
Weighted abstract dialectical frameworks through the lens of approximation
fixpoint theory

Bart Bogaerts
KU Leuven, Department of Computer Science, Celestijnenlaan 200A, 3001 Heverlee, Belgium

Vrije Universiteit Brussel (VUB), Department of Computer Science, Pleinlaan 2, 1050 Brussels, Belgium
bart.bogaerts@vub.be

Weighted abstract dialectical frameworks (wADFs) were
recently introduced, extending abstract dialectical frame-
works to incorporate degrees of acceptance. In this paper,
we propose a different view on wADFs: we develop seman-
tics for wADFs based on approximation fixpoint theory, an
abstract algebraic theory designed to capture semantics of
various non-monotonic reasoning formalisms. Our formal-
ism deviates from the original definition on some basic as-
sumptions, the most fundamental is that we assume an or-
dering on acceptance degrees. We discuss the impact of the
differences, the relationship between the two versions of the
formalism, and the advantages each of the approaches offers.
We furthermore study complexity of various semantics.

1 Introduction
Abstract argumentation frameworks (AFs) [18] are simple
and abstract systems to deal with contentious information
and draw conclusions from it. An AF is a directed graph
where the nodes are arguments and the edges encode a no-
tion of attack between arguments. In spite of their concep-
tual simplicity, there exist many different semantics of AFs.

Abstract dialectical frameworks (ADFs) [6, 8] constitute
a generalization of AFs in which not only attack, but also
support, joint attack and joint support can be expressed.

Recently, ADFs were further generalized into weighted
abstract dialectical frameworks [10, 9]. These frameworks
allow for a fine-grained distinction between degrees of ac-
ceptance of arguments. In a partial interpretation of an ADF,
each argument is either accepted, rejected or unknown;1 in
wADFs, on the other hand, one associates with each argu-
ment a value from an arbitrary set of acceptance values. For
instance, arguments can take values from the unit interval,
where 1 means acceptance, 0 rejection and numbers in be-
tween mean it partially is accepted with a certain strength.

Example 1.1. Consider three arguments a, b and c and as-
sume acceptance values in the unit interval. Partial interpre-
tations assign to each argument either a value in the unit
interval, or u (unknown). Assume that the strength of the
acceptance value of a is 0.25, independently of b and c. Fur-
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1Instead of unknown, sometimes also the terminology unde-
fined or undecided is used.

thermore, assume a and b support c and that a and c support
bwhere the strength of the acceptance for b is max{a, c} and
the strength of the acceptance for c is max{a, b}. This situa-
tion can be represented as a weighted ADF (depicted below)
and various semantics are defined for it (some of them are
compactenumd below).

a b c

0.25 max{a, c} max{a, b}

• The models of this wADF are all assignments I such that
I(a) = 0.25 and I(b) = I(c) ∈ [0.25, 1].

• The grounded (partial) interpretation of this wADF as-
signs 0.25 to a and u to b and c.

• Stable models are defined with respect to a subset W ⊆
V . In this case, a model I is stable if I(b) ∈W . N

The previous example highlights two issues with the se-
mantics of wADFs. First of all, intuitively, the grounded in-
terpretation is supposed to collect all information that is be-
yond any doubt. In this example, however, that is not the
case. It is beyond any doubt that a is assigned 0.25 and thus,
since the value of b is defined as the maximum of the values
of a and c, it is also beyond any doubt that b takes at least ac-
ceptance value 0.25. The reason why this is not discovered
is that Brewka et al. [9] use partial interpretations as approx-
imations of interpretations, but these are not refined enough
to represent this kind of information. Brewka et al. already
noticed this: in their conclusion, they propose (as a topic for
future work) to research so-called generalized partial inter-
pretations to tackle exactly this problem.

A second issue in Example 1.1 is that stable interpreta-
tions are unnatural. In AFs and ADFs, stable interpretations
are (as in logic programming and other nonmonotonic log-
ics) used to express some (constructive) form of minimality,
where no arguments are accepted without reason. Intuitively,
if acceptance values are in the unit interval and higher num-
bers mean “more accepted”, we would expect the only stable
interpretation to be the one that assigns 0.25 to all three ar-
guments. In the definitions of Brewka et al. [9], this is not
the case. There, stability is determined by a set of values for
which, intuitively, no justification is needed. No minimality
properties of such stable models are known.



What these issues illustrate are two open questions regard-
ing wADFs that we aim to answer in the current paper:
1. What are good approximations of interpretations and

how can we extend the semantic operator to such ap-
proximations? In the original work on wADFs, partial in-
terpretations are proposed; these assign to each argument
either a value or unknown. An alternative they proposal
are “generalized partial interpretations”: sets of interpre-
tations. We develop a middle-ground between the two.

