
TPLP: Page 1–14. © The Author(s), 2023. Published by Cambridge University Press 2023

doi:10.1017/xxxxx
1

Non-deterministic approximation operators: ultimate
operators, semi-equilibrium semantics and aggregates∗

HEYNINCK JESSE
Open Universiteit, the Netherlands

BOGAERTS BART
Vrij Universiteit Brussels, Belgium

submitted xx xx xxxx; revised xx xx xxxx; accepted xx xx xxxx

Abstract

Approximation fixpoint theory (AFT) is an abstract and general algebraic framework for studying the se-
mantics of non-monotonic logics. In recent work, AFT was generalized to non-deterministic operators,
i.e. operators whose range are sets of elements rather than single elements. In this paper, we make three
further contributions to non-deterministic AFT: (1) we define and study ultimate approximations of non-
deterministic operators, (2) we give an algebraic formulation of the semi-equilibrium semantics by Amen-
dola, et al., and (3) we generalize the characterisations of disjunctive logic programs to disjunctive logic
programs with aggregates.

KEYWORDS: Approximation fixpoint theory, Disjunctive logic programming, Semi-equilibrium semantics

1 Introduction

Knowledge representation and reasoning (KRR), by its very nature, is concerned with the study
of a wide variety of languages and formalisms. In view of this, unifying frameworks that allow
for the language-independent study of aspects of KRR is essential. One framework with strong
unifying potential is approximation fixpoint theory (AFT) (Denecker et al. 2000), a purely al-
gebraic theory which was shown to unify the semantics of, among others, logic programming
default logic and autoepistemic logic. The central objects of study of AFT are (approximating)
operators and their fixpoints. For logic programming for instance, it was shown that Fitting’s
three-valued immediate consequence operator is an approximating operator of Van Emden and
Kowalski’s two-valued immediate consequence operator and that all major semantics of (nor-
mal) logic programming can be derived directly from this approximating operator. Moreover,
this observation does not only hold for logic programming: also for a wide variety of other do-
mains, it is straightforward how to derive an approximating operator, and the major semantics
can be recovered from that approximator using purely algebraic means (an overview is given
by Heyninck et al. (2022)). This has in turn inspired others to define the semantics of non-
monotonic formalisms directly using AFT (Bogaerts 2019), putting AFT forward not only as a

∗ This work was partially supported by Fonds Wetenschappelijk Onderzoek – Vlaanderen (project G0B2221N) and the
Flemish Government (Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen).

2 Cambridge Author

framework to study existing semantics, but also as a framework to define them. The advantage is
that AFT-based semantics are guaranteed to follow well-established principles. such as ground-
edness (Bogaerts 2015). Moreover, it is often easier to define a semantic operator, than to define
the semantics from scratch.

Recently, AFT was generalized to also capture non-deterministic operators (Heyninck et al.
2022) which allow for different options or choices in their output. A prime example of the occur-
rence of non-determinism in KRR is disjunctive logic programming, and it was indeed shown that
many semantics of disjunctive logic programming (specifically the weakly supported, (partial)
stable, and well-founded semantics (Alcântara et al. 2005)) are captured by non-deterministic
AFT. In this paper, we make further contributions to the study of non-deterministic AFT, with a
particular emphasis on disjunctive logic programs. On the one hand, (in Section 3) we deepen
the theory of non-deterministics AFT by investigating so-called ultimate semantics. For standard
AFT, Denecker et al. (2002) have shown that with every two-valued operator, we can uniquely as-
sociate a most-precise approximator called the ultimate approximator. When defining semantics
of new formalisms, this even takes the need of defining an approximator away, since it suffices to
define an exact operator and its ultimate approximator comes for free.1 Our first contribution is
to show how ultimate approximations can be obtained for non-deterministic AFT, which we later
illustrate using disjunctive logic programs with aggregates. This means we give the first con-
structive method for obtaining non-deterministic approximation operators. On the other hand,
we also apply non-deterministic AFT to two areas that have thus far been out of reach of AFT.
In Section 4, we use it to define an algebraic generalisation of the semi-equilibrium semantics, a
semantics originally formulated for disjunctive logic programs (Amendola et al. 2016) but now,
thanks to our results, available to any operator-based semantics. In Section 5, we apply the theory
of non-deterministic AFT to disjunctive logic programs with aggregates in the body, giving rise
to a family of semantics for such programs.

2 Background and Preliminaries

In this section, we recall disjunctive logic programming (Sec. 2.1), approximation fixpoint theory
for deterministic operators (Sec. 2.2) and non-deterministic operators (Sec. 2.3).

2.1 Disjunctive Logic Programming

In what follows we consider a propositional2 language L, whose atomic formulas are denoted by
p, q, r (possibly indexed), and that contains the propositional constants T (representing truth), F
(falsity), U (unknown), and C (contradictory information). The connectives in L include nega-
tion ¬, conjunction ∧, disjunction ∨, and implication←. Formulas are denoted by ϕ, ψ, δ (again,
possibly indexed). Logic programs in L may be divided to different kinds as follows: a (propo-
sitional) disjunctive logic program P in L (a dlp in short) is a finite set of rules of the form∨n

i=1 pi ← ψ, where the head
∨n

i=1 pi is a non-empty disjunction of atoms, and the body ψ is
a formula not containing←. A rule is called normal (nlp), if its body is a conjunction of literals
(i.e., atomic formulas or negated atoms), and its head is atomic. A rule is disjunctively normal

1 However, ultimate semantics often come at the cost of increased computational complexity compared to their standard
counterparts.

2 For simplicity we restrict ourselves to the propositional case.

Non-deterministic AFT 3

if its body is a conjunction of literals and its head is a non-empty disjunction of atoms. We will
use these denominations for programs if all rules in the program satisfy the denomination, e.g. a
program is normal if all its rules are normal. The set of atoms occurring in P is denoted AP .

The semantics of dlps are given in terms of four-valued interpretations. A four-valued inter-
pretation of a program P is a pair (x, y), where x ⊆ AP is the set of the atoms that are assigned
a value in {T,C} and y ⊆ AP is the set of atoms assigned a value in {T,U}. We define−T = F,
−F = T and X = −X for X = C,U. Truth assignments to complex formulas are as follows:

• (x, y)(p) =

T if p ∈ x and p ∈ y,
U if p ̸∈ x and p ∈ y,
F if p ̸∈ x and p ̸∈ y,
C if p ∈ x and p ̸∈ y.

