
Safe Inductions and Their Applications in Knowledge RepresentationI

Bart Bogaertsa,∗, Joost Vennekensa,b, Marc Deneckera

aDepartment of Computer Science, KU Leuven, 3001 Heverlee, Belgium
bDepartment of Computer Science, KU Leuven, Campus De Nayer, 2860 Sint-Katelijne-Waver, Belgium

Abstract

In many knowledge representation formalisms, a constructive semantics is defined based on sequential appli-
cations of rules or of a semantic operator. These constructions often share the property that rule applications
must be delayed until it is safe to do so: until it is known that the condition that triggers the rule will
continue to hold. This intuition occurs for instance in the well-founded semantics of logic programs and in
autoepistemic logic. In this paper, we formally define the safety criterion algebraically. We study properties
of so-called safe inductions and apply our theory to logic programming and autoepistemic logic. For the
latter, we show that safe inductions manage to capture the intended meaning of a class of theories on which
all classical constructive semantics fail.

Keywords: approximation fixpoint theory, lattice operator, inductive definitions, induction process,
construction, well-founded semantics, groundedness, logic programming, autoepistemic logic, abstract
argumentation

1. Introduction

In many fields of computational logic, natural forms of induction show up. Such an induction can be
seen as a sequence of semantic structures obtained by iterative applications of rules or a semantic operator.
For instance, in logic programming, it is natural to think of sequences of interpretations where at each
stage a number of rules whose bodies are satisfied are triggered (i.e., their head is added to the current
interpretation). For positive logic programs, all such sequences converge to the minimal model. For non-
positive programs, this strategy may yield meaningless results. For instance, for the program

P =

{
a
b← ¬a

}
,

one such sequence is
N1 = ∅, {b}, {b, a},

the limit of which is not even a supported model of the logic program. On the other hand, the sequence

N2 = ∅, {a}

is another such sequence that does end in the intended model of P, namely its perfect model. Intuitively,
what is wrong with N1 is that the rule b← ¬a is applied too soon, before the value of a is established. For

IA short version of this paper is accepted for publication in the proceedings of the IJCAI’17 conference (Bogaerts et al.,
2017). This paper extends the previous work with more theoretical results, examples, proofs of all propositions and applications
of the work to argumentation frameworks.

∗Corresponding author
Email addresses: bart.bogaerts@cs.kuleuven.be (Bart Bogaerts), joost.vennekens@cs.kuleuven.be (Joost Vennekens),

marc.denecker@cs.kuleuven.be (Marc Denecker)

Preprint submitted to Elsevier March 13, 2018

2 PRELIMINARIES: LATTICES AND OPERATORS 2

stratified programs, like P, this problem has been resolved, e.g., by Apt et al. (1988). For the general case,
the well-founded semantics (Van Gelder et al., 1991) offers a solution that uses three-valued interpretations
instead of two-valued interpretations.

In recent work, the notions of natural and safe inductions for inductive definitions were introduced
(Denecker and Vennekens, 2014; Denecker et al., 2017). It was argued that this kind of process forms the
essence of our understanding of inductive definitions.

In this paper, we lift those ideas of safe and natural inductions to a more general setting: we provide
a principled study of such inductions in the context of approximation fixpoint theory (AFT) (Denecker,
Marek and Truszczyński (DMT) 2000), an algebraic theory that provides a unifying framework of semantics
of nonmonotonic logics. We show convergence of safe inductions in this general setting and study the
relationship between (algebraic) safe inductions and various fixpoints defined in approximation fixpoint
theory.

By presenting our theory in AFT, our results are broadly applicable. DMT (2000) originally developed
AFT to unify semantics of logic programs (van Emden and Kowalski, 1976), autoepistemic logic (Moore,
1985) and default logic (Reiter, 1980). Later, it was also used to define semantics of extensions of logic
programs, such as HEX logic programs (Antic et al., 2013) and an integration of logic programs with
description logics (Liu et al., 2016). Strass (2013) showed that many semantics for Dung’s argumentation
frameworks (AFs) (Dung, 1995) and abstract dialectical frameworks (ADFs) (Brewka et al., 2013) can be
obtained by direct application of AFT. Bogaerts and Cruz-Filipe (2018) showed that AFT has applications
in database theory, for defining semantics of active integrity constraints (Flesca et al., 2004).

