This type of symmetry breaking (with lex-leader or other
constraints) is used in various fields [11, 22, 23, 40, 3, 27, 30, 14, 16, 20, 13, 17].

Dynamic symmetry handling techniques come in different flavours. Most
methods work on a set of symmetries of the input formula, but some also detect
symmetries during the search [5]. Some methods actually break the symmetries
(and hence potentially also remove satisfying assignments), e.g., by adopting a
branching method that takes symmetries into account [36], or by lazily posting
the symmetry breaking constraints that static techniques would also add [32,
28]. Other methods only eliminate unsatisfiable regions of the search space [7];
the most common such technique is symmetric learning, which allows a solver
to learn symmetric versions of learned clauses or no-goods when constructing an
unsatisfiability proof [26, 37, 6, 31, 18, 15].

The advantage of static techniques is that they are solver- and algorithm-
agnostic: they can be combined with any type of search algorithm and hence
are also compatible with future developments. The main drawback of static
techniques is that it is difficult to know in advance which symmetry breaking
constraints will be effective (will contribute to decreasing the search space), while
adding all possible symmetry breaking constraints is too costly.

In this paper, we study static symmetry breaking techniques for pseudo-
Boolean optimization, where we are given a set F of 0–1 integer linear inequal-
ities and a linear term f (i.e. respectively the pseudo-Boolean constraints and
the objective) and are asked to search for a solution to F that minimizes f . We
are not the first to study symmetries in this setting: already in 2004, Aloul et
al. [2] extended Shatter [3] (a symmetry breaking preprocessor for SAT) to
pseudo-Boolean optimization. They detect symmetries σ of the entire optimiza-
tion problem: permutations (of literals) σ such that σ(F ) = F and σ(f) = f ,
i.e. σ(F ) is syntactically equal to F and similarly for f . For such symmetries,
they add (a clausal encoding of) lex-leader constraints: a set of clauses that ex-
presses that a solution should be lexicographically smaller than its symmetric
counterpart. In this paper, we will show that many of the techniques can be gen-
eralized to a more general setting. We will define a weak symmetry of (F, f) to
be a symmetry of F , that not necessarily preserves f . Some care is needed when
adding breaking constraints in this setting. We will show that weak symmetries
give rise to a dominance relation [10] and will describe constraints that break
weak symmetries in a sound way, roughly expressing that we are only interested
in assignments that

– are at least as good (in terms of the objective) as their symmetric counter-
part, and

– are lexicographically smaller than (or equal to) their symmetric counterpart,
in case they have the same objective value.

As it turns out, this can easily be expressed as pseudo-Boolean constraints.
We implemented this idea on top of BreakID, a symmetry breaking pre-

processor for SAT [16]. The resulting tool (which we call BreakIDPB) differs
from Shatter in the following ways:
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– first and foremost, it can handle weak symmetries,
– it integrates all the improvements of BreakID [16], such as detection of

so-called row-interchangeability, and
– it can break symmetries with a native pseudo-Boolean encoding (rather than

a clausal encoding).

We experimentally validate our techniques on the latest pseudo-Boolean com-
petition, as well as on hard combinatorial instances. Our results are mixed: de-
pending on which type of search algorithm is used to solve the resulting problem
(after symmetry breaking), we see that (weak) symmetry breaking can have a
very positive or a very negative impact. Moreover, we observed an interesting
side-effect where weak symmetry breaking had a positive impact on instances
that do not exhibit weak symmetries.

The rest of this paper is structured as follows. In Section 2 we present the
necessary background for understanding our work. Section 3 describes the frame-
work of dominance relations and how so-called weak symmetries fit within this
framework. In Section 4 we explain how BreakID was extended into BreakIDPB
and Section 5 contains the experimental results.

Publication History This paper is based on the bachelor thesis of the first author
[38]. A short version of this paper was presented at the BNAIC/BeneLearn
2022 conference [39]. The current paper extends the short version with more
examples, a precise description of the graph that is created, and more extensive
experiments.