• (x, y)(¬ϕ) = −(x, y)(ϕ),
• (x, y)(ψ∧ϕ) = lub≤t{(x, y)(ϕ), (x, y)(ψ)},
• (x, y)(ψ∨ϕ) = glb≤t

{(x, y)(ϕ), (x, y)(ψ)}.

A four-valued interpretation of the form (x, x) may be associated with a two-valued (or total)
interpretation x. (x, y) is a three-valued (or consistent) interpretation, if x ⊆ y. Interpretations
are compared by two order relations which form a pointwise extension of the structure FOUR
consisting of T,F,C and U with U <i F,T <i C and F <t C,U <t T. The pointwise extension
of these orders corresponds to the information order, which is equivalently defined as (x, y) ≤i

(w, z) iff x ⊆ w and z ⊆ y, and the truth order, where (x, y) ≤t (w, z) iff x ⊆ w and y ⊆ z.
The immediate consequence operator for normal programs (van Emden and Kowalski 1976)

is extended to dlp’s as follows:

Definition 1 (Immediate Consquence operator for dlp’s)
Given a dlp P and a two-valued interpretation x, we define: (1) HDP(x) = {∆ |

∨
∆ ← ψ ∈

P and (x, x)(ψ) = T}; and (2) ICP(x) = {y ⊆
⋃
HDP(x) | ∀∆ ∈ HDP(x), y ∩∆ ̸= ∅}.

Thus, ICP(x) consists of sets of atoms that occur in activated rule heads, each set contains at
least one representative from every disjuncts of a rule in P whose body is x-satisfied. Denoting
by ℘(S) the powerset of S, ICP is an operator on the lattice ⟨℘(AP),⊆⟩.3

Given a dlp P a consistent interpretation (x, y) is a (three–valued) model of P , if for every
ϕ← ψ ∈ P , (x, y)(ϕ) ≥t (x, y)(ψ). The GL-transformation P

(x,y) of a disjunctively normal dlp
P with respect to a consistent (x, y), is the positive program obtained by replacing in every rule
in P of the form p1 ∨ . . . ∨ pn ←

∧m
i=1 qi ∧

∧n
j=1 ¬rj a negated literal ¬ri (1 ≤ i ≤ k) by

(x, y)(¬ri). (x, y) is a three-valued stable model of P iff it is a ≤t-minimal model of P
(x,y) . 4

2.2 Approximation Fixpoint Theory

We now recall basic notions from approximation fixpoint theory (AFT), as described by De-
necker, Marek and Truszczyński (2000). We restrict ourselves here to the necessary formal
details, and refer to more detailed introductions by Denecker, Marek and Truszczyński (2000)

3 The operator ICP is a generalization of the immediate consequence operator from (Fernández and Minker 1995,
Definition 3.3), where the minimal sets of atoms in ICP (x) are considered. However, this requirement of minimality
is neither necessary nor desirable in the consequence operator (Heyninck et al. 2022).

4 An overview of other semantics for dlp’s can be found in previous work on non-deterministic AFT (Heyninck et al.
2022).

4 Cambridge Author

and Bogaerts (2015) for more informal details. AFT introduces constructive techniques for ap-
proximating the fixpoints of an operator O over a lattice L = ⟨L,≤⟩.5 Approximations are
pairs of elements (x, y). Thus, given a lattice L = ⟨L,≤⟩, the induced bilattice is the structure
L2 = ⟨L2,≤i,≤t⟩, in which L2 = L×L, and for every x1, y1, x2, y2 ∈ L, (x1, y1) ≤i (x2, y2)

if x1 ≤ x2 and y1 ≥ y2, and (x1, y1) ≤t (x2, y2) if x1 ≤ x2 and y1 ≤ y2.6

An approximating operator O : L2 → L2 of an operator O : L → L is an operator that maps
every approximation (x, y) of an element z to an approximation (x′, y′) of another elementO(z),
thus approximating the behavior of the approximated operator O. In more details, an operator
O : L2 → L2 is ≤i-monotonic, if when (x1, y1) ≤i (x2, y2), also O(x1, y1) ≤i O(x2, y2); O is
approximating, if it is ≤i-monotonic and for any x ∈ L,Ol(x, x) = Ou(x, x).7 O approximates
of O : L → L, if it is ≤i-monotonic and O(x, x) = (O(x), O(x)) (for every x ∈ L). Finally,
for a complete lattice L, let O : L2 → L2 be an approximating operator. We denote: Ol(·, y) =
λx.Ol(x, y) and similarly for Ou. The stable operator for O is then defined as S(O)(x, y) =

(lfp(Ol(., y)), lfp(Ou(x, .)), where lfp(O) denotes the least fixpoint of an operator O.
Approximating operators induce a family of fixpoint semantics. Given a complete lattice L =

⟨L,≤⟩ and an approximating operator O : L2 → L2, (x, y) is a Kripke-Kleene fixpoint of O if
(x, y) = lfp≤i

(O(x, y)); (x, y) is a three-valued stable fixpoint of O if (x, y) = S(O)(x, y);
(x, y) is a two-valued stable fixpoints of O if x = y and (x, x) = S(O)(x, x); (x, y) is the
well-founded fixpoint of O if it is the ≤i-minimal (three-valued) stable fixpoint of O.

2.3 Non-deterministic approximation fixpoint theory

AFT was generalized to non-deterministic operators, i.e. operators which map elements of a lat-
tice to a set of elements of that lattice (like the operator ICP for DLPs) by Heyninck et al. (2022).
We recall the necessary details, referring to the original paper for more details and explanations.

A non-deterministic operator on L is a function O : L → ℘(L) \ {∅}. For example, the
operator ICP from Definition 1 is a non-deterministic operator on the lattice ⟨℘(AP),⊆⟩.

As the ranges of non-deterministic operators are sets of lattice elements, one needs a way to
compare them, such as the Smyth order and the Hoare order. Let L = ⟨L,≤⟩ be a lattice, and
let X,Y ∈ ℘(L). Then: X ⪯S

L Y if for every y ∈ Y there is an x ∈ X such that x ≤ y; and
X ⪯H

L Y if for every x ∈ X there is a y ∈ Y such that x ≤ y. Given some X1, X2, Y1, Y2 ⊆ L,
X1 × Y1 ⪯A

i X2 × Y2 iff X1 ⪯S
L X2 and Y2 ⪯H

L Y1. Let L = ⟨L,≤⟩ be a lattice. Given an
operator O : L2 → L2, we denote by Ol the operator defined by Ol(x, y) = O(x, y)1, and
similarly for Ou(x, y) = O(x, y)2. An operator O : L2 → ℘(L)\∅ × ℘(L)\∅ is called a non-
deterministic approximating operator (ndao, for short), if it is ⪯A

i -monotonic (i.e. (x1, y1) ≤i

(x2, y2) implies O(x1, y1) ⪯A
i O(x2, y2)), and is exact (i.e., for every x ∈ L, O(x, x) =

Ol(x, x)×Ol(x, x)). We restrict ourselves to ndaos ranging over consistent pairs (x, y).

