

Consistency in Justification Theory

Simon Marynissen, Niko Passchyn, Bart Bogaerts and Marc Denecker

October 29, 2018

0 Outline

1 Overview of justification theory

2 Justification theory: an intuition

3 Consistency

4 Conclusion

1 Outline

1 Overview of justification theory

- 2 Justification theory: an intuition
- 3 Consistency
- **4** Conclusion

- Unifying framework for describing various semantics of various logics
 - Logic programs
 - Abstract argumentation
 - Inductive definitions
 - Nested definitions

- Unifying framework for describing various semantics of various logics
 - Logic programs
 - Abstract argumentation
 - Inductive definitions
 - Nested definitions
- By capturing the underlying types of constructions = justifications

- Unifying framework for describing various semantics of various logics
 - Logic programs
 - Abstract argumentation
 - Inductive definitions
 - Nested definitions
- By capturing the underlying types of constructions = justifications
- Give rise to new semantics

- Unifying framework for describing various semantics of various logics
 - Logic programs
 - Abstract argumentation
 - Inductive definitions
 - Nested definitions
- By capturing the underlying types of constructions = justifications
- Give rise to new semantics
- Provides ways for seamless integration of various expressive language constructs
 - Aggregates into logic programs

1 Aims of justification theory: computational aspects

Justifications as datastructures in solvers

- Compute unfounded sets in ASP solvers (De Cat, Gebser)
- Check for relevance in complete search algorithms (Jansen)
- Lazy grounding (De Cat, Bogaerts)

2 Outline

Overview of justification theory

2 Justification theory: an intuition

3 Consistency

4 Conclusion

2 What is justification theory (intuitively)

Theory (or program) in a logic induces a semantic structure: justification frame: a space of facts, a set of elementary construction steps

2 What is justification theory (intuitively)

- Theory (or program) in a logic induces a semantic structure: justification frame: a space of facts, a set of elementary construction steps
- justification := graph of facts constructed by elementary construction steps
 - that shows a type of construction of its facts
 - that embodies a potential reason why its facts are true

2 What is justification theory (intuitively)

- Theory (or program) in a logic induces a semantic structure: justification frame: a space of facts, a set of elementary construction steps
- justification := graph of facts constructed by elementary construction steps
 - that shows a type of construction of its facts
 - that embodies a potential reason why its facts are true
- ► A justification is a *good* construction if all its branches are *good*
 - Branch evaluation $\mathcal{B}(x_0 o x_1 o \dots)$ is a fact, true or false
- Different notions of branch evaluations
 - \Rightarrow different sorts of construction
 - \Rightarrow different types of semantics

- 2 Justification status of a fact in an interpretation \mathcal{I}
 - Interpretations, possibly 4-valued t (true), f (false), u (unknown) and i (inconsistent)
 - Truth order $\mathbf{f} \leq_t \mathbf{u} \leq_t \mathbf{t}$, $\mathbf{f} \leq_t \mathbf{i} \leq_t \mathbf{t}$
 - The support value of J for a fact x in \mathcal{I} is the value of the worst branch $x \to x_1 \to \ldots$ in J under the branch evaluation \mathcal{B} .

Definition

The supported value of a fact x in \mathcal{I} is the support value of the "best" justification for x.

Notation: $SV(\mathcal{I}, x)$

Example

In a graph (V,E) with nodes V and edges E, define the nodes reachable from node $a \in V$:

Example

In a graph (V,E) with nodes V and edges E, define the nodes reachable from node $a \in V$:

- Facts of the justification frame:
 - Facts $\operatorname{Edge}(v, w)$ and $\sim \operatorname{Edge}(v, w)$ for $v, w \in V$
 - Facts $\operatorname{Reach}(v)$ and $\sim \operatorname{Reach}(v)$ for $v \in V$

Example

In a graph (V,E) with nodes V and edges E, define the nodes reachable from node $a \in V$:

- Facts of the justification frame:
 - Facts $\operatorname{Edge}(v, w)$ and $\sim \operatorname{Edge}(v, w)$ for $v, w \in V$
 - Facts $\operatorname{Reach}(v)$ and $\sim \operatorname{Reach}(v)$ for $v \in V$
- Rules of the justification frame:
 - $\operatorname{Reach}(a) \leftarrow \mathbf{t}$
 - $\operatorname{Reach}(v) \leftarrow \operatorname{Reach}(x), \operatorname{Edge}(x, v) \text{ for } v, x \in V$
 - $\sim \operatorname{Reach}(v) \leftarrow \{\sim \operatorname{Reach}(x) \text{ or } \sim \operatorname{Edge}(x, v) \mid x \in V\} \text{ for all } v \in V$