2 Preliminaries

In this section, we recall some standard definitions related to pseudo-Boolean
optimization. A literal ` over a Boolean variable x is x itself or its negation
x = 1− x, where variables take values 0 (false) or 1 (true). A pseudo-Boolean
(PB) constraint C is a 0–1 linear inequality∑

iai`i ≥ A, (1)

where ai and A are integers. Without loss of generality, we will often assume
that PB constraints are normalized ; i.e., that all literals `i are over distinct
variables and that the coefficients ai and the degree (of falsity) A are non-
negative, but most of the time we will not need this. A pseudo-Boolean formula
F is a conjunction

∧
j Cj of PB constraints, which we can also think of as the set⋃

j{Cj} of constraints in the formula, choosing whichever viewpoint seems most
convenient. An assignment α is a function from a set of variables V to {0, 1}.
An assignment is complete for F if it assigns a value to all the variables in F .
Slightly abusing notation, we extend an assignment to literals in the natural
way, by respecting negation where α is defined and being constant where α is
not defined. I.e., if α is the assignment of the set of variables V we will write
α(x) to mean 1 − α(x) if x ∈ V and to denote x if x /∈ V . The (normalized)
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constraint C in (1) is satisfied by α (denoted α |= C) if
∑
α(`i)=1 ai ≥ A. A

PB formula is satisfied if all of its constraints are satisfied. A pseudo-Boolean
optimization problem1 is a tuple (F, f) with F a PB formula and f a linear
objective

∑
i wi`i. We write fα for the value of f in α, i.e., for

∑
i wiα(`i). An

assignment α is an (optimal) solution to (F, f) if α |= F and fα ≤ fβ for each
β that satisfies F .

Let π be a permutation of the set of literals over variables in F (i.e., a
bijection on the set of literals) that respects negation. We extend π to various
semantic objects in the expected way:

– pseudo-Boolean Constraints π(
∑
i aili ≥ A) =

∑
i aiπ(li) ≥ A,

– to pseudo-Boolean formulas: π(C1 ∧ . . . ∧ Cn) = π(C1) ∧ . . . ∧ π(Cn),
– to linear terms: π(f)(

∑
i wi`i) =

∑
i wiπ(`i), and

– to assignments: π(α) = α ◦ π−1,

where the last, seemingly strange, condition guarantees for instance that α |= F
if and only if π(α) |= π(F ). We call π a (syntactic) symmetry2 of F if π(F ) = F
and a strong symmetry of (F, f) if additionally π(f) = f . In that case, α is an
optimal solution of (F, f) if and only if π(α) is.

3 Weak Symmetries

So far, in the literature, only symmetries of pseudo-Boolean optimization prob-
lems that preserve the formula F and objective function f have been considered.
However, we know that in many problems, symmetries of F show up that do
not preserve f . Take for instance a nurse scheduling problem where large sets of
nurses are interchangeable (given that some basic features, e.g. their degrees, are
equal), but their preferences are not (the soft constraints, e.g. whether they pre-
fer working during the weekends or night shifts). This gives rise to the following
definition.

Definition 1. Every symmetry ω of F is called a weak symmetry of the opti-
mization problem (F, f).

The strategy for breaking strong symmetries, as employed, e.g., by Aloul et al.
[1] is to add lex-leader constraints. That is, given an order on the variables,
for each detected3 strong symmetry σ, they add a set LLσ of pseudo-Boolean
constraints such that for each total assignment α, α can be extended to a model
of LLσ if and only if α is lexicographically smaller than (or equal to) σ(α). When
working with weak symmetries, this strategy is no longer applicable. Indeed, it
might be the case that σ(α) is lexicographically smaller than α, but also has
a worse objective than α. In that case, we do not want to derive constraints

1 Decision problems are a special case where F = 0.
2 More general definitions of symmetry exist, but all practical use cases of symmetry

detection and elimination use syntactic symmetries.
3 In practice, this is typically a set of generators of the group of strong symmetries.
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that exclude α. In the rest of this section, we will show in detail how to handle
weak symmetries. As a theoretic framework, we will use dominance relations as
studied in the field of constraint programming [10]. In the rest of this section, we
describe how to use this framework (in the context of PB formulas) to generate
breaking constraints for weak symmetries, how to detect these symmetries, and
how BreakID can be adapted to handle weak symmetries.