2. How can we, systematically, generalize the asymme-
try between true and false in ADFs to wADFs, taking
an order on the acceptance values into account? And
thus, how can we obtain a generalization of stable seman-
tics (and of other semantics) in which smaller acceptance
values are preferred over larger acceptance values?
We answer these two questions by direct applications of

approximation fixpoint theory (AFT), an algebraical unify-
ing study of semantics of nonmonotonic logics. Given a lat-
tice operator and a so-called approximating operator, De-
necker, Marek and Truszczyński (henceforth DMT) [12] de-
fined several types of fixpoints. They showed that all of
the main semantics of logic programming are induced by
AFT, using Fitting’s three-valued immediate consequence
operator [20] as an approximator of the two-valued immedi-
ate consequence operator of van Emden and Kowalski [33].
They identified approximating operators for default logic
[30] and autoepistemic logic [28] and showed that AFT in-
duces all main and some new semantics in these fields [13].
AFT has been applied to various other research domains,
including active integrity constraints [3], and extensions of
logic programming [1, 2, 11]. Most importantly for this pa-
per, Strass [32] showed that many semantics for Dung’s
argumentation frameworks and abstract dialectical frame-
works can be retrieved from AFT. Strass’ study revealed
some anomalies with the definitions of ADF semantics of
Brewka and Woltran [6], resulting in a revision [8].

We show that direct applications of AFT yield an adequate
answer to both of the above questions. As approximations,
AFT uses intervals. In our setting, this means that each ar-
gument is assigned a lower bound and an upper bound on
its acceptability. A semantic operator for wADFs can be de-
fined by analogy with the operator for ADFs; this has al-
ready been done by Brewka et al. [9]. Once this operator is
defined, there exists an automatic way to obtain an approx-
imator [14] that acts on interval-based approximations in-
stead of on interpretations. Uncoincidentally, this so-called
ultimate approximator was also used to define the (revisited)
semantics for ADFs [8]. Using this approximator and the
characterizations of Strass [32], we obtain generalizations
of all major semantics of ADFs to wADFs, including an im-
proved definition of stable semantics and some semantics
that were not generalized to the weighted case yet, namely
partial stable and well-founded semantics.

Example 1.2 (Example 1.1 continued). In this example, by
additionally imposing the standard order on the unit interval,
our semantics for wADFs are as follows2:

2We define more semantics than what is compactenumd here.

• the models of this wADF are as before all assignments I
such that I(a) = 0.25 and I(b) = I(c) ∈ [0.25, 1],

• the grounded (partial) interpretation of this wADF as-
signs 0.25 to a and [0.25, 1] to b and c,

• the unique stable model assigns 0.25 to a, b and to c.
• the well-founded interpretation equals the unique stable

model. N

We end this introduction with another example.

Example 1.3. Again consider arguments, a, b and c with
acceptance values in the unit interval. Assume a is given
acceptance value 0.25, independently of b and c, and that b
and c are contradicting arguments, but both are supported by
a. Formally, the acceptance strength of b is max{a, 1 − c}
and the strength of the acceptance for c is max{a, 1− b}.

a b c

0.25 max{a, 1− c} max{a, 1− b}

With our definitions, this framework has an infinite num-
ber of stable models, namely exactly all the models

a = 0.25, b = k, c = 1− k | k ∈ [0.25, 0.75].

The well-founded interpretation equals the grounded in-
terpretation and assigns

a = [0.25, 0.25], b = [0.25, 0.75], c = [0.25, 0.75],

i.e., it finds the exact value for a and determines that b and c
have acceptance values in the interval [0.25, 0.75]. In com-
parison, in the approach of Brewka et al., the grounded inter-
pretation assigns u to b and c and stable models (with respect
toW ) are those in which b or c is assigned a value inW . N

The rest of this paper is structured as follows. In Section
2 we recall some background on AFT and on how AFT is
used to characterize semantics of ADFs. Next, we present
our AFT-based version of wADFs in Section 3. In Section 4,
we recall Brewka et al.’s [9] definition of wADFs. We com-
pare our version of wADFs to the original one and discuss
strengths and weaknesses in Section 5. We study complexity
of our semantics in Section 6 and conclude in Section 7.

Since we use two different versions of the formalism of
wADFs, we will from now on refer to AFT-wADFs for the
ones developed in this paper and BSWW-wADFs for the
ones developed by Brewka et al. [9].

2 Preliminaries
We now recall the basics of AFT and its application to
ADFs, following the preliminaries of [5].

Lattices and Operators A complete lattice 〈L,≤〉 is a
set L equipped with a partial order ≤, such that every set
S ⊆ L has both a least upper bound and a greatest lower
bound, denoted lub(S) and glb(S) respectively. A com-
plete lattice has a least element ⊥ and a greatest element
>. As custom, we also use the notations

∧
S = glb(S),

x∧y = glb({x, y}),
∨
S = lub(S) and x∨y = lub({x, y}).
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An operator O : L → L is monotone if x ≤ y implies
that O(x) ≤ O(y). An element x ∈ L is a fixpoint of O if
O(x) = x. Every monotone operator O in a complete lattice
has a least fixpoint, denoted lfp(O).

