Exploiting Justifications for Lazy Grounding of
Answer Set Programs

Bart Bogaerts' Antonius Weinzierl
1t KU Leuven, Department of Computer Science
Celestijnenlaan 200A, Leuven, Belgium

1 Aalto University, Department of Computer Science

FI-00076 AALTO, Finland

A 0
Aalto University

July 18, 2018

Bart Bogaerts is a postdoctoral fellow of the Research Foundation — Flanders (FWO).
Antonius Weinzier| has been supported by the Academy of Finland, project 251170.

Introduction

e Answer-Set Programming (ASP) a KR formalism.
e Rule-based, nonmonotonic, expressive (NP-hard).

Introduction

e Answer-Set Programming (ASP) a KR formalism.
e Rule-based, nonmonotonic, expressive (NP-hard).

Example (Encoding Graph Coloring)
{pickedCol(N, C)} < node(N) A color(C).

colored(N) < pickedCol(N, C).
< node(N) A —colored(N).

<« node(N) A pickedCol(N, C1) A pickedCol(N, C2) A C1 # C2.
< edge(N1, N2) A pickedCol(N1, C) A pickedCol(N2, C).

e Formal semantics: answer sets.

ASP Evaluation

e Traditional two-step evaluation: ground-and-solve.
e Grounding: replace variables by ground terms.
e Solving: mainly SAT techniques.

ASP Evaluation

e Traditional two-step evaluation: ground-and-solve.
e Grounding: replace variables by ground terms.
e Solving: mainly SAT techniques.

Example (Grounding)

{pickedCol(N, C)} + node(N) A color(C).

ASP Evaluation

e Traditional two-step evaluation: ground-and-solve.
e Grounding: replace variables by ground terms.
e Solving: mainly SAT techniques.

Example (Grounding)

{pickedCol(N, C)} + node(N) A color(C).

color(red). color(blue). color(green). color(yellow).

node(1). node(2).

ASP Evaluation

e Traditional two-step evaluation: ground-and-solve.
e Grounding: replace variables by ground terms.
e Solving: mainly SAT techniques.

Example (Grounding)

{pickedCol(N, C)} + node(N) A color(C).

color(red). color(blue). color(green). color(yellow).
node(1). node(2).

{pickedCol(1, red)} <— node(1) A color(red).
{pickedCol(1, green)} < node(1) A color(green).
{pickedCol(1, blue)} <— node(1) A color(blue).
{pickedCol(1, yellow)} < node(1) A color(yellow).

ASP Evaluation

e Traditional two-step evaluation: ground-and-solve.
e Grounding: replace variables by ground terms.
e Solving: mainly SAT techniques.

Example (Grounding)

{pickedCol(N, C)} + node(N) A color(C).

color(red). color(blue). color(green). color(yellow).
node(1). node(2).

{pickedCol(1, red)} <— node(1) A color(red).
{pickedCol(1, green)} < node(1) A color(green).
{pickedCol(1, blue)} <— node(1) A color(blue).
{pickedCol(1, yellow)} < node(1) A color(yellow).
{pickedCol(2, red)} +— node(2) A color(red).

{pickedCol(2, yellow)} < node(2) A color(yellow). 2

ASP Evaluation

e Traditional two-step evaluation: ground-and-solve.
e Grounding: replace variables by ground terms. (exponentiall)
e Solving: mainly SAT techniques.

Example (Grounding)

{pickedCol(N, C)} + node(N) A color(C).

color(red). color(blue). color(green). color(yellow).
node(1). node(2).

{pickedCol(1, red)} <— node(1) A color(red).
{pickedCol(1, green)} < node(1) A color(green).
{pickedCol(1, blue)} <— node(1) A color(blue).
{pickedCol(1, yellow)} < node(1) A color(yellow).
{pickedCol(2, red)} +— node(2) A color(red).

{pickedCol(2, yellow)} < node(2) A color(yellow). 2

Lazy-Grounding

e Grounding explosion, problem in practice.

e = Avoid grounding bottleneck.