3.1 Dominance Relations

A dominance relation describes a pair of assignments, where one dominates the
other when that assignment is better than the other in some “suitable sense”.
That “suitable sense” can be comparing the objective of the problem, or it can
be something more complex. Similar to symmetries, these relations can be used
to prune the search tree. Dominance relations can be exploited to add formulas
that prevent the search from exploring non-dominant assignments, which we will
call Static Dominance Breaking.

Definition 2. A dominance relation � (for (F, f)) is a pre-order (a reflexive
and transitive binary relation) on the set of assignments (that assign values to
all variables in F and f) such that whenever α � β it holds that

– fα ≤ fβ
– if β |= F , then also α |= F .

I.e., the dominance relation should respect the problem specified by the couple
(F, f) in the sense that non-models of F cannot dominate models of F and
whenever one assignment dominates another, it should be at least as good as
the other assignment in terms of the objective function. As usual, our preorder
� induces a partial order ≺ (an irreflexive, transitive and asymmetric binary
relation) where α ≺ β if and only if α � β and β � α.

Example 1. Assume S is a set of strong symmetries of (F, f). In that case, the
relation �S defined as

{(σ(α), α) | σ ∈ 〈S〉 ∧ σ(α) ≤lex α}, (2)

where 〈S〉 denotes the group generated by S, is a dominance relation for (F, f).

We now define what we mean by a dominance breaking formula. As we will
see later in Proposition 1, soundness of a dominance breaking formula means
that we can safely add it to F , without changing the objective value. One ob-
servation regarding this definition is that in the context of SAT and PB solving,
contrary to the CP setting where our definition of dominance relation was bor-
rowed from, formulas to break symmetries or dominance relations will typically
contain fresh variables (sometimes also called extension variables). This is pre-
cisely why the definition that follows refers to extensions of an assignment α,
which are assignments α′ that agree with α wherever α is defined.
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Definition 3. Let � be a dominance relation. A set D of pseudo-Boolean con-
straints is called a sound dominance breaking formula for � if for each assign-
ment α that cannot be extended to a model of D, there exists some assignment
β with β ≺ α.

D is called complete if additionally whenever β ≺ α, α cannot be extended
to a model of D.

Rephrased, a sound dominance breaking formula is a formula that does
not eliminate �-minimal assignments; it is complete if it eliminates all non-
�-minimal assignments.

Proposition 1. If D is a sound dominance breaking formula, then at least one
optimal solution of (F, f) can be extended to an optimal solution of (F ∪D, f).
Hence,

(F, f) and (F ∪D, f)

have the same optimal objective value.

To see why this proposition holds, note that whenever α cannot be extended
to satisfy D, this means that there exists another assignment that is strictly
better. As a result, D only prunes assignments that are strictly dominated, and
it is safe to add D to the pseudo-Boolean formula F in the sense that we are
guaranteed not to prune all optimal solutions.

Example 2. If, as before, LLσ is a set of lex-leader constraints, then⋃
σ∈S

LLσ

is a sound dominance breaking formula for the dominance relation �S from
Example 1.

3.2 Weak Symmetries and Dominance Relations

The constraints in the previous example are precisely what Shatter [1] adds for
breaking strong symmetries. We now turn our attention to weak symmetries by
showing that they indeed also define a dominance relation and by constructing
a sound dominance breaking formula for them.