The theory we present in this paper induces for each of the above logics notions of (safe) inductions and a
safe semantics. Our complexity results are obtained for general operators and hence can also be transferred
to various logics of interest. Throughout the paper, we give examples from logic programming.

In Section 7, we apply our theory to autoepistemic logic. There, we show that safe inductions induce
a constructive semantics that captures the intended semantics of a class of theories for which classical
constructive semantics fail. This failure was recently exposed and solved using a notion of set-inductions
which is based on sets of lattice elements instead of intervals (which are standard in AFT) (Bogaerts et al.,
2016). We show that safe inductions provide an alternative solution to this problem. Our solution is
more direct: in contrast to set-inductions or well-founded inductions (Denecker and Vennekens, 2007), safe
inductions do not require any form of approximation; they are sequences in the original lattice. For logic
programming, this means that they are sequences of interpretations such that some atoms are derived in
each step. For AEL, this means that they are sequences of possible world structures such that additional
knowledge is derived in each step.

In Section 8, we apply our theory to Dung’s argumentation frameworks (Dung, 1995), where we show
the surprising result that two different operators that exist for a given argumentation framework have the
same safely defined point. Furthermore, this point corresponds to an existing semantics: it is the so-called
grounded extension.

The rest of this paper is structured as follows. In Section 2, we give preliminaries regarding lattices
and operators. In Section 3, we define (safe) inductions and provide some basic results. We continue by
studying complexity of some inference problems related to safe inductions in Section 4. In Section 5, we
recall the basics of AFT; we use this in Section 6 tos study how (safe) inductions relate to various fixpoints
studied in AFT. Afterwards, in Sections 7 and 8, we apply our general theory to autoepistemic logic and
argumentation frameworks respectively. We conclude in Section 9.

2. Preliminaries: Lattices and Operators

A partially ordered set (poset) 〈L,≤〉 is a set L equipped with a partial order ≤, i.e., a reflexive, anti-
symmetric, transitive relation. We write x < y for x ≤ y ∧ x 6= y. If S is a subset of L, then x is an upper
bound, respectively a lower bound of S if for every s ∈ S, it holds that s ≤ x, respectively x ≤ s. An element
x is a least upper bound, respectively greatest lower bound of S if it is an upper bound that is smaller than
every other upper bound, respectively a lower bound that is greater than every other lower bound. If S

3 SAFE INDUCTIONS 3

has a least upper bound, respectively a greatest lower bound, we denote it lub(S), respectively glb(S). As
is custom, we sometimes call a greatest lower bound a meet, and a least upper bound a join and use the
related notations

∧
S = glb(S), x ∧ y = glb({x, y}),

∨
S = lub(S) and x ∨ y = lub({x, y}). We call 〈L,≤〉

a complete lattice if every subset S of L has a least upper bound and a greatest lower bound. A complete
lattice has a least element ⊥ and a greatest element >.

An operator O : L → L is monotone if x ≤ y implies that O(x) ≤ O(y) and anti-monotone if x ≤ y
implies that O(y) ≤ O(x). An element x ∈ L is a prefixpoint, a fixpoint, a postfixpoint of O if O(x) ≤ x,
respectively O(x) = x, x ≤ O(x). Every monotone operator O in a complete lattice has a least fixpoint
(Tarski, 1955), denoted lfp(O), which is also O’s least prefixpoint and the limit of any terminal monotone
induction of O, defined below.

Definition 2.1. A monotone induction of a lattice operator O : L→ L is an increasing sequence (for some
ordinal β) (xi)i≤β of elements xi ∈ L satisfying

• x0 = ⊥,

• xi ≤ xi+1 ≤ O(xi), for successor ordinals i+ 1 ≤ β,

• xλ = lub({xi | i < λ}), for limit ordinals λ ≤ β.