5 Recall that a lattice is a partially ordered set in which every pair of elements has a least upper bound and greatest lower
bound denoted by ⊔ and ⊓, respectively. If every set of elements has a least upper bound and greatest lower bound,
we call the lattice complete.

6 Note that we use small letters to denote elements of lattice, capital letters to denote sets of elements, and capital
calligraphic letters to denote sets of sets of elements.

7 In some papers (e.g., Denecker et al. (2000)), an approximation operator is defined as a symmetric ≤i-monotonic
operator, i.e. a ≤i-monotonic operator s.t. for every x, y ∈ L, O(x, y) = (Ol(x, y),Ol(y, x)) for some Ol : L2 →
L. However, the weaker condition we take here (taken from Denecker et al. (2002)) is actually sufficient for most
results on AFT.

Non-deterministic AFT 5

We finally define the stable operator (given an ndao O) as follows. The complete lower stable
operator is defined by (for any y ∈ L) C(Ol)(y) = {x ∈ L | x ∈ Ol(x, y) and ¬∃x′ < x :

x′ ∈ Ol(x
′, y)}. The complete upper stable operator is defined by (for any x ∈ L) C(Ou)(x) =

{y ∈ L | y ∈ Ou(x, y) and ¬∃y′ < y : y′ ∈ Ou(x, y
′)}. The stable operator: S(O)(x, y) =

C(Ol)(y)× C(Ou)(x). (x, y) is a stable fixpoint of O if (x, y) ∈ S(O)(x, y).8
Other semantics, e.g. the well-founded state and the Kripke-Kleene fixpoints and state are

defined by Heyninck et al (2022) and can be immediately obtained once an ndao is formulated.

Example 1
An example of an ndao approximating ICP (Definition 1) is defined as follows (given a dlp
P and an interpretation (x, y)): HDl

P(x, y) = {∆ |
∨
∆ ← ϕ ∈ P, (x, y)(ϕ) ≥t C},

HDu
P(x, y) = {∆ |

∨
∆ ← ϕ ∈ P, (x, y)(ϕ) ≥t U}, IC†P(x, y) = {x1 ⊆

⋃
HD†

P(x, y) |
∀∆ ∈ HD†

P(x, y), x1 ∩∆ ̸= ∅} (for † ∈ {l, u}), and ICP(x, y) = (IClP(x, y), IC
u
P(x, y)).

Consider the following dlp: P = {p ∨ q ← ¬q}. The operator IClP behaves as follows:

• For any interpretation (x, y) for which q ∈ x,HDl
P(x, y) = ∅ and thus IClP(x, y) = {∅}.

• For any interpretation (x, y) for which q ̸∈ x, HDl
P(x, y) = {{p, q}} and thus IClP(x, y) =

{{p}, {q}, {p, q}}.

Since IClP(x, y) = IC
u
P(y, x) (see (Heyninck et al. 2022, Lemma 1)), ICP behaves as follows:

• For any (x, y) with q ̸∈ x and q ̸∈ y, ICP(x, y) = {{p}, {q}, {p, q}} × {{p}, {q}, {p, q}},
• For any (x, y) with q ̸∈ x and q ∈ y, ICP(x, y) = {∅} × {{{p}, {q}, {p, q}},
• For any (x, y) with q ∈ x and q ̸∈ y, ICP(x, y) = {{p}, {q}, {p, q}} × {∅}, and
• For any (x, y) with q ∈ x and q ∈ y, ICP(x, y) = {(∅, ∅)}.

We see e.g. that C(IClP)({p}) = {{p}, {q}} and thus ({p}, {p}) is a stable fixpoint of ICP .
(∅, {q}) is the second stable fixpoint of ICP . (∅, {p, q}) is a fixpoint of ICP that is not stable.

In general, (total) stable fixpoints of ICP correspond to (total) stable models of P , and weakly
supported models of ICP correspond to fixpoints of ICP . (Heyninck et al. 2022).

3 Ultimate Operators

Approximation fixpoint theory assumes an approximation operator, but does not specify how to
construct it. In the literature, one finds various ways to construct a deterministic approximation
operator O that approximates a deterministic operator O. Of particular interest is the ultimate
operator (Denecker et al. 2002), which is the most precise approximation operator. In this section,
we show that non-deterministic approximation fixpoint theory admits an ultimate operator, which
is, however, different from the ultimate operator for deterministic AFT.

We first recall that for a deterministic operator O : L → L, the ultimate approximation Ou is
defined by Denecker et al. (2002) as follows:9

ODMTd

(x, y) = (⊓O[x, y],⊔O[x, y])10

8 Notice that we slightly abuse notation and write (x, y) ∈ S(O)(x, y) to abbreviate x ∈ (S(O)(x, y))1 and y ∈
(S(O)(x, y))2, i.e. x is a lower bound generated by S(O)(x, y) and y is an upper bound generated by S(O)(x, y).

9 We use the abbreviation DMTd for deterministic Denecker, Marek and Truszczyński to denote this operator, as to not
overburden the use of ICU

P . Indeed, we will later see that the ultimate operator for non-disjunctive logic programs
generalizes to an ndao that is different from the ultimate non-deterministic operator ICU

P .
10 Recall that denotes ⊓X the greatest lower bound of X and ⊔X denotes the least upper bound of X .

6 Cambridge Author

Where O[x, y] := {O(z) | x ≤ z ≤ y}. This operator is shown to be the most precise opera-
tor approximating an operator O (Denecker et al. 2002). In more detail, for any (deterministic)
approximation operatorO approximatingO, and any consistent (x, y),O(x, y) <i ODMTd

(x, y).
The ultimate approximator for ICP for non-disjunctive logic programs P looks as follows:

Definition 2
Given a normal logic program P , we let: ICDMTd

P (x, y) = (ICDMTd,l
P (x, y), ICDMd,u

P (x, y))

with: ICDMTd,l
P (x, y) =

⋂
x⊆z⊆y{α | α ← ϕ ∈ P and z(ϕ) = T}, and ICDMTd,u

P (x, y) =⋃
x⊆z⊆y{α | α← ϕ ∈ P and z(ϕ) = T}.