Proposition 2. Let W be a set of weak symmetries of (F, f). The relation �W
defined as (ω(α), α)

∣∣∣∣∣
ω ∈ 〈W〉
∧ fω(α) ≤ fα
∧ (fω(α) = fα ⇒ ω(α) ≤lex α)


is a dominance relation for (F, f).

Proof. Reflexivity follows since id (the identity function) is in 〈W〉 (it is its
neutral element). Transitivity holds since composition is internal in 〈W〉. ut
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Now we construct a dominance breaking formula for this dominance relation.
We will again assume that for each weak symmetry ω, we have PB formula LLω
such that α can be extended to a model of LLω if and only if α is lexicographically
smaller than (or equal to) ω(α). Slightly abusing notation, we will write

(f = ω(f))⇒ LLω

to denote a PB formula that is satisfied precisely by those assignments α for
which fα 6= ω(f)α or for which α |= LLω. We will later show how to construct
such a formula.

The idea of our dominance breaking formula is to discard candidate solutions
whose symmetric variant has a strictly better solution (according to the objec-
tive function), as well as candidate solutions whose symmetric variants have an
equally good objective function value, but that are lexicographically larger than
their symmetric counterpart.

Proposition 3. Let W be a set of weak symmetries of (F, f). For every ω in
W, the PB formula BFω defined as{

f ≤ ω(f)
(f = ω(f))⇒ LLω

}
(3)

forms a sound dominance breaking formula for �W .

Intuitively, the first constraint discards candidate solutions whose symmetric
variant has a strictly better solution and the second constraint discards candi-
date solutions whose symmetric variants have an equally good objective function
value, but that are lexicographically larger than their symmetric counterpart.

Proof (Proof of Proposition 3). We only have to show soundness. Hence, assume
α cannot be extended to an assignment that satisfies BFω. We claim that in
that case ω(α) ≺W α. The fact that ω(α) �W α is immediate: since α cannot
be extended to satisfy BFω, there are two possible situations:

– either α 6|= f ≤ ω(f), but in this case clearly (ω(α), α) ∈ �W ,
– or α |= f = ω(f), and α cannot be extended to satisfy LLω, but in this case
α 6≤lex ω(α) and hence ω(α) ≤lex α and again (ω(α), α) ∈ �W .

We also need to show that α 6�W ω(α). Assume towards contradiction that
α �W ω(α). In that case, by the definition of �W , there must be some ω′ ∈ W
such that

– ω′(ω(α)) = α,
– fω

′(ω(α)) ≤ fω(α), and
– fω

′(ω(α)) = fω(α) ⇒ ω′(ω(α)) ≤lex ω(α)

Hence we find that
fα = fω

′(ω(α)) ≤ fω(α) ≤ fα,
and fα = fω(α). But using the last item, we then find that α ≤lex ω(α), which
contradicts our earlier assumption that α cannot be extended to satisfy BFω. ut
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3.3 Encoding the Symmetry Breaking Formula

What remains to be explained is how the pseudo-Boolean encoding of (3) is
constructed. In order to explain this, we first recall that BreakID’s encoding
of LLω consists of the clauses (written here as pseudo-Boolean formulas)

y0 ≥ 1, (4a)

yj−1 + xij + ω(xij ) ≥ 1, 1 ≤ j ≤ n (4b)

yj + yj−1 ≥ 1, 1 ≤ j < n (4c)

yj + ω(xij ) + xij ≥ 1, 1 ≤ j < n (4d)

yj + yj−1 + xij ≥ 1, and 1 ≤ j < n (4e)

yj + yj−1 + ω(xij ) ≥ 1, 1 ≤ j < n (4f)

where {xi1 , . . . , xin} is the support of ω (i.e., all variables x such that ω(x) 6= x),
ordered so that ij ≤ ik if and only if j ≤ k. In this formula, each yj is a fresh
variable representing that up to xij , α and ω(α) are equal. Equation (4b) does
the actual breaking.