A monotone induction is terminal if O(xβ) = xβ .

Logic Programming. Let Σ be an alphabet, i.e., a collection of symbols which are called atoms. A literal
is an atom p or the negation ¬q of an atom q. The former are called positive literals; the latter are called
negative literals. A logic program P is a set of rules r of the form h ← ϕ, where h is an atom called the
head of r, denoted head(r), and ϕ is a conjunction of literals called the body of r, denoted body(r). An
interpretation I of Σ is a subset of Σ. The set of interpretations 2Σ forms a lattice equipped with the order
⊆. The truth value (t or f) of a propositional formula ϕ in a structure I, denoted ϕI , is defined as usual.
With a logic program P, we associate an immediate consequence operator TP (van Emden and Kowalski,
1976) that maps a structure I to the structure

{p ∈ Σ | ∃r ∈ P : head(r) = p ∧ body(r)I = t}.

This is an operator on the lattice 〈2Σ,⊆〉. We call a logic program P positive if for each rule r ∈ P, body(r)
consists of only positive literals. If P is positive, then TP is monotone.

3. Safe Inductions

In this section, we define the central concept of this paper, namely the notion of a safe induction and
study its basic properties. Let L be a lattice and O an operator on L, fixed throughout the rest of this
paper.

Definition 3.1. We call y ∈ L derivable from x ∈ L if x ≤ y ≤ x ∨O(x).

Definition 3.2. Let x be an element of L. An O-induction in x is a sequence (xi)i≤β such that

• x0 = x,

• xi+1 is derivable from xi for each i < β,

• xλ = lub({xi | i < λ}), for limit ordinals λ ≤ β.

We call xβ the limit of (xi)i≤β .

3 SAFE INDUCTIONS 4

Intuitively, we view O as an operator that constructs certain lattice points. An O-induction is the
associated construction process. Intuitively, if we are at a stage xi, O(xi) represents what can be concluded
from this given stage. Therefore, the next step xi+1 in the induction is at least xi (xi+1 ≥ xi) and at most
the combination of xi and what can be concluded from it (xi+1 ≤ xi ∨O(xi)). In the context of a powerset
lattice (a lattice of the form 〈2S ,⊆〉), this means that xi+1 ⊆ xi ∪ O(xi), i.e., xi+1 only contains elements
that were already in xi or such that O concludes them from xi.

Definition 3.3. Let N = (xi)i≤β and N ′ = (yi)i≤α be two O-inductions. We say that N ′ extends N if
α ≥ β and xi = yi for all i ≤ β. The extension is strict if yα 6= xβ .

Definition 3.4. An O-induction is terminal if there exists no O-induction that strictly extends it.

Proposition 3.5. An O-induction (xi)i≤β is terminal if and only if xβ is a prefixpoint of O.

Proof. Let N denote (xi)i≤β .
If xβ is a prefixpoint of O, then O(xβ) ≤ xβ , hence, in each extension (xi)i≤α with α > β of N , it must

hold that
xβ ≤ xβ+1 ≤ xβ ∨O(xβ) = xβ ,

hence xβ+1 = xβ and by induction also xα = xβ .
On the other hand, if xβ is not a prefixpoint, then (xi)i≤β+1 with xβ+1 = xβ ∨O(xβ) is a strict extension

of N .

Proposition 3.6. If O is monotone, all monotone inductions of O (see Definition 2.1) are O-inductions
in ⊥ and vice versa.

Proof. It is clear that all monotone inductions in ⊥ are O-inductions since the definitions only differ in the
second conditions, which is more restrictive for monotone inductions.