In this section, we define the ultimate semantics for the non-deterministic operators. In more
detail, we constructively define an approximation operator that is most precise and has non-empty
upper and lower bounds. Its construction is based on the following idea: we are looking for an
operator OU s.t. for any ndao O that approximates O, Ol(x, y) ⪯S

L OU
l (x, y) (and similarly for

the upper bound). As we know that Ol(x, y) ⪯S
L O(z) for any x ≤ z ≤ y, we can obtain OU

l by
simply gathering all applications of O to elements of the interval [x, y] i.e. we define:

OU
l (x, y) =

⋃
x≤z≤y

O(z)

The upper bound can be defined in the same way as the lower bound. Altogether, we obtain:

OU (x, y) = OU
l (x, y)×OU

l (x, y)

The following example illustrates this definition for normal logic programs:

Example 2
Let P = {q ← ¬p; p ← p}. Then ICP(∅) = ICP({q}) = {q} and ICP({p}) =

ICP({p, q}) = {p}. Therefore, ICUP(∅, {p, q}) = {{p}, {q}} × {{p}, {q}} whereas
ICUP(∅, {q}) = {{q}} × {{q}}.

The ultimate approximation is the most precise ndao approximating the operator O:

Proposition 1
Let a non-deterministic operator O over a lattice ⟨L,≤⟩ be given. Then OU is an ndao that
approximates O. Furthermore, for any ndao O that approximates O and for every x, y ∈ L s.t.
x ≤ y, it holds that O(x, y) ⪯A

i OU (x, y).

In conclusion, non-deterministic AFT admits, just like deterministic AFT, an ultimate approx-
imation. However, as we will see in the rest of this section, the ultimate non-deterministic ap-
proximation operator OU does not generalize the deterministic ultimate approximation operator
defined by Denecker et al (2002). In more detail, we compare the non-deterministic ultimate
operator ICUP with the deterministic ultimate ICDMT

P from Definition 2. Somewhat surprisingly,
even when looking at normal logic programs, the operator ICDMTd

P does not coincide with the
ultimate ndao ICUP (and thus ICDMTd

P is not the most precise ndao, even for non-disjunctive
programs). The intuitive reason is that the additional expressivity of non-deterministic opera-
tors, which are not restricted to single lower and upper bounds in their outputs, allows to more
precisely capture what is derivable in the “input interval” (x, y).

Example 3 (Example 2 continued)

Non-deterministic AFT 7

Consider again P = {q ← ¬p; p ← p}. Applying the DMTd-operator gives:
ICDMTd

P (∅, {p, q}) = (∅, {p, q}). Intuitively, the ultimate semantics ICUP(∅, {p, q}) =

{{p}, {q}} × {{p}, {q}} gives us the extra information that we will always either derive p or q,
which is information a deterministic approximator can simply not capture. Such a “choice” is not
expressible within a single interval, hence the deterministic ultimate approximation is (∅, {p, q}).
This example also illustrates the fact that, when applying the ultimate ndao-construction to (non-
constant) deterministic operators O, OU might be a non-deterministic approximation operator.

However, one can still generalize the operator ICDMTd

P to disjunctive logic programs. We first
generalize the idea behind ICDMTd,l

P to an operator gathering the heads of rules that are true in

every interpretation z in the interval [x, y]. Similarly, ICDMTd,u
P is generalized by gathering the

heads of rules with bodies that are true in at least one interpretation in [x, y]:

HDDMT,l
P (x, y) =

⋂
x⊆z⊆y

HDP(z) and HDDMT,u
P (x, y) =

⋃
x⊆z⊆y

HDP(z)}.

The upper and lower immediate consequences operator are then straightforwardly defined, that
is: by taking all interpretations that only contain atoms in HDDMT,†

P (x, y) and contain at least
one member of every head ∆ ∈ HDDMT,†

P (x, y) (for † ∈ {u, l}):

ICDMT,†
P (x, y) = {z ⊆

⋃
HDDMT,†

P (x, y) | ∀∆ ∈ HDDMT,†
P (x, y) ̸= ∅ : z ∩∆ ̸= ∅}.

Finally, the DMT-ndao is defined as: ICDMT
P (x, y) = ICDMT,l

P (x, y)×ICDMT,u
P (x, y). We have:

Proposition 2 ((Heyninck et al. 2022, Proposition 3))
For any disjunctive logic program P , ICDMT

P is an ndao that approximates ICP .

Notice that for a non-disjunctive program P ,
⋃
ICDMT,†

P (x, y) =
⋃
HDDMT,†

P (x, y) =

ICDMTd,†
P (x, y) (for † ∈ {u, l}), i.e. the non-deterministic version reduces to the determin-

istic version when looking at non-disjunctive programs. Notice furthermore the operators
HDDMT,l

P (x, y) and HDDMT,u
P (x, y) are only defined for consistent interpretations (x, y). We

leave the extension of this operator to inconsistent interpretations for future work.

Example 4
Consider again the program P = {p ∨ q ← ¬q} from Example 1. ICDMT,l

P behaves as follows:

• If q ∈ y thenHDDMT,l
P (x, y) = ∅ and thus ICDMT,l

P (x, y) = ∅.
• If q ̸∈ y thenHDDMT,l

P (x, y) = {{p, q}} and ICDMT,l
P (x, y) = {{p}, {q}, {p, q}}.

ICDMT,u
P behaves as follows:

• If q ∈ x thenHDDMT,u
P (x, y) = ∅ and thus ICDMT,u

P (x, y) = ∅.
• If q ̸∈ x thenHDDMT,u

P (x, y) = {{p, q}} and thus ICDMT,u
P (x, y) = {{p}, {q}, {p, q}}.

Thus e.g. ICDMT
P (∅, {p, q}) = {∅} × {{p}, {q}, {p, q}} and ICDMT

P ({p}, {p}) =

{{p}, {q}, {p, q}}×{{p}, {q}, {p, q}}. We thus see that ({p}, {p}) is a stable fixpoint of ICDMT
P .

A slightly extended programP = {q ← ¬q; p∨q ← q} shows some particular but unavoidable
behavior of this operator. ICDMT,l

P (∅, {q}) = {∅} as HDP(∅) = {{q}} and HDP({q}) =

{{p, q}}. Note that the lower bound for is not the stronger {p}. This would result in a loss of
⪯A

i -monotonicity, as the lower bound {{q}} for the less informative (∅, {q}) would be ⪯S
L-

incomparable to the lower bound {{p}, {q}, {p, q}} of the more informative ({q}, {q}).