What is important to note in this formula is that all the actual breaking is
conditional on y0 being true (as specified in (4a)). Indeed, if we would instead
replace (4a) by y0 ≥ 1, then (4c) would imply that all y-variables are false, and
all constraints in this formula are trivially satisfied. In other words, if y0 is false,
adding constraints (4b–4f) has no impact on the models of F . Thus, we can
encode (3) as

f ≤ ω(f), (5a)

M · y0 + f − ω(f) ≥ 0, (5b)

M · y0 + ω(f)− f ≥ 1, and (5c)

Equations (4b–4f), (5d)

with M a sufficiently large integer. Here, constraints (5b) and (5c) encode that
y0 holds if and only if f ≥ ω(f) (in combination with the first constraint, this
means that f and ω(f) are in fact equal). To see this, note for instance that in
case y0 is false, (5b) is trivially satisfied. If y0 is true on the other hand, (5b)
expresses that f ≥ ω(f). Similarly, (5c) is trivially satisfied when y0 is true and
otherwise expresses that f 6≥ ω(f).

4 Extending BreakID

In this section, we discuss some implementation details of our extension of
BreakID (the symmetry breaker for SAT) into BreakIDPB (the symmetry
breaker for pseudo-Boolean optimization problems), with support for breaking
both weak and strong symmetries. In our implementation, we did not use arbi-
trary precision arithmetic; hence we only support integer coefficients of limited
size. Such a restriction is not uncommon in the pseudo-Boolean world: in the
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competitions, SMALLINT tracks (where the sum of all coefficients in a con-
straint does not surpass 220) are common.

First, we discuss how symmetries are detected in BreakIDPB, next we ex-
plain how BreakIDPB breaks weak and strong symmetries for pseudo-Boolean
optimization functions and finally we discuss the compatibility of these exten-
sions with the existing optimizations of BreakID.

4.1 Detecting (Weak) Symmetries

To detect symmetries, BreakIDPB first transforms the input problem into a
graph that represents a simplified version of its syntax tree. This transformation
guarantees a one-to-one correspondence between (syntactic) symmetries of the
problem at hand and automorphisms (i.e. symmetries) of the graph. Next, an
algorithm for searching graph automorphisms is employed [27]. This is a common
strategy for symmetry detection [20, 3].

Remark 1. The graph automorphism problem is not known to be solvable in
polynomial time nor is it NP-complete [29, 9]. The best currently accepted al-
gorithm [4] runs in quasi-polynomial time and was introduced in 2016 (and cor-
rected in 2017). For several specific classes of graphs, polynomial time algorithms
are known [24, 25]. In practice, several graph isomorphism solvers (including the
one that BreakID uses) exist that perform very well on inputs without partic-
ular combinatorial structure.

BreakID uses the following technique to generate a graph corresponding to
a given pseudo-Boolean problem:

– The nodes are organized as follows:
• for each literal `i the graph has a node with colour “1”. These nodes

represent the literals.
• For each term wi`i that occurs in constraint

∑
i wi`i ≥ n, there is a node

with colour “wi”. These nodes represent the terms. For the special case
where wi = 1, no new node is created since the literal equals the term
in this case.

• For each constraint
∑
i wi`i ≥ n, there is a node with colour “n” dis-

tinct from all term-colours, uniquely determined by the degree of the
constraint. These nodes represent the constraints.

– The edges are organized as follows:
• each literal is connected with its negation (i.e., there is an edge (x, x)).
• Each term wi`i is connected to `i.
• Each constraint node

∑
i wi`i ≥ n is connected to all terms wi`i (which

happens to be the node for `i in case wi = 1).