For the other direction, let (xi)i≤β be any O-induction. We first claim that each xi is a postfixpoint of O.
This claim is clear for i = 0 and the limit of an increasing sequence of postfixpoints of a monotone operator
is a postfixpoint. If xi is a postfixpoint, the xi ≤ O(xi) and hence O(xi) ∨ xi = O(xi). Furthermore, since
O is monotone, O(xi) ≤ O(xi+1). Combining these two equations we get that

xi ≤ xi+1 ≤ O(xi) ∨ xi = O(xi) ≤ O(xi+1)

and see that indeed, xi+1 is a postfixpoint as well.
Hence, for each i, xi ≤ O(xi) and thus xi∨O(xi) = O(xi). Thus, (xi)i≤β is indeed a monotone induction,

which we needed to show.

Corollary 3.7. If O is monotone, all terminal O-inductions in ⊥ converge to lfp(O).

There is a high degree of non-determinism in O-inductions. For monotone operators O, despite this non-
determinism, all O-inductions converge to the same point. As such, O-inductions provide (if O is monotone)
a way to construct an intended lattice point (lfp(O)). For non-monotone operators, the situation is quite
different: O-inductions might not converge to a single point.

Example 3.8. Let P be the logic program 
p
q ← p
r ← s
r ← p


This is a positive logic program, hence TP is monotone. The following are the three terminal strict TP -
inductions in ⊥ = ∅:

N1 = (∅, {p}, {p, q}, {p, q, r})
N2 = (∅, {p}, {p, r}, {p, q, r})
N3 = (∅, {p}, {p, q, r})

They indeed all converge to the intended model of P, namely the least fixpoint of TP . N

3 SAFE INDUCTIONS 5

Example 3.9. Let P be the logic program {
p
q ← ¬p

}
This is a simple, stratified logic program (Apt et al., 1988; Przymusinski, 1988). Its intended fixpoint (its
so-called perfect model) is {p}. Let TP denote its immediate consequence operator. The following are the
three terminal strict TP -inductions in ⊥ = ∅.

N1 = (∅, {q}, {p, q})
N2 = (∅, {p, q})
N3 = (∅, {p}) N

The previous example shows that certain derivations in an O-induction can happen prematurely. For
instance, in N1 and N2, q is derived by the non-monotonic rule q ← ¬p. As soon as p is derived, this rule no
longer applies: q 6∈ TP({p, q}) = {p}. In these two sequences, the rule was applied when it was not safe to do
so. Below, we formally define a notion of safety to avoid such premature derivations, i.e., to only derive facts
that remain derivable, regardless of which other derivations are made further on in the induction process.

Definition 3.10. Let x′ be derivable from x. We say that x′ is safely derivable from x if for each O-induction
(xi)i≤β in x, it holds that x′ ≤ x ∨O(xβ).

An O-induction (xi)i≤β is safe if xi+1 is safely derivable from xi for each i < β.

In words, x′ is safely derivable from x if no matter what other derivations we make (ending up in xβ),
x′ consists at most of what we have in x combined with what O concludes from xβ , i.e., x′ ≤ x ∨O(xβ).

Proposition 3.11. If y is safely derivable from x and x ≤ z ≤ y, then z is safely derivable from x.

Proof. It follows directly from the definition that z is derivable from x. To see that it is safely derivable,
take any O-induction in x with limit xβ . Then z ≤ y ≤ x ∨O(xβ) and the result follows.

Proposition 3.12. If Y ⊆ L and each y ∈ Y is safely derivable from x, then
∨
Y is safely derivable from

x. Hence, for each x, there exists a largest y such that y is safely derivable from x.

Proof. It is easy to see that
∨
Y is derivable from x. To see that it is safely derivable, take any O-induction

in x with limit xβ . Then y ≤ x ∨ O(xβ) for each y ∈ Y and hence also
∨
Y ≤ x ∨ O(xβ) and the result

follows.

Example 3.13 (Example 3.8 continued). All derivations in all of the inductions here are safe. Consider for
instance the derivation of {p, r} from {p} in N2. For each interpretation I ⊃ {p}, it holds that r ∈ TP(I).
Hence, for each TP induction (xi)i≤β in {p} it holds that xβ ⊃ {p} and thus that r ∈ TP(xβ). Now this
means that {p, r} ⊆ {p} ∪ TP(xβ) and thus indeed, this derivation is safe. N

The situation in Example 3.13 is not a coincidence, as the following proposition shows.