8 Cambridge Author

We have shown in this section that non-deterministic AFT admits an ultimate operator, thus
providing a way to construct an ndao based on a non-deterministic operator. We have also shown
that the ultimate ndao diverges from the ultimate operator for deterministic AFT, but that this
deterministic ultimate operator can be generalized to disjunctive logic programs. Both operators
will be used in Section 5 to define semantics for DLP’s with aggregates.

4 Semi-Equilibrium Semantics

To further extend the reach of non-deterministic AFT, we generalize yet another semantics for
dlp’s, namely the semi-equilibrium semantics (Amendola et al. 2016). The semi-equilibrium se-
mantics is a semantics for disjunctive logic programs that has been studied for disjunctively
normal logic programs. This semantics is a three-valued semantics that fulfills the following
properties deemed desirable by Amendola et al. (2016): (1) Every (total) answer set of P cor-
responds to a semi-equilibrium model; (2) If P has a (total) answer set, then all of its semi-
equilibrium models are (total) answer sets; (3) If P has a classical model, then P has a semi-
equilibrium model. We notice that these conditions can be seen as a view on approximation of
the total stable interpretations alternative to the well-founded semantics. We do not aim to have
the last word on which semantics is the most intuitive or desirable. Instead, we will show here
that semi-equilibrium models can be represented algebraically, and thus can be captured within
approximation fixpoint theory. This leaves the choice of exact semantics to the user once an ndao
has been defined, and allows the use of the semi-equilibrium semantics for formalisms other than
nlps, such as disjunctive logic programs with aggregates (see below) or conditional ADFs.

Semi-equilibrium models are based on the logic of here-and-there (Pearce 2006). An HT-
interpretation is a pair (x, y) where x ⊆ y (i.e. a consistent pair in AFT-terminology). Satisfac-
tion of a formula ϕ, denoted |=HT, is defined recursively as follows:

• (x, y) |=HT α if α ∈ x for any α ∈ AP ,
• (x, y) |=HT ¬ϕ if (y, y)(ϕ) ̸= T, and (x, y) ̸|=HT ⊥,
• (x, y) |=HT ϕ ∧ [∨]ψ if (x, y) |=HT ϕ and [or] (x, y) |=HT ψ,
• (x, y) |=HT ϕ→ ψ if (a) (x, y) ̸|=HT ϕ or (x, y) |=HT ψ, and (b) (y, y)(¬ϕ ∨ ψ) = T.

The HT-models of P are defined as HT(P) = {(x, y) | ∀ψ ← ϕ ∈ P : (x, y) |=HT ϕ→ ψ}.
Semi-equilibrium models are a special class of HT-models. They are obtained by perform-

ing two minimization steps on the set of HT-models of a program. The first step is obtained by
minimizing w.r.t. ≤t.11 The second step is obtained by selecting the maximal canonical mod-
els. For this, the gap of an interpretation is defined as gap(x, y) = y \ x,12 and, for any set
of interpretations X, the maximally canonical interpretations are mc(X) = {(x, y) ∈ X |
̸ ∃(w, z) ∈ X : gap(x, y) ⊃ gap(w, z)}. The semi-equilibrium models of P are then defined as:
SEQ(P) = mc (min≤t

(HT(P)).

Example 5

11 Amendola et al. (2016) proceeds as follows. First, HTκ(P) = {x ∪ {Kα | α ∈ y}} is constructed, and then the
⊆-minimal sets in HTκ(P) are selected. It is straightforward to see that this is equivalent to minimizing the original
interpretations w.r.t. ≤t.

12 Again, Amendola et al. (2016) proceeds in a slightly more convoluted way by defining gap(I) = {Kα ∈ I | α ̸∈ I}
for any I ∈ HTκ(P).

Non-deterministic AFT 9

We illustrate these semantics with the program P = {p ← ¬p, s ∨ q ← ¬s, s ∨ q ← ¬q}.
Then HT(P) = {(x, y) | {p} ⊆ y ⊆ {p, q, s}, x ⊆ y, {q, s} ∩ y ̸= ∅}. Furthermore,
min≤t

(HT(P)) = {(∅, {p, q, s}), ({q}, {q, p}), ({s}, {s, p})}. As gap(∅, {p, q, s}) = {p, q, s}
and gap({q}, {q, p}) = gap({s}, {s, p}) = {p}, SEQ = {({q}, {q, p}), ({s}, {s, p})}.

Before we capture the ideas behind this semantics algebraically, we look a bit deeper into the
relationship between HT(P)-models and the classical notion of three-valued models of a pro-
gram (see Section 2.1). We first observe that HT-models of a program are a proper superset of
the three-valued models of a program:

Proposition 3
Let a disjunctively normal logic program P and a consistent intepretation (x, y) be given. Then
if (x, y) is a model of P , it is an HT-model of P . However, not every HT-model is a model of P .

We now define the concept of a HT-pair algebraically, inspired by Truszczyński (2006):

Definition 3
Given an ndao O approximating a non-determinstic operator O, a pair (x, y) is a HT-pair (de-
noted (x, y) ∈ HT(O)) if the following three conditions are satisfied: (1) x ≤ y, (2) O(y) ⪯S

L y,
and (3) Ol(x, y) ⪯S

L x.

This simple definition faithfully transposes the ideas behind HT-models to an algebraic con-
text. Indeed, applying it to ICP gives use exactly the HT-models of P:

Proposition 4
Let some normal disjunctive logic program P be given. Then: HT(P) = HT(ICP).

We now show that exact ≤t-minimal HT-models of O are stable interpretations of O in our
algebraic setting. The opposite direction holds as well: total stable fixpoints are≤t-minimal HT-
pairs of O. In fact, every total fixpoint of O is a HT-pair of O. We assume that O is upwards
coherent, i.e. for every x, y ∈ L,Ol(x, y) ⪯S

L Ou(x, y). In the appendix of the full version of this
article (Heyninck and Bogaerts 2023), we provide more details on upwards coherent operators.
Notice that all ndaos in this paper are upwards coherent.

Proposition 5
Given an upwards coherent ndao O, (1) if (x, x) ∈ O(x, x) then (x, x) ∈ HT(O); and (2)
(x, x) ∈ min≤t

(HT(O)) iff (x, x) ∈ S(O)(x, x).