If the graph needs to contain the objective function f as well it is extended
as follows:

– An single extra node with a unique colour is added. This node represents
the objective. Moreover, for each term wi`i that occurs in the objective
f =

∑
i wi`i, there is a node with colour “wi”.
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F = C1 ∧ C2 ∧ C3 ∧ C4

f = 2x2 + 3x3

C1 = x1 + x2 + x3 ≥ 1

C2 = x3 + x1 + x2 ≥ 1

C3 = 2x1 + x2 + x3 ≥ 2

C4 = x1 + 2x2 + x3 ≥ 2

C1 C2

x1 x1 x2 x2 x3 x3

2x1 2x2 3x3

C3 C4 f

Fig. 1: Example of the graph constructed for a pseudo-Boolean optimization
problem (F, f). The different vertex shapes represent different colours. The
dashed edges and nodes are only required for detecting strong symmetries; in
the case of weak symmetry detection, they are simply omitted.

– The objective node is connected to all terms occurring in it. As before, each
term wi`i is connected to `i.

In case we wish to detect weak symmetries instead of strong symmetries,
the only modification needed is to remove the nodes that are only created for
representing the objective; in Fig. 1, this means: dropping all dashed nodes and
edges. Automorphisms of the resulting graph then correspond directly to weak
symmetries.

The graph we construct differs slightly, but in a non-fundamental way from
the graph used by Shatter [1]. The main difference is that we do not need
a special treatment for clauses compared to general PB constraints. Next, the
terms of (pseudo-Boolean) constraints are added differently.

Example 3. Fig. 1 contains an example of a pseudo-Boolean optimization prob-
lem and its corresponding graph. The optimization problem at hand has no
strong symmetries, but exhibits the weak symmetry (x1, x2)(x1, x2) (in disjoint
cycle notation).

4.2 Breaking Weak Symmetries

To break symmetries, BreakIDPB generates the formulas described in Equa-
tions (5a–5d). For strong symmetries, the standard symmetry breaking con-
straints of Equations (4a–4f) are used instead.

Next to this, our implementation also supports an alternative encoding of
the dominance breaking formula. The difference is that instead of using clauses,
we use general pseudo-Boolean constraints. As a consequence, fewer introduced
variables and fewer constraints are needed, at the cost of using larger (exponen-
tially growing) exponents. Preliminary experiments showed, however, that for
the current solvers, it does not make a big difference which encoding is used.
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Example 4 (Example 3, continued). The symmetry breaking formulas added for
the weak symmetry (x1, x2)(x1, x2) are the following:

2x1 − 2x2 ≥ 0, application of (5a) (6a)

− 2x1 + 2x2 − 2y0 ≥ −2, application of (5b) (6b)

2x1 − 2x2 + 3y0 ≥ 1, application of (5c) (6c)

1x1 − 1x2 − 1y0 ≥ −1. application of (4b)–(4f) (6d)

Constraints (6b) and (6c) encode that y0 holds if and only if 2x2+3x3 ≥ 2x1+3x3
(in short, if f ≥ ω(f)). Together with (6a) this means that f and ω(f) are in
fact equal. If y0 is true, (6b) states that f ≥ ω(f) and (6c) is trivially satisfied.
Similarly if y0 is false, (6b) is trivially satisfied. In this case (6c) expresses that
f 6≥ ω(f). The last constraint (6d) performs the actual symmetry breaking.

4.3 Compatibility with previous optimizations

Compared to Shatter, BreakID introduced three optimizations for static sym-
metry breaking for SAT problems. The three introduced optimizations are a
compact encoding of the lex-leader constraints, the exploitation of row inter-
changeability, and the generation of binary symmetry breaking clauses.

The first optimization is a compact encoding of lex-leader constraints. A more
compact encoding of lex-leader constraints reduces the overhead introduced by
adding the constraints to the problem. This more compact encoding is exactly
the encoding used for LLω in the dominance breaking formulas generated by
BreakIDPB as described in Equation 4.