Approximation Fixpoint Theory Given a lattice L, AFT
makes uses of the bilattice L2. We define projections for
pairs as usual: (x, y)1 = x and (x, y)2 = y. Pairs (x, y) ∈
L2 are used to approximate all elements in the interval
[x, y] = {z | x ≤ z ∧ z ≤ y}. We call (x, y) ∈ L2 con-
sistent if x ≤ y, that is, if [x, y] is non-empty. We use Lc to
denote the set of consistent elements. Elements (x, x) ∈ Lc
are called exact. We sometimes abuse notation and use the
tuple (x, y) and the interval [x, y] interchangeably. The pre-
cision order on L2 is defined as (x, y) ≤p (u, v) if x ≤ u
and v ≤ y. If (u, v) is consistent, this means that (x, y) ap-
proximates all elements approximated by (u, v). If L is a
complete lattice, then so is 〈L2,≤p〉.

An operator A : L2 → L2 is an approximator of O
if it is ≤p-monotone, and has the property that for all x,
O(x) ∈ [x′, y′], where (x′, y′) = A(x, x). Approximators
are internal in Lc (i.e., map Lc into Lc). As usual, we restrict
our attention to symmetric approximators: approximators A
such that for all x and y, A(x, y)1 = A(y, x)2. DMT [14]
showed that the consistent fixpoints of interest (supported,
stable, well-founded) are uniquely determined by an approx-
imator’s restriction to Lc, hence, sometimes we only define
approximators on Lc.

AFT studies fixpoints of O using fixpoints of A.
• The A-Kripke-Kleene fixpoint is the ≤p-least fixpoint of
A; it approximates all fixpoints of O.

• A partial A-stable fixpoint is a pair (x, y) such that x =
lfp(A(·, y)1), where A(·, y)1 : L→ L : x 7→ A(x, y)1.

• The A-well-founded fixpoint is the least precise partial A-
stable fixpoint.

• An A-stable fixpoint of O is a fixpoint x of O such that
(x, x) is a partial A-stable fixpoint.
In general, a lattice operator O : L → L has a family of

approximators of different precision. For two approximators
A and B of O, we say that A ≤p B if A(x, y) ≤p B(x, y)
for all (x, y) ∈ Lc. In this case, all A-stable fixpoints are
B-stable fixpoints, and the B-well-founded fixpoint is more
precise than theA-well-founded fixpoint. DMT [14] showed
that there exists a most precise approximator, UO, called
the ultimate approximator of O. This operator is defined
by UO : Lc → Lc : (x, y) 7→ (

∧
O([x, y]),

∨
O([x, y])),

where O([x, y]) = {O(z) | z ∈ [x, y]}.

Abstract Dialectical Frameworks Consider two truth
values true (t) and false (f ). The set of truth values is B =
{t, f}. A vocabulary S is a set of so-called arguments. An
interpretation I of S is a function S → B, where I(s) = t
means that s is accepted and I(s) = f means s is rejected.
The set of all interpretations of S is denoted int(S).

An abstract dialectical framework [6, 8] is a tuple Ξ =
(S,C), where
• S is a vocabulary, i.e. a set of arguments

• C = {Cins }s∈S is a collection of functions Cins :
int(S)→ B.

The function Cins specifies for an argument s whether or not
it should be accepted, given the knowledge which arguments
are accepted. These functions are often specified as proposi-
tional formulas over the vocabulary S.

Our definition is a simplified (but equivalent) version of
the definition most often found in the literature, given by
Brewka et al. [8]. It is sometimes referred to as the logical
representation of ADFs [10].
Example 2.1. Let S be the set of arguments {a, b, c, d}.
Furthermore, assume Cina (I) = t for all I , Cinb (I) = t
iff I(b) = t, Cinc (I) = t iff I(a) and I(b) are not both
t and Cind (I) = t iff both I(a) and I(b) are t. The ADF
Ξ = (S,C) is compactly depicted as the graph below, where
nodes are arguments, labeled with their acceptance function
and an edge from a1 to a2 denotes that the value of a2 de-
pends on the value assigned to a1.

a b c d

t b ¬a ∨ ¬b a ∧ b

The following observations provide an intuitive reading
of Ξ:
• a is a valid argument since it has trivial support;
• b supports itself: the only “reason” to believe b is b itself;
• a and b jointly attack c: c is rejected if a and b are both

accepted; otherwise, c is accepted;
• a and b jointly support d: d only is accepted if a and b are

both accepted.
Intuitively, we should accept a. Whether or not to accept b
depends on which semantics for ADFs is used. Argument
c can only be accepted in case we reject b, d should be ac-
cepted if we accept b. N

If X and Y are two interpretations of S, we say that
X ≤ Y if Y (s) = t whenever X(s) = t, i.e., if {s ∈
S | X(s) = t} ⊆ {s ∈ S | Y (s) = t}. Often, interpreta-
tions X are identified with the set {s ∈ S | X(s) = t} and
hence are referred to as “sets of arguments”. With an ADF
Ξ, we associate an operator GΞ on the lattice 〈int(S),≤〉 as
follows [32]:

GΞ(X) : s 7→ Cins (X).