The second concept that we have to generalize to an algebraic setting is that of maximal
canonical models. Recall that gap(x, y) consists of the atoms which are neither true nor false,
i.e. it can be used as a measure of the informativeness or precision of a pair. For the algebraic
generalization of this idea, it is useful to assume that the lattice under consideration admits a
difference for every pair of elements.13 In more detail, z ∈ L is the difference of y w.r.t. x
if z ⊓ x = ⊥ and x ⊔ y = x ⊔ z. If the difference is unique we denote it by x ⊘ y. As an
example, note that any Boolean lattice admits a unique difference for every pair of elements. We
can then define mc(X) = argmin(x,y)∈X{y ⊘ x}. This allows us to algebraically formulate the

13 If a lattice does not admit a difference for some elements, one cannot characterise the semi-equilibrium semantics
exactly, but can still obtain an approximate characterisation. We detail this in the appendix of the full version of this
article (Heyninck and Bogaerts 2023).

10 Cambridge Author

semi-equilibrium models of an ndao O as

SEQ(O) = mc

(
min
≤t

(HT(O))
)

The properties mentioned at the start of this section are preserved, and this definition generalizes
the semi-equilibrium models for disjunctive logic programs by Amendola et al. (2016):

Proposition 6
Let an upwards coherent ndao O over a finite lattice be given s.t. every pair of elements
admits a unique difference. Then SEQ(O) ̸= ∅. Furthermore, if there is some (x, x) ∈
mc(min≤t(HT(O))) then SEQ(O) = {(x, x) ∈ L2 | (x, x) ∈ S(O)(x, x)}.

Corollary 1
Let a disjunctively normal logic program P be given. Then SEQ(ICP) = SEQ(P).

In this section, we have shown that semi-equilibrium models can be characterized alge-
braically. This means semi-equilibrium models can now be obtained for other ndao’s (e.g. those
from Section 5, as illustrated in ??), thus greatly enlarging the reach of these semantics.

We end this section by making a short, informal comparison between the semi-equilibrium
models and the well-founded state for ndaos (Heyninck et al. 2022). Both constructions have a
similar goal: namely, approximate the (potentially non-existent) total stable interpretations. In
the case of the semi-equilibrium models, the set of semi-equilibrium models coincides with the
total stable interpretations if they exist, whereas the well-founded state approximates any stable
interpretation (and thus in particular the total stable interpretations), but might not coincide with
them. When it comes to existence, we have shown here that the semi-equilibrium models exist
for any ndao, just like the well-founded state. Thus, the well-founded state and semi-equilibrium
models seem to formalize two different notions of approximation. Which notion is most suitable
is hard to decide in abstracto but will depend on the exact application context.

5 Application to DLPs with Aggregates

We apply non-deterministic AFT to disjunctive logic programs with aggregates by studying three
ndaos: the ultimate, DMT and the trivial operators. We show the latter two generalize the ultimate
semantics (Pelov et al. 2007) respectively the semantics by Gelfond and Zhang (2019).

5.1 Preliminaries on aggregates

We survey the necessary preliminaries on aggregates and the corresponding programs, restricting
ourselves to propositional aggregates and leaving aggregates with variables for future work.

A set term S is a set of pairs of the form [t : Conj] with t a list of constants and Conj a ground
conjunction of standard atoms For example, [1 : p; 2 : q;−1 : r] intuitively assigns 1 to p, 2 to
q and −1 to r. An aggregate function is of the form f(S) where S is a set term, and f is an
aggregate function symbol (e.g. #Sum, #Count or #Max). An aggregate atom is an expression
of the form f(S) ∗ w where f(S) is an aggregate function, ∗ ∈ {<,≤,≥, >,=} and w is a
numerical constant. We denote by At(f(S) ∗ w) the atoms occuring in S.

Non-deterministic AFT 11

A disjunctively normal aggregate program consists of rules of the form (where ∆ is a set of
propositional atoms, and α1, . . . , αn, β1, . . . , βm are aggregate or propositional atoms):∨

∆← α1, . . . , αn,¬β1, . . . ,¬βm

An aggregate symbol is evaluated w.r.t. a set of atoms as follows. First, let x(S) denote the
multiset [t1 | ⟨t1, . . . , tn : Conj⟩ ∈ S and Conj is true w.r.t. x]. x(f(S)) is then simply the
result of the application of f on x(S). If the multiset x(S) is not in the domain of f , x(f(s)) = ⋏
where ⋏ is a fixed symbol not occuring in P . An aggregate atom f(S) ∗ w is true w.r.t. x (in
symbols, x(f ∗w) = T) if: (1) x(f(S)) ̸= ⋏ and (2) x(f(S)) ∗w holds; otherwise, f(S) ∗w is
false (in symbols, x(f ∗ w) = F). ¬f(S) ∗ w is true if: (1) x(f(S)) ̸= ⋏ and (2) x(f(S)) ∗ w
does not hold; otherwise, ¬f(S) ∗ w is false. Evaluating a conjunction of aggregate atoms is
done as usual. We can now straightforwardly generalize the immediate consequence operator for
disjunctive logic programs to disjunctive aggregate programs by generalizing HDP to take into
account aggregate formulas as described above: HDP(x) = {∆ |

∨
∆ ← ϕ ∈ P, x(ϕ) = T}.

ICP from Definition 1 is then generalized straightforwardly by simply using the generalized
HDP . Thus, the only difference with the immediate consequence operator for dlp’s is that the
set of activated heads HDP now takes into account the truth of aggregates as well.

The first semantics we consider is the one formulated by Gelfond and Zhang (2019) (defined
there only for logic programs with aggregates occurring positively in the body of a rule):

Definition 4
Let a disjunctively normal aggregate logic program P s.t. for every

∨
∆ ←

∧n
i=1 αi ∧∧m

j=1 ¬βj ∈ P , βj is a normal (i.e. non-aggregate) atom. Then the GZ-reduct of P w.r.t. x
is defined by doing, for every r =

∨
∆ ←

∧n
i=1 αi ∧

∧m
j=1 ¬βj ∈ P , the following: (1) if an

aggregate atom αi is false or undefined for some i = 1, . . . , n, delete r; (2) otherwise, replace
every aggregate atom αi = f(S) ∗ w by

⋃
{Conj occurs in S | x(Conj) = T}. We denote the

GZ-reduct of P by Px
GZ. Notice that this is a disjunctively normal logic program. A set of atoms

x ⊆ AP is a GZ-answer set of P if (x, x) is an answer set of Px
GZ.