The second optimization is the exploitation of row interchangeability. This is
a type of symmetry present when a subset of variables can be structured as a two-
dimensional matrix where each permutation of the rows induces a symmetry. If
such a structure of symmetries can be found, the group of symmetries that forms
this structure can be broken as a whole. This can also be applied to pseudo-
Boolean optimization problems since the implementation detects this kind of
symmetries based on symmetries detected in the generated graph. The detected
row-symmetries are then broken using the implemented symmetry breaking con-
straints. For problems where there are weak symmetries present in the structure,
dominance breaking formulas are used instead of symmetry breaking constraints
to break those symmetries.

Lastly, it is known that posting lex-leader constraints for all detected symme-
tries in a symmetry group can be infeasible. Hence, often lex-leader constraints
are only added for the generators of the symmetry group. BreakID introduced
an alternative; the generation of binary symmetry breaking clauses. These are
short symmetry breaking clauses, equivalent to posting symmetry breaking con-
straints in the compact encoding given in Equations 4b–4f with j = 1. These
very short clauses are then posted for a large set of symmetries in the symme-
try group. Since we know that the effect of the first constraints added is higher,
this is a cost-effective way to break symmetries. For pseudo-Boolean optimization
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Table 1: This table contains for each benchmark family the:

– total number of instances (#Inst.),
– number of instances that exhibit strong (#S) or weak (#W) symmetries,
– number of instances solved without symmetry breaking (#Solved plain),
– number of extra instances solved (+) or no longer solved (−) by enabling

certain symmetry breaking techniques:
• “Effect S” breaks strong symmetries (compared to no breaking)
• “Effect W” breaks weak symmetries (compared to “Effect S”)
• “Effect Opt. X” adds BreakID’s optimizations to configuration X

#Solved Effect S Effect Opt. S Effect W Effect Opt. W
#Inst. #S #W plain + - + - + - + -

RoundingSAT (without LP integration) with core-guided optimization

Knapsack 783 660 361 329 7 6 13 24 10 6 13 14

MiplibOpt 291 156 66 77 2 3 2 4 0 0 3 2

PbCompOpt 1600 982 574 967 14 15 11 40 10 14 12 23

Crafted 1514 1349 216 1165 30 208 48 174 11 37 47 62

RoundingSAT (without LP integration) with linear SAT–UNSAT search

Knapsack 783 660 361 336 13 3 8 20 5 6 13 15

MiplibOpt 291 171 76 75 2 2 2 4 1 0 3 4

PbCompOpt 1600 982 574 870 19 16 8 36 5 12 9 27

Crafted 1514 1349 216 344 105 59 153 48 12 31 507 44

RoundingSAT (with LP integration) with with core-guided optimization

Knapsack 783 660 361 710 12 33 16 54 7 66 22 31

MiplibOpt 291 168 75 96 5 2 3 8 0 2 4 5

PbCompOpt 1600 982 570 958 38 15 16 64 9 21 12 45

Crafted 1514 1343 216 849 80 332 100 67 20 54 359 36

problems, this option is available as well. The decision was made however to only
generate binary breaking clauses for strong symmetries of pseudo-Boolean prob-
lems. Since generating binary breaking clauses is done to prevent the overhead
of posting many long clauses, adding the longer dominance breaking constraints
for each weak symmetry used defeats the purpose.

5 Experiments

We implemented our techniques on top of BreakID bundled with Saucy [27]
for detection of graph automorphisms; our implementation is available online
at https://bitbucket.org/krr/breakid/branch/pb_optimization (commit
46cc058 was used for the experiments). As a back-end solver we used Round-
ingSAT [21] (commit b5de84db). The resources available to solve and break
instances were 16GB of memory and 2600s on an Intel(R) Xeon(R) Gold 6148
CPU running CentOS 7 with Linux kernel 3.10.

We tested our tool with three configurations of RoundingSAT as a back-
end:
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– two configurations compiled without LP integration:
• the default configuration, which uses core-guided optimization [19]
• and a configuration that uses linear SAT–UNSAT search.

– One configuration with LP integration using linear SAT–UNSAT search.