Lazy-Grounding

e Grounding explosion, problem in practice.
e = Avoid grounding bottleneck.

e lLazy grounding:

e Interleave grounding and solving phases.
e Several solvers available (GASP, ASPeRiX, Omiga, Alpha).
e New foundation for solving = brings own challenges.

Lazy-Grounding

Grounding explosion, problem in practice.

= Avoid grounding bottleneck.

Lazy grounding:

e Interleave grounding and solving phases.
e Several solvers available (GASP, ASPeRiX, Omiga, Alpha).
e New foundation for solving = brings own challenges.

Alpha combines lazy-grounding with CDCL (conflict-driven

clause learning).

Lazy-Grounding

Grounding explosion, problem in practice.

= Avoid grounding bottleneck.

Lazy grounding:

e Interleave grounding and solving phases.
e Several solvers available (GASP, ASPeRiX, Omiga, Alpha).
e New foundation for solving = brings own challenges.

Alpha combines lazy-grounding with CDCL (conflict-driven

clause learning).

e But: sometimes search gets stuck.

Alpha’s Core Algorithm

Alpha Algorithm: perform iteratively these steps by priority:

1. (conflict): if clause violated, analzye conflict (1UIP), learn
new clause, backjump (CDCL).

2. (propagate): unit propagation assign false/true (BCP).

3. (justify): set rule head justified-true if all positive body atoms
justified-true.

4. (ground): ground new rules based on atoms assigned true.

5. (decide): pick one atom and assign it true or false.

6. (justification-conflict): if all atoms assigned and some atom
true but not justified-true, backtrack last decision.

Alpha’s Core Algorithm

Alpha Algorithm: perform iteratively these steps by priority:

1. (conflict): if clause violated, analzye conflict (1UIP), learn
new clause, backjump (CDCL).

2. (propagate): unit propagation assign false/true (BCP).

3. (justify): set rule head justified-true if all positive body atoms
justified-true.

4. (ground): ground new rules based on atoms assigned true.

5. (decide): pick one atom and assign it true or false.

6. (justification-conflict): if all atoms assigned and some atom
true but not justified-true, backtrack last decision.

e Novel characterization based on justifications.
e Previously, three truth values: false/must-be-true/true.
e Using justification: false/true/justified-true.

Problem in Justification-Conflict

Example (Graph Coloring, again)
If colored(2) is true but not justified, what caused it?
colored(N) < pickedCol(N, C).
< node(N) N —colored(N).
Trivial in the ground case. Hard to say without grounding.

Problem in Justification-Conflict

Example (Graph Coloring, again)
If colored(2) is true but not justified, what caused it?
colored(N) < pickedCol(N, C).
< node(N) N —colored(N).
Trivial in the ground case. Hard to say without grounding.

e = Solver cannot backjump and revert the wrong guess.

e = Chronological backtracking, exponential time overhead.

Justifications

e Justification J for —p explains for each rule that could derive
p, why it does not fire in interpretation /.

Justifications

e Justification J for —p explains for each rule that could derive
p, why it does not fire in interpretation /.

Example
colored(N) <— pickedCol(N, C).

—pickedColor(2, red)

MkedColor(Z blue)
/

—colored(2) ————— —pickedColor(2, green
O=—— (2, green)

—pickedColor (2, yellow)

Justifications (2)

Theorem
If p is true but not justified in justification-conflict, then —p is
Justified.

Justifications (2)

Theorem
If p is true but not justified in justification-conflict, then —p is
Justified.

e Problem: justifications consider ground rules.

Example
T
~p(1) = =p(D) T —q(1) — (1) — ns(1)
L ~q(2) —= ~s(2) — ns(2)
—t(4) —t(5) . —q(3) — —s(3) — ns(3)

Justifications (2)

Theorem
If p is true but not justified in justification-conflict, then —p is
Justified.

e Problem: justifications consider ground rules.
= Lift justifications.