Example 6
Consider the program P = {p ← #Sum[1 : p, q] > 0; p ← #Sum[1 : q] > 0; q ← #Sum[1 :

s] < 1}. We check whether {p, q} is a GZ-answer set as follows:

1. The GZ-reduct is P{p,q}
GZ = {p ← p, q; p ← q; q ←}. In more detail, as {p, q}(#Sum[1 :

p, q] > 0) = T, we replace #Sum[1 : p, q] > 0 in the first rule by the atoms in the condition of
this aggregate atom verified by {p, q}, namely p and q. Similarly for the other rules.

2. As {p, q} (or, to be formally more precise, ({p, q}, {p, q})) is a minimal model of P{p,q}
GZ

({p,q},{p,q}) ,
we see {p, q} is a GZ-answer set of P .

We now move to the semantics by Denecker et al. (2002). They are defined only for non-
disjunctive aggregate programs. They are defined on the basis of the ultimate (deterministic)
approximator ICDMT

P (Definition 2). In more detail, an interpretation (x, y) is DMTd-stable if
and only if (x, y) ∈ S(ICDMTd

P)(x, y), i.e. x ∈ lfp(ICDMTd

P (., y)) and y ∈ lfp(ICDMTd

P (x, .)).

Example 7
Consider the program P = {p ← #Sum[1 : p] > 0; p ← #Sum[1 : p] < 1}. ({p}, {p}) is an
DMTd-stable model of P , but the program has no GZ-stable models.

12 Cambridge Author

We first explain why {p} is not a GZ-stable model. First, we construct P{p}
GZ = {p ← p}.

Since {p} is not a stable model of P{p}
GZ , we see that {p} is not a GZ-stable model. Likewise,

since P∅
GZ = {p← ∅}, we see that ∅ is not a stable model of P∅

GZ and therefore not GZ-stable.

To see {p} is a DMTd-stable model, observe that ICDMTd,l
P (∅, {p}) = ICDMTd,l

P ({p}, {p}) =
{p}. Thus, lfp(ICDMTd,l

P (., {p}) = {p}, i.e. ({p}, {p}) = S(ICDMTd

P)({p}, {p}).

5.2 Non-Deterministic Approximation Operators for Disjunctive Aggregate Programs

We now proceed to define ndaos for disjunctive aggregate programs. The first ndao we consider
generalizes the trivial operator (Pelov et al. 2007), which maps two-valued interpretations to their
immediate consequences whereas three-valued interpretations are mapped to the least precise
pair (∅,AP) (or, in the non-deterministic case, {∅} × {AP}). We also study the ndao ICDMT

P
based on the deterministic ultimate approximation, and the ultimate ndao ICUP .

Definition 5
Given a disjunctively normal aggregate program P and a (consistent) interpretation (x, y), let

ICGZP (x, y) =

{
ICP(x)× ICP(x) if x = y

{∅} × {AP} otherwise

The ndaos ICDMT
P and ICUP are defined exactly the same as in section 3 (recall that ICP(x)

was generalized for aggregates in Section 5.1). We illustrate these semantics with an example:

Example 8
Let P = {r ∨ q ← #Sum[1 : s] > 0; s← #Sum[1 : r, 1 : q] > 0} be given.

We first look at ICGZP . As an example of a fixpoint, consider ({r, s}, {r, s}). Notice first that
#Sum[1 : r, 1 : q] > 0 and #Sum[1 : r, 1 : q] > 0 are true in {r, s}. Thus, HDP = {{r, q}, {s}}
and ICGZP ({r, s}, {r, s}) = {{r, s}, {q, s}, {r, q, s}} × {{r, s}, {q, s}, {r, q, s}}.

We now look at the DMT-semantics. For this, we first calculate HDP and ICP for all members
of ℘({r, q, s}) (with ∆1 = {{r}, {q}, {r, q}} and ∆2 = {{s, r}, {s, q}, {s, r, q}}):

x ∅ {s} {q} {r} {r, q} {r, s} {q, s} {s, q, r}

HDP(x) ∅ {{r, q}} {{s}} {{s}} {{s}} {{r, q}, {s}} {{r, q}, {s}} {{r, q}, {s}}

ICP(x) {∅} ∆1 {{s}} {{s}} ∆2 ∆2 ∆2 ∆2

We then see that e.g. ICDMT
P ({r, s}, {r, s}) = {{r, s}, {q, s}, {r, q, s}} ×

{{r, s}, {q, s}, {r, q, s}} whereas ICDMT
P (∅, {r, s}) = {∅} × {{r, s}, {q, s}, {r, q, s}}.

We see that ICUP({r, s}, {r, s}) = {{r, s}, {q, s}, {r, q, s}} × {{r, s}, {q, s}, {r, q, s}}
whereas ICUP(∅, {r, s}) = ℘({r, s, q})× ℘({r, s, q}).

We now show that these operators are approximation operators with increasing orders of pre-
cision: ICGZP is the least precise, ICDMT

P holds a middle ground and ICU is the most precise:

Proposition 7

Non-deterministic AFT 13

Let some ξ ∈ {DMT,GZ,U} and a disjunctively normal aggregate logic program P be
given. Then ICξP(x, y) is an ndao approximating ICP . For any (x, y), ICGZP (x, y) ⪯A

i

ICDMT
P (x, y) ⪯A

i IC
U
P(x, y).

The following properties follow from the general properties shown by Heyninck et al. (2022):

Proposition 8
Let some ξ ∈ {DMT,GZ,U} and a disjunctively normal aggregate logic program P be given.
Then: (1) S(ICϵP)(x, y) exists for any x, y ⊆ AP , and (2) every stable fixpoint of ICϵP is a
≤t-minimal fixpoint of ICϵP .

The ndao ICGZP only admits two-valued stable fixpoints, and these two-valued stable fixpoints
generalize the GZ-semantics (Gelfond and Zhang 2019):

Proposition 9
If (x, y) ∈ min≤t

(ICGZP (x, y)) then x = y. Let a disjunctively normal aggregate aggregate logic
program P s.t. for every

∨
∆ ←

∧n
i=1 αi ∧

∧m
j=1 ¬βj ∈ P , βi is a normal atom be given.

(x, x) ∈ S(ICGZP)(x, x) iff x is a GZ-answer set of P .

We finally show that stable semantics based on ICDMT
P generalize those for non-disjunctive

logic programs with aggregates by Denecker et al. (2002).

Proposition 10
Let a non-disjunctive logic program P be given. Then (x, y) is a stable model according to
Denecker et al. (2002) iff (x, y) ∈ S(ICDMT

P)(x, y).