Example

In a graph (V, E) with nodes V and edges E, define the nodes reachable from node $a \in V$:

- Facts of the justification frame:
 - Facts $\operatorname{Edge}(v, w)$ and $\sim \operatorname{Edge}(v, w)$ for $v, w \in V$
 - Facts $\operatorname{Reach}(v)$ and $\sim \operatorname{Reach}(v)$ for $v \in V$
- Rules of the justification frame:
 - $\operatorname{Reach}(a) \leftarrow \mathbf{t}$
 - $\operatorname{Reach}(v) \leftarrow \operatorname{Reach}(x), \operatorname{Edge}(x, v) \text{ for } v, x \in V$
 - $\sim \operatorname{Reach}(v) \leftarrow \{\sim \operatorname{Reach}(x) \text{ or } \sim \operatorname{Edge}(x,v) \mid x \in V\} \text{ for all } v \in V$
- Elements Edge(v, w) correspond to parameters

Example

In a graph (V, E) with nodes V and edges E, define the nodes reachable from node $a \in V$:

- Facts of the justification frame:
 - Facts $\operatorname{Edge}(v, w)$ and $\sim \operatorname{Edge}(v, w)$ for $v, w \in V$
 - Facts $\operatorname{Reach}(v)$ and $\sim \operatorname{Reach}(v)$ for $v \in V$
- Rules of the justification frame:
 - $\operatorname{Reach}(a) \leftarrow \mathbf{t}$
 - $\operatorname{Reach}(v) \leftarrow \operatorname{Reach}(x), \operatorname{Edge}(x, v) \text{ for } v, x \in V$
 - $\sim \operatorname{Reach}(v) \leftarrow \{\sim \operatorname{Reach}(x) \text{ or } \sim \operatorname{Edge}(x,v) \mid x \in V\} \text{ for all } v \in V$
- Elements Edge(v, w) correspond to parameters

• A specific graph corresponds to an interpretation ${\cal I}$

Let the graph (V, E) be: a b c d

- $\blacktriangleright \text{ Reach}(a) \leftarrow \mathbf{t}$
- ▶ Reach $(v) \leftarrow$ Reach(x), Edge<math>(x, v) for $v, x \in V$
- ▶ $\sim \operatorname{Reach}(v) \leftarrow \{\sim \operatorname{Reach}(x) \text{ or } \sim \operatorname{Edge}(x, v) \mid x \in V\}$ for all $v \in V$

Part of a justification:

KU LEUV

Under the suitable branch evaluation \mathcal{B} :

- finite branches evaluate to their leaf
- infinite branches of positive facts: evaluate to f Reach(d) → Reach(d) → · · · is mapped to f
- ▶ infinite branches of negative facts evaluate to \mathbf{t} ~Reach(d) → ~Reach(d) → ··· is mapped to \mathbf{t}

 $\mathrm{SV}(\mathcal{I}, \mathrm{Reach}(c)) = \mathbf{t}, \mathrm{SV}(\mathcal{I}, \sim \mathrm{Reach}(d)) = \mathbf{t}$

2 Another example

• Let (A, R) be an abstract argumentation frame

2 Another example

• Let (A, R) be an abstract argumentation frame

• a attacks b (aRb) can be modelled with the rule

 ${\sim}b \leftarrow a$

2 Another example

• Let (A, R) be an abstract argumentation frame

• a attacks b (aRb) can be modelled with the rule

 $\sim b \leftarrow a$

Denecker et al. (2015) give characterisations of admissable, stable, preferred, complete and grounded sets in terms fixed points of an operator associated with the supported value

2 Justification theory for logic programs

Various semantics

- Clarks completion
- Kripke-Kleene
- Stable (answer set)
- Well-founded

2 Justification theory for logic programs

Various semantics

- Clarks completion
- Kripke-Kleene
- Stable (answer set)
- Well-founded

 All four can be captured in justification theory with various branch evaluations

3 Outline

Overview of justification theory

2 Justification theory: an intuition

3 Consistency

4 Conclusion

• Both x and $\sim x$ have a supported value in $\mathcal I$

- $\blacktriangleright \text{ Both } x \text{ and } \sim x \text{ have a supported value in } \mathcal{I}$
- These values should not conflict, otherwise the semantics is defect