That is, GΞ maps an interpretation X to the interpretation in
which acceptance of arguments is determined by the value of
their acceptance function in X . I.e., GΞ revises acceptabil-
ity of arguments based on the value of the arguments they
depend on in the current interpretation.

The semantical objects of interest for ADFs are either
interpretations X , or pairs (X,Y ) of interpretations with
X ≤ Y . We call the latter partial interpretations. The mean-
ing of a partial interpretation (X,Y ) is that all arguments
in {s ∈ S | X(s) = t} are accepted, all arguments in
{s ∈ S | Y (s) = f} are rejected and all others are unknown.
This means that X is a lower bound for the acceptance and
Y an upper bound. The precision order on partial interpre-
tations is defined as usual: (X,Y ) ≤p (X ′, Y ′) if X ≤ X ′
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and Y ′ ≤ Y . It is easy to see that the set of partial interpre-
tations is exactly the set int(S)c, i.e., the set of consistent
elements of the square lattice of int(S). As such, approxi-
mators ofGΞ are defined on the set of partial interpretations.
By UΞ we denote the ultimate approximator of GΞ.

Strass [32] showed that many semantics for ADFs can be
characterized with AFT and new ones (that generalize corre-
sponding AF semantics) are obtained by direct applications
of AFT. Below we discuss some of them; for a complete
overview, we refer to Strass [32].
• The grounded partial interpretation of Ξ is the ≤p-least

fixpoint of UΞ (i.e., the ultimate Kripke-Kleene fixpoint
of GΞ).

• A partial interpretation (X,Y ) is admissible with respect
to Ξ if (X,Y ) ≤p UΞ(X,Y ).

• A partial interpretation (X,Y ) is complete with respect
to Ξ if (X,Y ) = UΞ(X,Y ) (i.e., if it is a fixpoint of the
ultimate approximator of GΞ).

• An interpretationX is a model of Ξ if (X,X) is complete
with respect to Ξ (i.e., iff X is a fixpoint of GΞ).

• A partial interpretation (X,Y ) is preferred with respect
to Ξ if it is ≤p-maximal among all admissible partial in-
terpretations.

• A partial interpretation (X,Y ) is stable with respect to Ξ
if it is a stable fixpoint of UΞ (i.e., if it is an ultimate stable
fixpoint of GΞ),

• An interpretation X is a stable model of Ξ if (X,X) is
stable.

• The AFT-well-founded partial interpretation3 is the well-
founded fixpoint of UΞ.

Example 2.2 (Example 2.1 continued). Here, the grounded
partial interpretation is ({a}, {a, b, c, d}), i.e., the interpre-
tation that assigns t to a and u to all other elements. The
AFT-well-founded interpretation is more precise (as always)
and here even exact; it is ({a, c}, {a, c}); {a, c} is the only
stable model. N

3 Weighted Abstract Dialectical
Frameworks: An AFT Perspective

We now show how ADFs can be generalized to a multi-
valued setting, building on the AFT characterization of ADF
semantics. Therefore, we assume that a set ν and a partial
order ≤a are given such that 〈ν,≤a〉 forms a complete lat-
tice. Intuitively, ν represents a set of acceptance values and
≤a represents a relation on those values such that u ≤a v
means that the acceptance value v is closer to acceptance
(more accepted) than u. Examples of such sets are
• The set ν = {f , t} with f ≤a t; as we see later, taking

this set for ν yields exactly standard ADFs.
• The unit interval, where each number represents a degree

of acceptance with the normal order.
• The set {Rej, Cond1,2, Cond1, Cond2, Acc}, where
Rej stands for “reject”, Condc for “conditional accept,
based on all the conditions in c” (these might be external
conditions to be checked in order to accept an argument)

3This is a different fixpoint than the one that was called well-
founded by Brewka and Woltran [6], hence the prefix.

and Acc stands for “accept”. A sensible order on this set
is depicted below.