We have shown how semantics for disjunctive aggregate logic programs can be obtained using
the framework of non-deterministic AFT, solving the open question (Alviano et al. 2023) of how
operator-based semantics for aggregate programs can be generalized to disjunctive programs.
This means AFT can be unleashed upon disjunctive aggregate programs, as demonstrated in this
paper, as demonstrated in this section. Other semantics, such as the weakly supported seman-
tics, the well-founded state semantics (Heyninck et al. 2022) and semi-equilibrium semantics
(Section 4, as in the appendix of the full version of this article (Heyninck and Bogaerts 2023))
are obtained without any additional effort and while preserving desirable properties shown alge-
braically for ndaos. None of these semantics have, to the best of our knowledge, been investigated
for dlp’s with aggregates. Other ndao’s, left for future work, can likely be obtained straightfor-
wardly on the basis of deterministic approximation operators for aggregate programs that we did
not consider in this paper (e.g. the operator defined by Vanbesien et al. (2021) to characterise the
semantics of Marek and Remmel (2004) or the bounded ultimate operator introduced by Pelov
and Truszczynski (2004)).

6 Conclusion, in view of related work

In this paper, we have made three contributions to the theory of non-deterministic AFT: (1) defi-
nition of the ultimate operator, (2) an algebraic generalization of the semi-equilibrium semantics
and (3) an application of non-deterministic AFT to DLPs with aggregates in the body. To the best
of our knowledge, there are only a few other semantics that allow for disjunctive rules with aggre-
gates. Among the best-studied is the semantics by Faber et al. (2004) (so-called FLP-semantics).
As the semantics we propose generalize the operator-based semantics for aggregate programs

14 Cambridge Author

without disjunction, the differences between the FLP-semantics and the semantics proposed here
essentially generalize from the non-disjunctive case (see e.g. (Alviano et al. 2023)).

Among the avenues for future work are an in-depth analysis of the computational complexity
of the semantics proposed here, the generalisation of the constructions in Section 5 to other
semantics (Vanbesien et al. 2021; Alviano et al. 2023) and defining ndaos for rules with choice
constructs in the head (Marek et al. 2008), which can be seen as aggregates in the head.

References

ALCÂNTARA, J., DAMÁSIO, C. V., AND PEREIRA, L. M. A well-founded semantics with disjunction. In
Proceedings of ICLP’05 2005, pp. 341–355. Springer.

ALVIANO, M., FABER, W., AND GEBSER, M. 2023. Aggregate semantics for propositional answer set
programs. Theory and Practice of Logic Programming, 23, 1, 157–194.

AMENDOLA, G., EITER, T., FINK, M., LEONE, N., AND MOURA, J. 2016. Semi-equilibrium models for
paracoherent answer set programs. Artificial Intelligence, 234, 219–271.

BOGAERTS, B. 2015. Groundedness in logics with a fixpoint semantics. PhD thesis, Informatics Section,
Department of Computer Science, Faculty of Engineering Science.

BOGAERTS, B. Weighted abstract dialectical frameworks through the lens of approximation fixpoint theory.
In Proceedings of AAAI’19 2019, volume 33, pp. 2686–2693.

DENECKER, M., MAREK, V., AND TRUSZCZYŃSKI, M. Approximations, stable operators, well-founded
fixpoints and applications in nonmonotonic reasoning. In Logic-based Artificial Intelligence 2000, vol-
ume 597 of Engineering and Computer Science, pp. 127–144. Springer.

DENECKER, M., MAREK, V. W., AND TRUSZCZYNSKI, M. Ultimate approximations in nonmonotonic
knowledge representation systems. In Proceedings of KR’02 2002, pp. 177–190.

FABER, W., LEONE, N., AND PFEIFER, G. Recursive aggregates in disjunctive logic programs: Semantics
and complexity. In Proceedings of JELIA’04 2004, volume 3229 of LNCS, pp. 200–212. Springer.

FERNÁNDEZ, J. A. AND MINKER, J. 1995. Bottom-up computation of perfect models for disjunctive
theories. The Journal of logic programming, 25, 1, 33–51.

GELFOND, M. AND ZHANG, Y. 2019. Vicious circle principle, aggregates, and formation of sets in asp
based languages. Artificial Intelligence, 275, 28–77.

HEYNINCK, J., ARIELI, O., AND BOGAERTS, B. 2022. Non-deterministic approximation fixpoint theory
and its application in disjunctive logic programming. arXiv preprint arXiv:2211.17262,.

HEYNINCK, J. AND BOGAERTS, B. 2023. Non-deterministic approximation operators: ultimate operators,
semi-equilibrium semantics and aggregates (full version).

MAREK, V. W., NIEMELÄ, I., AND TRUSZCZYNSKI, M. 2008. Logic programs with monotone abstract
constraint atoms. Theory Pract. Log. Program., 8, 2, 167–199.

MAREK, V. W. AND REMMEL, J. B. Set constraints in logic programming. In Logic Programming and
Nonmonotonic Reasoning: 7th International Conference, LPNMR 2004 2004, pp. 167–179. Springer.

PEARCE, D. 2006. Equilibrium logic. Annals of Mathematics and Artificial Intelligence, 47, 1, 3–41.
PELOV, N., DENECKER, M., AND BRUYNOOGHE, M. 2007. Well-founded and stable semantics of logic

programs with aggregates. Theory and Practice of Logic Programming, 7, 3, 301–353.
PELOV, N. AND TRUSZCZYNSKI, M. Semantics of disjunctive programs with monotone aggregates: an

operator-based approach. In Proceedings of NMR’04 2004, pp. 327–334.
TRUSZCZYŃSKI, M. 2006. Strong and uniform equivalence of nonmonotonic theories–an algebraic ap-

proach. Annals of Mathematics and Artificial Intelligence, 48, 3, 245–265.
VAN EMDEN, M. H. AND KOWALSKI, R. A. 1976. The semantics of predicate logic as a programming

language. Journal of the ACM, 23, 4, 733–742.
VANBESIEN, L., BRUYNOOGHE, M., AND DENECKER, M. 2021. Analyzing semantics of aggregate an-

swer set programming using approximation fixpoint theory. arXiv preprint arXiv:2104.14789,.

	Introduction
	Background and Preliminaries
	Disjunctive Logic Programming
	Approximation Fixpoint Theory
	Non-deterministic approximation fixpoint theory

	Ultimate Operators
	Semi-Equilibrium Semantics
	Application to DLPs with Aggregates
	Preliminaries on aggregates
	Non-Deterministic Approximation Operators for Disjunctive Aggregate Programs

	Conclusion, in view of related work
	References