Proposition 3.14. If O is monotone and y is derivable from x, then y is safely derivable from x.

Proof. Suppose y is derivable from x, i.e., that x ≤ y ≤ O(x) ∨ x. Let (xi)i≤β be any O-induction in x.
Then xβ ≥ x and hence, by monotonicity of O, O(xβ) ≥ O(x). Thus, indeed y ≤ x ∨O(x) ≤ x ∨O(xβ), as
we needed to show.

For non-monotone operators, the situation is different, as is to be expected.

Example 3.15 (Example 3.9 continued). The (intuitively) wrong derivation of {q} from ∅ is not safe.
Indeed, N1 is a TP -induction with as limit {p, q}, but

{q} 6⊆ ∅ ∪ TP({p, q}) = ∅ ∪ {p} = {p}. N

3 SAFE INDUCTIONS 6

An induction is terminal if it cannot be extended into a strictly larger induction. We define a similar
concept for safe inductions.

Definition 3.16. A safe O-induction N is safe-terminal if there exists no strict extension N ′ of N that is
safe.

In Example 3.9, we showed that not all terminal O-inductions converge to the same lattice point. Luckily,
the safety criterion leads to a better situation.

Theorem 3.17. For each x ∈ L, all safe-terminal O-inductions in x converge to the same lattice point.

In order to prove this theorem, we use the following result.

Lemma 3.18. Let N = (xi)i≤β, N ′ = (yi)i≤γ be two safe O-inductions with x0 = y0. For every i ≤ β, j ≤ γ
it holds that if i + 1 ≤ β then xi+1 ∨ yj is safely derivable from xi ∨ yj and if j + 1 ≤ γ then xi ∨ yj+1 is
safely derivable from xi ∨ yj.

Proof. The product order ≤ for ordinal pairs (given by (i, j) ≤ (k, l) if i ≤ k, j ≤ l) is a well-founded order,
hence every set of such pairs contains minimal elements in this order.

Assume towards contradiction that pairs (i, j) ≤ (β, γ) exist that contradict this lemma, and let (i, j)
be a minimal such pair in the product order. Hence, either xi+1 ∨ yj exists and is not safely derivable from
xi ∨ yj , or xi ∨ yj+1 exists and is not safely derivable from xi ∨ yj .

Assume that it is the first case. Thus, i + 1 ≤ β and xi+1 ∨ yj is not safely derivable from xi ∨ yj . By
the minimality of (i, j), the sequence N” = (xi ∨ yk)0≤k≤j is a safe O-induction from xi with limit xi ∨ yj .
Since xi ≤ xi+1, also xi ∨ yj ≤ xi+1 ∨ yj . Since xi+1 is safely derivable from xi, and N” is an O-induction
with limit xi ∨ yj , it holds that xi+1 ≤ xi ∨ O(xi ∨ yj), hence also xi+1 ∨ yj ≤ xi ∨ yj ∨ O(xi ∨ yj). Hence
xi+1 ∨ yj is derivable from xi ∨ yj . We now show that this derivation is safe.

Since xi+1 is safely derivable from xi, for each O-induction in xi with limit z, it must hold that xi+1 ≤
xi ∨O(z). Now, each O-induction in xi ∨ yj can be turned into an O-induction in xi by composing N” with
it, hence, for each O-induction from xi ∨ yj with limit z, it must also hold that xi+1 ≤ xi ∨O(z), thus that
xi+1 ∨ yj ≤ xi ∨ yj ∨O(z). Thus, xi+1 ∨ yj is safely derivable from xi ∨ yj , which yields a contradiction.

The second case is obtained by a symmetrical argument.

Proof of Theorem 3.17. Let N = (xi)i≤β and N ′ = (yi)i≤γ be two safe-terminal O-inductions. Consider
the sequence (zi)i≤β+γ where zi = xi if i ≤ β and zβ+i = xβ ∨ yi if i ≤ γ. By Lemma 3.18, this sequence
is a safe O-induction. Since N is safe-terminal, this sequence cannot be a strict extension of N and hence
xβ ∨ yγ = zβ+γ = xβ , i.e., yγ ≤ xβ . A symmetric argument shows that xβ ≤ yγ , hence xβ = yγ , as
desired.