Example

—|vr
X)(X € C) ———=q(1) — —s(1) — ns(1)

J sﬂq(ﬂ e —s(2) — ns(2)

-t(X)(X € C\ {1..3}) —q(3) — —s(3) — ns(3)

Algorithm

e In justification-conflict, compute justification J.
e Turn justification J for —p into new clause:

e leaves L of J influence p being not justified.
o New clause: —pV\/,c, ¢

Algorithm

e In justification-conflict, compute justification J.
e Turn justification J for —p into new clause:

e leaves L of J influence p being not justified.
o New clause: —pV\/,c, ¢

Theorem
New clause is in conflict with current solver state, and satisfied in
all answer sets.

Algorithm

e In justification-conflict, compute justification J.
e Turn justification J for —p into new clause:

e leaves L of J influence p being not justified.
o New clause: —pV\/,c, ¢

Theorem
New clause is in conflict with current solver state, and satisfied in
all answer sets.

e Add clause = standard conflict analysis does backjumping.

Algorithm

e In justification-conflict, compute justification J.
e Turn justification J for —p into new clause:

e leaves L of J influence p being not justified.
o New clause: —pV\/,c, ¢

Theorem
New clause is in conflict with current solver state, and satisfied in
all answer sets.

e Add clause = standard conflict analysis does backjumping.

e Computing J: top-down analysis (details: paper, poster).

Evaluation (1)

Size || Alpha Alpha; | Clingo
10 0.81 0.79 0.00
20 2.55 0.81 0.00
30 300.00(5) | 0.85 0.00

(5)

40 | 300.00(5) | 0.92 | 0.00
50 || 300.00(5) | 0.90 | 0.00
65 || 300.00(5) | 0.86 | 0.00
100 || 300.00(5) | 1.02 | 0.00
200 | 300.00(5) | 1.04 | 0.01
400 || 300.00(5) | 1.23 | 0.01

)

1000 || 300.00(5) | 1.56 0.01

Table 1: Benchmark results for Two-way-derivation. Runtime is in
seconds, timeouts in parentheses.

Evaluation (2)

Size || Alpha | Alpha, Alpha | Alpha; | Clingo
Original (no constraint) || With constraint || Both
10 5.58 1.10 1.11 1.07 0.01
20 39.20(1) 1.46 1.31 1.25 0.01
30 69.31(2) 1.92 1.59 1.62 0.01
40 252.74(8) 2.33 1.88 1.97 0.01
75 300.00(10) | 3.96 3.35 3.38 0.02
100 || 300.00(10) | 5.90 4.76 5.03 0.03
200 | 300.00(10) | 13.44 10.27 | 9.96 0.08
400 || 300.00(10) | 33.96 22.15 | 24.85 0.27
500 || 300.00(10) | 44.62 32.27 | 3355 0.39
750 || 300.00(10) | 82.97 68.20 | 66.50 0.87
1000 || 300.00(10) | 131.17 101.88 | 105.93 || 1.54

Table 2: Benchmark results for Graph-5-coloring. Runtime in seconds,

timeouts in parentheses.
10

Size || Alpha Alpha; Clingo

10 0.88 0.89 0.01
20 1.04 1.05 0.03
40 11.46 191 0.26
80 60.99(2) | 3.39 2.62

(2)

100 || 90.92(3) | 4.47 5.53
200 || 91.23(3) | 13.64 | 47.16
400 32.29(1) | 32.31(1) | 276.18(8 memout)
1000 || 3.80 3.69 300.00(10 memout)
2000 || 92.90(3) | 92.86(3) | 300.00(10 memout)
4000 || 97.16(3) | 97.05(3) | 300.00(10 memout)

Table 3: Benchmark results for Non-partition-removal-coloring. Runtime
in seconds, timeouts in parentheses.

11

Conclusion

Addressed inherent problem of lazy grounding.

Benchmarks: Justification analysis can avoid exponential
overhead of chronological backtracking.

e Implemented in the lazy-grounding ASP solver Alpha.
github.com/alpha-asp/alpha

More details on the poster.

12

Conclusion

Addressed inherent problem of lazy grounding.

Benchmarks: Justification analysis can avoid exponential
overhead of chronological backtracking.

e Implemented in the lazy-grounding ASP solver Alpha.
github.com/alpha-asp/alpha

More details on the poster.

Thanks.

12