Cond1
≤a
,,Rej

≤a // Cond1,2

≤a 11

≤a

--
Acc

Cond2 ≤a

22

Now, given a set of values ν and a vocabulary S, a ν-
interpretation of S is a function S → ν, i.e., an assignment
of a value to each argument in the vocabulary. The set of
all ν-interpretations of S is denoted int(ν, S). We extend
the order ≤a pointwise to interpretations: X ≤a Y if for
all arguments s ∈ S, X(s) ≤a Y (s). Now, we have all the
ingredients to define weighted ADFs.
Definition 3.1. A weighted abstract dialectical framework
(AFT-wADF) over ν is a tuple Ξ = (S,C), where
• S is a vocabulary, i.e. a set of arguments
• C = {Cins }s∈S is a collection of functions Cins :
int(ν, S)→ ν.
The intuitions are the same as in the case of standard ab-

stract dialectical frameworks: the functions Cins determine
the acceptance value of an argument, given an interpretation
(an acceptance value) for all the arguments it depends on.
Example 3.2. Assume S = {a, b}, ν = {0, 0.5, 1} and
≤a is the standard order. The value 0 represents rejection
of an argument, 1 represents acceptance and 0.5 represents
indifference. Let Ξ = (S,C) be the AFT-wADF such that
Cina (X) = max{0.5, X(b)} and Cinb (X) = X(a). This
represents a situation where b and a support each other, and
a is supported (with strength 0.5) for some other reason. N

As with standard ADFs [32], we associate with an AFT-
wADF over ν a semantic operator W ν

Ξ on the lattice
〈int(ν, S),≤a〉 as follows:

W ν
Ξ(X) : s 7→ Cins (X).

I.e., the operator maps an interpretation X to the interpreta-
tion that assigns to each argument s, the value of its accep-
tance function in X .
Example 3.3 (Example 3.2 continued). The operator W ν

Ξ
associated with Ξ is depicted below, where full arrows rep-
resent the ≤a relation between interpretations and dashed
arrows the operator.

{a = 1, b = 1}
��

{a = 0.5, b = 1}

55

00 {a = 1, b = 0.5}

ii

pp

{a = 0, b = 1}

OO

55
{a = 0.5, b = 0.5}

��

55ii

{a = 1, b = 0}

OO

uu

{a = 0, b = 0.5}

OO 55

00 {a = 0.5, b = 0}

OOii\\

{a = 0, b = 0}

ii 55 BB

This operator has two fixpoints, namely the ν-interpretation
that assigns 0.5 to both a and b and the one that assigns 1 to
both. N
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An νc-interpretation4 is a tuple (X,Y ) of two ν-
interpretations with X ≤a Y . The name νc stems from
the fact that these interpretations are consistent approxima-
tions of ν-interpretations, i.e., elements of int(ν, S)c. Al-
ternatively, a νc-interpretation can be seen as assigning an
interval [X(a), Y (a)] (in the ≤a order) to each argument a.
We use these two views on νc-interpretations interchange-
ably. The precision order ≤p on νc-interpretation is defined
in the normal way: (X,Y ) ≤p (X ′, Y ′) if X ≤a X ′ and
Y ′ ≤a Y . In the view as intervals this means that for each
a, the interval [X ′(a), Y ′(a)] is a subset of [X(a), Y (a)].
We say that (X,Y ) approximates an interpretation Z if
X ≤a Z ≤a Y . ByUνΞ we denote the ultimate approximator
of W ν

Ξ . The semantics for AFT-wADFs are then straightfor-
ward extensions of their counterparts for traditional ADFs:

Definition 3.4. • The grounded νc-interpretation of Ξ is
the least fixpoint of UνΞ (i.e., the ultimate Kripke-Kleene
fixpoint of W ν

Ξ ).
• A νc-interpretation (X,Y ) is admissible with respect to

Ξ if (X,Y ) ≤p UνΞ(X,Y ).
• A νc-interpretation (X,Y ) is complete with respect to Ξ if

(X,Y ) = UνΞ(X,Y ) (i.e., if it is a fixpoint of the ultimate
approximator of W ν

Ξ ).
• An interpretationX is a model of Ξ if (X,X) is complete

with respect to Ξ (i.e., iff X is a fixpoint of W ν
Ξ ).

• A νc-interpretation (X,Y ) is preferred with respect to
Ξ if it is maximal w.r.t. ≤p among all admissible νc-
interpretations.

• A partial interpretation (X,Y ) is stable with respect to Ξ
if it is a stable fixpoint of UνΞ (i.e., if it is an ultimate stable
fixpoint of W ν

Ξ ),
• An interpretation X is a stable model of Ξ if (X,X) is

stable.
• The AFT-well-founded νc-interpretation is the well-

founded fixpoint of UνΞ .

Example 3.5 (Example 3.3 continued). In this example, the
grounded νc-interpretation assigns [0.5, 1] to both a and b: it
can derive that both take at least acceptance 0.5, but cannot
derive anything more specific. Ξ has two models, namely the
ν-interpretationX0.5 that assigns 0.5 to both a and b andX1

that assigns 1 to both a and b; (X0.5, X0.5) and (X1, X1) are
also its preferred νc-interpretations. Other semantics, such
as stable and AFT-well-founded semantics are more criti-
cal with respect to acceptance: they prefer assigning smaller
acceptance values. In this case, they exclude the model X1

where a and b are jointly self-supporting. The unique sta-
ble model of this theory is X0.5; the AFT-well-founded νc-
interpretation is exact and equal to (X0.5, X0.5). N

Many relations between the various semantics follow di-
rectly from AFT. The following proposition lists a few.