Definition 3.19. The safely defined point byO, denoted safe(O) is the limit of all safe-terminalO-inductions
in ⊥.

Example 3.20 (Example 3.9 continued). The induction N3 is the only safe-terminal induction in ∅ in which
each derivation is strict. Its limit is the intended model of P, namely the perfect model. N

By Theorem 3.17, the safely defined point is well-defined. We now study some properties of the safely
defined point.

Proposition 3.21. For any operator O, safe(O) is a postfixpoint of O, i.e., safe(O) ≤ O(safe(O)).

Proof. Let N = (xi)i≤β be a safe O-induction in ⊥. We show by induction that xi ≤ O(xβ) for each i.
The claim trivially holds for i = 0 since x0 = ⊥. It is preserved in limit ordinals i since

∨
j<i xj ≤ O(xβ) if

xj ≤ O(xβ) for each j < i. We show that it also holds for successor ordinals. Hence, assume that xi ≤ O(xβ)
with i < β and that xi+1 is safely derivable from xi. Since N is an O-induction and xi+1 is safely derivable
from xi, it must hold that

xi+1 ≤ xi ∨O(xβ) ≤ O(xβ) ∨O(xβ) = O(xβ)

and the result follows.

3 SAFE INDUCTIONS 7

Example 3.22. The safely defined point is not always a fixpoint of O. Consider a lattice {⊥,>} with two
elements and an operator O that maps ⊥ to > and > to ⊥. The safely defined point by O is ⊥, since > is not
safely derivable (> 6≤ ⊥ ∨O(>)). Here, the O-induction N = (⊥) is safe-terminal, but not terminal. N

Definition 3.23. We call an operator O complete if the safely defined point by O is a fixpoint of O, i.e., if
O(safe(O)) = safe(O).

We will be mostly interested in complete operators O, as they uniquely determine a fixpoint of interest
of O.

Proposition 3.24. An operator O is complete if and only if every safe-terminal O-induction in ⊥ is
terminal.

Proof. If O is complete, safe(O) is a fixpoint of O. It follows then from Proposition 3.5 that every O-
induction with limit safe(O) is terminal.

On the other hand, assume that every safe-terminal O-induction in ⊥ is terminal. Thus (by Proposition
3.5) safe(O) is a prefixpoint of O. By Proposition 3.21, safe(O) is also a postfixpoint of O. Hence, it must
be a fixpoint of O.

Proposition 3.25. If O is a monotone operator, then O is complete and safe(O) = lfp(O).

Proof. From the monotonicity of O, it easily follows that every O-induction is safe. The result then follows
from Corollary 3.7.

Proposition 3.26. If O is an anti-monotone operator, then safe(O) = lfp(O2).

Proof. Consider for any ordinal β the sequences N = (xi)i≤β given by

x0 = ⊥
xi+1 = O(yi), for each i < β

xλ =
∨
i<λ

xi, for each limit ordinal λ ≤ β

and (yi)i≤β given by

y0 = >
yi+1 = O(xi), for each i < β

yλ =
∧
i<λ

yi, for each limit ordinal λ ≤ β

We will prove the following claims about this sequence.

1. For each i ≤ β, xi ≤ yi and if i < β, xi ≤ xi+1 and yi+1 ≤ yi.
2. (xi)i≤β is a monotone O2-induction.

3. (xi)i≤β is a safe O-induction.

The first statement follows from the construction of the two sequences and the fact they converge to the
so-called least alternating pair of the anti-monotone operator O. We do prove this below for completeness.

From the last two claims it follows that for β large enough xβ = safe(O2) = lfp(O2). Since O(xβ) is
derivable from xβ and O(O(xβ)) = xβ , it follows that (xi)i≤β , as an O-induction, is safe-terminal. Hence

safe(O) = xβ = safe(O2) = lfp(O2),

which is what we needed to show. We now show that the claims we made indeed hold.