- Both x and $\sim x$ have a supported value in $\mathcal I$
- These values should not conflict, otherwise the semantics is defect
 - We want that $SV(\mathcal{I}, \sim x) = \sim SV(\mathcal{I}, x)$
 - $(\sim \mathbf{f} = \mathbf{t}, \ \sim \mathbf{t} = \mathbf{f}, \ \sim \mathbf{u} = \mathbf{u} \text{ and } \sim \mathbf{i} = \mathbf{i})$

- Both x and $\sim x$ have a supported value in $\mathcal I$
- These values should not conflict, otherwise the semantics is defect
 - We want that $SV(\mathcal{I}, \sim x) = \sim SV(\mathcal{I}, x)$
 - $(\sim \mathbf{f} = \mathbf{t}, \ \sim \mathbf{t} = \mathbf{f}, \ \sim \mathbf{u} = \mathbf{u} \text{ and } \sim \mathbf{i} = \mathbf{i})$
 - If $SV(\mathcal{I}, \sim x) = \sim SV(\mathcal{I}, x)$ for all x, then $SV(\mathcal{I}, \cdot)$ is also an interpretation

Theorem

If the rules for x and $\sim x$ are "complementary", then

 $\mathrm{SV}(\mathcal{I}, x) \leq_t \sim \mathrm{SV}(\mathcal{I}, \sim x)$

Theorem

If the rules for x and $\sim x$ are "complementary", then

$$SV(\mathcal{I}, x) \leq_t \sim SV(\mathcal{I}, \sim x)$$

Example of complementary

Abstract Argumentation Frame: $A = \{a,b,c\}$ with $R = \{(a,b),(c,b),(c,a),(a,c)\}$

Theorem

If the rules for x and $\sim x$ are "complementary", then

$$SV(\mathcal{I}, x) \leq_t \sim SV(\mathcal{I}, \sim x)$$

Example of complementary

Abstract Argumentation Frame: $A = \{a, b, c\}$ with $R = \{(a, b), (c, b), (c, a), (a, c)\}$ \blacktriangleright Rules $\{\sim b \leftarrow a \qquad \sim b \leftarrow c \qquad \sim a \leftarrow c \qquad \sim c \leftarrow a\}$

Theorem

If the rules for x and $\sim x$ are "complementary", then

$$SV(\mathcal{I}, x) \leq_t \sim SV(\mathcal{I}, \sim x)$$

Example of complementary

Abstract Argumentation Frame:
$$A = \{a, b, c\}$$
 with
 $R = \{(a, b), (c, b), (c, a), (a, c)\}$
 \blacktriangleright Rules $\{\sim b \leftarrow a \qquad \sim b \leftarrow c \qquad \sim a \leftarrow c \qquad \sim c \leftarrow a\}$
 \blacktriangleright But also rules $\{b \leftarrow \sim a, \sim c \qquad a \leftarrow \sim c \qquad c \leftarrow \sim a\}$

15 Consistency in Justification Theory

KU LEUVEN

What about other direction?

- What about other direction?
- Does not always hold

What about other direction?

Does not always hold

Theorem

For the branch evaluations capturing Clarks completion, Kripke-Kleene, stable and well-founded semantics and "complementary" rules we have

$$SV(\mathcal{I}, x) = \sim SV(\mathcal{I}, \sim x)$$

Proof uses heavy machinery and clever "pasting" of justifications

4 Outline

1 Overview of justification theory

2 Justification theory: an intuition

3 Consistency

4 Conclusion

4 Future work

We proved this consistency result only for particular branch evaluations

4 Future work

- We proved this consistency result only for particular branch evaluations
- ► Can we find a general property of branch evaluations so that SV(I, x) = ~ SV(I, ~x)?

4 Future work

- We proved this consistency result only for particular branch evaluations
- Can we find a general property of branch evaluations so that SV(I, x) = ~ SV(I, ~x)?
- What other formalisms can be expressed in justification theory?

- Justification as a description of a construction
- ► A flexible theory

Justification as a description of a construction

A flexible theory

- Captures various semantics of formalisms
 - Logic programming semantics
 - Abstract argumentation framework
 - ...

Justification as a description of a construction

A flexible theory

- Captures various semantics of formalisms
 - Logic programming semantics
 - Abstract argumentation framework
 - ...
- Used in computational tools

Justification as a description of a construction

A flexible theory

- Captures various semantics of formalisms
 - Logic programming semantics
 - Abstract argumentation framework
 - ...
- Used in computational tools
- Consistency result for particular semantics
 - Clarks completion
 - Kripke-Kleene
 - Stable
 - Well-founded