Proposition 3.6. Assume Ξ = is an AFT-wADF over ν. The
following claims hold.
1. The grounded νc interpretation of Ξ approximates all

models of Ξ.

4We refrain from using the terminology partial interpretation
here to avoid confusion (in later sections) with what was called a
partial interpretation by BSWW.

2. The AFT-well-founded νc approximates all stable inter-
pretations of Ξ.

3. Stable models of Ξ are ≤a-minimal models of Ξ.
The relationship between AFT-wADFs and standard

ADFs follows immediately from the definitions.
Theorem 3.7. Let Ξ be an AFT-wADF over B where f ≤a t.
In this case, each semantics defined in Definition 3.1 coin-
cides with the equally named ADF semantics.

4 Preliminaries: BSWW-wADFs
In this section, we summarize the semantics of wADFs as
defined by Brewka et al. [9], a corrected version of the orig-
inal semantics of [10]. Let ν be a set of values (without any
specific ordering) with u 6∈ ν. By νu we denote the set
ν ∪ {u}; here u represents an undefined value. A partial
ν-interpretation of a vocabulary S is a function I : S → νu,
i.e., this is a νu-interpretation. A BSWW-wADF is a tuple
Ξ = (S,C, ν,≤i), where
• S is a vocabulary, i.e. a set of arguments,
• C = {Cins }s∈S is a collection of functions Cins :
int(ν, S)→ ν, and

• ≤i is a complete partial order5 (CPO) on νu with least
element u.
The order ≤i is pointwise extended to partial interpre-

tations. A partial ν-interpretation I is said to be a com-
pletion of a partial ν-interpretation J if I is more infor-
mative then J . The set of all completions of J is denoted
[J ]c = {I ∈ Z(ν, S) | I ≥i J}. It is important to note
that even if J is an exact interpretation (does not assign u to
any arguments), the set of completions of J can still contain
other interpretations than J itself. While this might seem un-
natural, it is essential from a technical perspective: in the
original on BSWW-wADFs, this was not the case and led to
a bug in the semantics (the grounded interpretation was ill-
defined). The modified definition of the completion, that we
presented above, leads to well-defined semantics.

A BSWW-wADF (S,C, ν,≤i) induces an operator ΓΞ

that maps a partial interpretation J to

ΓΞ(J) : s 7→ glb≤i
{Cins (I) | I ∈ [J ]c}.

As such, in ΓΞ(J), each argument s is interpreted as the
consensus over all interpretations more precise than J .

Most semantics of BSWW-wADFs are entirely defined by
this operator, analogous to Definition 3.4.
Definition 4.1. Let Ξ = (S,C, ν,≤i) be a BSWW-wADF.
• The grounded νu-interpretation of Ξ is lfp ΓΞ

• A νu-interpretation (X,Y ) is admissible with respect to
Ξ if (X,Y ) ≤i ΓΞ(X,Y ).

• A νu-interpretation (X,Y ) is complete with respect to Ξ
if (X,Y ) = ΓΞ(X,Y ).

• A ν-interpretation X is a model of Ξ if (X,X) is com-
plete with respect to Ξ (i.e., iff X is a fixpoint of W ν

Ξ ).
• A νu-interpretation (X,Y ) is preferred with respect to

Ξ if it is maximal w.r.t. ≤i among all admissible νu-
interpretations.
5This means that every subset of νu has a greatest lower bound

and every ascending chain has a least upper bound.
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BSWW also give a definition of stable semantics, not di-
rectly from Ξ but using an auxiliary set of values. We refer
to [9] for the formal definition.

5 wADFs: A Comparison
We now discuss how our semantics relates to the original
definition. We discuss two aspects: first, we discuss the as-
sumptions both frameworks make; next, we research how
they relate when the assumptions of both are satisfied.

5.1 Assumptions – Similarities and Differences
The two definitions start from:
• A set S of arguments,
• A set ν of acceptance values,
• A collection of acceptance functions Cins .
An interpretation is in both frameworks an assignment of
acceptance degrees to arguments. The essence of a wADF is
an operator that maps interpretations to interpretations. (this
operator is not explicated in the BSWW case, but can easily
be obtained by restricting ΓΞ to interpretations).

For AFT-wADFs, additionally, an acceptance order≤a on
ν is imposed. For BSWW-wADFs, additionally, an informa-
tion order ≤i on ν is imposed.

The approximations in the two frameworks differ. For
AFT-wADFs, we use νc-interpretations: assignments of a
lower and upper bound on the acceptability of each argu-
ment. On such intervals, a natural precision ordering ≤p is
imposed (an interval is more precise than another interval
if the former is a subset of the latter). BSWW-wADFs use
partial ν-interpretations, which are νu-interpretations. The
order ≤i is extended to such interpretations.