As benchmarks, we used all collections used in the work that introduced this
core-guided optimization in RoundingSAT:

– PbCompOpt: The linear fixed–precision pseudo-boolean optimization prob-
lems of the latest pseudo-Boolean competition [35]. (1600 instances)

– Knapsack: A set of knapsack instances from the paper Where Are the Hard
Knapsack Problems? [34] converted to PB. (783 instances)

– MiplibOpt: A collection of 0–1 ILP optimization instances from the bench-
mark sets MIPLIB 2, 3, 2003, 2010 and 2017 to PB. Some instances were
rescaled to make them suitable for fixed–precision solvers. [12] (291 in-
stances)

– Crafted: A set of crafted combinatorial benchmarks inspired by proof com-
plexity. [33] (1514 instances)

Cactus plots, showing how many instances could be solved up to optimality
within a certain time, for all BreakIDPB configurations and all benchmark
sets can be found in Figures 2, 3 and 4. Table 1 contains for each benchmark set
the number of instances, the number of those that exhibit strong and/or weak
symmetries, as well as for different configurations how many instances can be
solved by modifying one dimension (e.g., including weak symmetries) that could
not be solved before (and dually, how many can no longer be solved now).

When analyzing the results using core-guided search without LP integration
as a back-end (Fig. 2), the results are discouraging. The effect of adding symme-
try breaking is only very small, and on the Crafted benchmark set, symmetry
breaking even deteriorates performance. The same holds for adding weak sym-
metries and/or the optimizations BreakID implements compared to Shatter:
the effect on most benchmark sets is small, while on Crafted we only observe
negative effects.

On the other hand, when using linear SAT–UNSAT without LP integration
search as a back-end (Fig. 3), we notice the opposite effect: the impact of adding
symmetry breaking techniques is generally positive and on the Crafted bench-
mark set, BreakID’s optimizations and weak symmetry breaking reinforce one
another.

Interestingly, and seemingly contradictory, on this Crafted benchmark set,
adding weak symmetry breaking also has a positive effect on many instances
that do not exhibit weak symmetries. The explanation of why this is possible
relates to the graph used for detecting the symmetries. When performing weak
symmetry breaking, this graph contains no node for the objective function and is
generally simpler and smaller (see Fig. 1 for an example). Upon manual inspec-
tion of several instances, we noticed that with this simpler graph, it is easier for
BreakIDPB to find the underlying structure of the symmetry group (in par-
ticular, detecting row-interchangeability), and hence it makes it easier to break
the symmetry group completely.
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The same effect can be observed when using linear SAT–UNSAT search with
LP integration as a back-end (Fig. 4). Symmetry breaking has some inpact on
the number of solved instances and for the Crafted benchmarkt set we notice
once again that the optimizations reinforce weak symmetry breaking.

6 Conclusion

In this paper, we have studied static symmetry breaking for pseudo-Boolean op-
timization problems. We defined the novel notion of weak symmetries, which do
not necessarily respect the objective function. We developed the theory showing
how to statically break weak symmetries and implemented a tool that performs
static symmetry breaking for both strong and weak symmetries. Our experi-
mental validation shows that the effect of breaking (weak) symmetries depends
greatly on the type of solving algorithm used, where we generally observed neg-
ative effects with core-guided optimization and positive effects with linear SAT–
UNSAT search when not using LP integration. As a surprising side-effect of
this investigation, we discovered that even for optimization problems where all
symmetries are strong, doing the detection as if we are searching for weak sym-
metries can have a large positive impact on the breaking power. Developing a
clear understanding of when precisely this is the case, and potentially, how to
exploit this further, are challenges for future work. Another avenue for future
work is extending our tool with support for proof logging, which the standard
version of BreakID has recently obtained [8].

Acknowledgements We are grateful to Jakob Nordström for the interesting
discussions on pseudo-Boolean search and optimization, as well as for providing
details on the different configurations of RoundingSAT and where to find the
benchmarks used in this paper.
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