For both frameworks, an operator on approximations is
defined. The definition of these operators is remarkably
similar. For νc-interpretations, the ultimate approximator is
used. A direct definition of this operator is: the operator UΞ

that maps a νc-interpretation X to the νc-interpretation

UΞ(X) : s 7→ glb≤p
{Cins (Y ) | Y ∈ int(ν, S) ∧ Y ≥p X}

For partial ν-interpretations, the approximator is the oper-
ator ΓΞ that maps a partial interpretation X to the partial
interpretation

ΓΞ(X) : s 7→ glb≤i
{Cins (Y ) | Y ∈ int(ν, S) ∧ Y ≥i X}

I.e., these definitions are identical; only the space of approx-
imations differs (and the orders defined on it).

Both frameworks define their semantics based on these
operators. The semantics are defined similarly, with three
notable exceptions: stable semantics (which in the BSWW
case is defined using an auxiliary set of variables, whereas
in our case directly from the operator) and partial stable and
well-founded semantics (which are new).

The most important differences stem from the orders
used: an order on acceptability ≤a in our case, versus an
information order ≤i in the BSWW case. The information
order is very similar to the precision order ≤p, derived from
≤a. Yet, we believe its inclusion to be a bad design choice.
The main reason for this is that it obscures the line between
interpretations and approximations. To illustrate this, notice

that in many formalisms approximations of interpretations
are present. For instance, in standard ADFs, or in logic pro-
gramming, these approximations are partial interpretations.
In constraint programming, approximations of interpreta-
tions sometimes assign upper and lower bounds to integer
values (depending on the type of propagation mechanism
used). What all of these formalisms have in common is that
approximations are comparable by some form of precision
or information ordering and that interpretations are maximal
with respect to this ordering. A consequence is that it can
never be the case that one interpretation is more informative
(precise) than another one. This is not the case in BSWW-
wADFs, leading to a lack of an informal explanation of what
an interpretation is. Also, on the formal side, this has some
unpleasant effects. First of all, as mentioned by Brewka et
al. [9], the bug in the original wADF paper was due to this
fact: the definitions in [10] only work for flat information
orderings (i.e., orderings such that all interpretations are≤i-
maximal). Second, the following example shows that with
the definitions of BSWW, not all models are preferred in-
terpretations, which might come as a surprise to the reader
familiar with AFs and ADFs.
Example 5.1. Consider ν = {1, 2};S = {a} and an in-
formation ordering given by u ≤i 1 ≤i 2. Furthermore,
consider the BSWW-wADF such that Cina (X) = X(a) for
each ν-interpretation X . In this case, the interpretation X1

that assign 1 to a andX2 that assigns 2 to a are both models.
However, since X1 ≤i X2, X1 is not preferred. N

Third, intuitively, the function Cins specifies with which
strength an argument s is acceptable in a given interpreta-
tion. The operator ΓΞ revises an interpretation based on this
acceptance. One might expect that such revision respects the
acceptance functions in the sense that in an interpretationX ,
it always holds that

ΓΞ(X)(s) = Cins (X), (1)

i.e. that the strength of the argument s in the revised inter-
pretation equals what the acceptance function dictates. This
equation indeed holds for the original definition [10], but
was sacrificed when making the technical changes required
to eliminate the bug [9]. In the revised report, the intuition
that (1) should hold is given in the definition of a model,
where it is stated that intuitively in models “the value is ex-
actly what is required by the acceptance functions”. This in-
formal statement is only correct if ΓΞ(X)(s) = Cins (X).
All in all, we feel that the information order ≤i does more
harm than good, both on an informal and a formal level.

5.2 Overlap
Despite the disadvantages≤i presents, it can be used to “em-
ulate” an interval-based precision ordering, as given in the
AFT approach. Assume that an AFT-wADF Ξ = (S,C)
over 〈ν,≤a〉 is given. The idea now is: given a set of val-
ues ν, νc consists of all intervals in ν. Let us now define
ν′ = νc \ {⊥≤p

}, i.e., we exclude the least precise ap-
proximation. In this case ν′u is isomorphic to νc. In BSWW-
wADFs, due to the order≤i, part of the approximation space
(everything except for the least precise approximation) is

6



captured within the set of values. and hence the approxima-
tions in both frameworks coincide. We show a correspon-
dence between AFT-wADFs over ν and BSWW-wADFS
over ν′. Therefore, let Ξ′ for the rest of this section denote
the BSWW-wADF Ξ′ = (S,C ′, ν′,≤p), where

C ′ins (X) =
∧
≤p

{Cins (I) | I ∈ int(ν, S) and I ≥p X}

With these definitions, there is a strong overlap between se-
mantics, as defined in the current paper and in the original
work by BSWW. The most fundamental relationship is the
one between the defined operators (that are in both cases
used to define the semantics).

Theorem 5.2. Let Ξ and Ξ′ be as above. The operators UνΞ
and ΓΞ coincide.

From this result, it follows that many semantics coincide,
though (as explained below) not all semantics do.

Corollary 5.3. Let Ξ and Ξ′ be as above. For the follow-
ing semantics, Definitions 3.4 and 4.1 coincide: grounded,
admissible, complete, and preferred.

For the other semantics the formalisms do not neccesarily
agree: the well-founded semantics is only defined for AFT-
wADFs; the difference in stable semantics is already illus-
trated in Examples 1.1 and 1.2, where we argued that sta-
ble models in the AFT sense are more natural, provided that
an acceptance order is available. One last difference in se-
mantics between the two formalism is found in the notion
of models. In the AFT approach, models are only allowed to
take values in ν. I.e., each argument should be assigned an
exact (maximally precise) value; not an approximation. In
the BSWW approach on the other hand in a model, each ar-
gument is assigned a value in ν or an approximation thereof
(but not the least precise approximation u which in this case
corresponds to the interval (⊥≤a ,>≤a)).

6 Complexity
We now study complexity of tasks related to wADFs. We as-
sume that 〈ν,≤a〉 is fixed (hence not part of the input of the
problem). Furthermore, we assume that we can in polyno-
mial time determine if v1 ≤a v2 for v1, v2 ∈ ν and that we
can, in polynomial time compute Cins (X) for an interpreta-
tion X and acceptance function Cins . Some (but not all) of
our results furthermore require that ν be finite.

The size of the input of all considered problems is the car-
dinality of the finite set S of arguments. Hardness results fol-
low (by Theorem 3.7) from standard ADFs [31]. Complex-
ity results for admissible, complete, and preferred seman-
tics can (using Corollary 5.3) be carried over from BSWW-
wADFs [10]. Hence, we focus on the other semantics.

Proposition 6.1. Verifying if a given ν-interpretation X is
a model of Ξ is in P. If ν is finite, checking if there exists a
model of Ξ is in NP.

While the fact that checking if X is a model is in P might
seem like an obvious property, we inform the reader that this
property does not hold for BSWW-wADFs.

Proposition 6.2. If ν is finite, verifying if a given νc-
interpretation (X,Y ) is stable with respect to Ξ is in ∆P

2 .

Proposition 6.3. If ν is finite, the problem of checking
whether Ξ has a stable model is in ΣP2 .

Proposition 6.4. Assume a ∈ S and v1 ≤a v2 ∈ ν.
Let (X,Y ) denote the grounded νc-interpretation of Ξ. The
problem of checking whether a is assigned a value at least as
precise as (v1, v2) in (X,Y ) (i.e., whether (X(a), Y (a)) ≥p
(v1, v2)) is in ∆P

2 .
The same holds when we take (X,Y ) to be the AFT-well-

founded νc-interpretation of Ξ.

7 Related Work and Conclusion
There is a large body of work on weighted argumentation
[6, 7, 19, 21, 22], probabilistic argumentation [17, 27, 25,
23, 15, 29, 16, 24], and social argumentation [26]. In some
of these papers weights on nodes are considered; in others
weights on attacks. Some of these formalism take the num-
ber of attacking nodes or votes into account to determine
these weights. Our current work relates to that body of work
in a similar way as how the original work on wADFs relates
to it, hence we refer to Brewka et al. [10] for an overview.

In this paper we applied approximation fixpoint theory to
wADFs. Our main contributions are two-fold. The first con-
tribution is that by applying AFT, we shed light on the re-
lationship of wADFs with other non-monotonic formalisms
and we obtain several new semantics for free (partial stable
semantics, well-founded semantics). Furthermore, we can
immediately use many of the theoretic results from AFT,
such as stratification results [34] or knowledge compilation
techniques [4]. Most of the semantics are defined similar to
BSWW semantics, with the notable exception being stable
semantics, where our version (contrary to the previous one)
yields acceptance-minimal models. What AFT gives us here
is the guarantee that all developed semantics are based on
the same fundamental principles as the semantics of ADFs,
and in fact of many other nonmonotonic formalisms. For
instance, we automatically obtain a characterization of the
AFT-well-founded interpretation as the least precise partial
stable interpretation. In order to be convinced of the correct-
ness of AFT-style semantics, one only needs to verify is that
i) the defined acceptance order makes sense, ii) intervals are
a desired type of approximations, and iii) the semantic op-
erator is defined correctly. For the last point, the semantic
operator we use was already present in the work of Brewka
et al. [10].

While we believe interval-based approximations (used in
our approach) are often natural, we can imagine situations
where different approximations prove more useful; this is
where our second contribution kicks in: in Section 5 we
highlight a troublesome design decision in wADFs, namely
the lack of distinction between exact and approximate val-
ues. This has far-reaching consequences, both on an infor-
mal and on a formal level. We believe such distinction to be
important and hence, the current work can be seen as a plea
towards including such a distinction in wADFs, indepen-
dently of whether the AFT approach, using interval-based
approximations, is followed or not.
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