3 SAFE INDUCTIONS 8

1. We prove this by induction.
It certainly holds for i = 0 since x0 = ⊥ and y0 = >.
If the claim holds for i < β, then xi ≤ yi. Hence by anti-monotonicity of O,

yi+1 = O(xi) ≥ O(yi) = xi+1.

Also, since i + 1 < β and the claim holds for i, it holds that xi ≤ xi+1 and yi+1 ≤ yi. Now, by
anti-monotonicity of O,

yi+1 = O(xi) ≥ O(xi+1) = yi+2

and
xi+2 = O(yi+1) ≥ O(yi) = xi+1.

Hence, we proved that all three inequalities in the claim also hold for i+ 1.
Finally, suppose the claim holds for all i < λ with λ ≤ β some limit ordinal. For each i ≤ j < λ, it
holds that xi ≤ xj ≤ yj . Similarly, for each j ≤ i < λ, it holds that xi ≤ yi ≤ yj . Hence, for all
i, j < λ, xi ≤ yj . Thus also

xλ =
∨
i<λ

xi ≤
∧
j<λ

yj = yλ.

If furthermore λ < β, then we know that for each j < λ, yj ≥ yλ. Hence, by anti-monotonicity of O,
xj+1 = O(yj) ≤ O(yλ) for each j < λ. Thus

xλ ≤
∧
j<λ

xj+1 ≤ O(yλ) = xλ+1.

Similarly we find that also
yλ ≥ yλ+1

and we see that the claim indeed also holds for λ.
Hence, we showed by transfinite induction that the first claim is indeed satisfied for all i ≤ β.

2. To see that (xi)i≤β is a monotone O2-induction, we note that by the first claim, for each i:

yi ≥ yi+1,

hence by anti-monotonicity of O also

xi+1 = O(yi) ≤ O(yi+1) = O2(xi).

Thus, it holds that
xi ≤ xi+1 ≤ O2(xi).

3. First, we show that for each i < β, xi+1 is derivable from xi. To see this, note that from the first
claim, it follows that

xi ≤ xi+1 ≤ yi+1 = O(xi),

hence xi+1 is indeed derivable from xi.
Second, we show that xi+1 is safely derivable from xi. To show this, fix i and let (zj)j≤γ be any O-
induction in xi. We need to show that xi+1 ≤ xi∨O(zγ). In order to show this, we claim that for each
j, xi ≤ zj ≤ yi. We show this claim by (transfinite) induction on j. It certainly holds for j = 0, since
z0 = xi. If our claim holds for j, since zj+1 is a refinement of zj , it holds that zj ≤ zj+1 ≤ zj ∨O(zj).
By our induction hypothesis, and the fact that O is anti-monotone,

xi ≤ zj ≤ zj+1 ≤ zj ∨O(zj) ≤ yj ∨O(xj) = yj ∨ yj+1 = yj

and indeed our claim follows. It is easy to see that it also holds in limit ordinals.
Now, since our claim holds for all j ≤ γ, it also holds for j = γ. Hence, we find that yi ≥ zγ and thus
that xi+1 = O(yi) ≤ O(zγ) and it indeed follows that xi+1 is safely derivable from xi, which is what
we still needed to show.

4 COMPLEXITY 9

Theorem 3.17 shows that safe O-inductions, despite their high degree of non-determinism, uniquely
determine a lattice point of interest. Furthermore, if O is monotone, this point is the least fixpoint of O.
The question now arises: what if O is non-monotone? How does the safely defined point by O relate to
other points of interest? In particular, how does it relate to fixpoints defined in approximation fixpoint
theory, especially to those with a constructive characterization? We study this in Section 6. First, we study
complexity of some inference tasks related to safe inductions.

4. Complexity

In this section, we assume that a class C = {〈L,O〉} of pairs of a finite lattice L and an operator
O : L→ L is given.

The height of a finite lattice L is the length n of the longest sequence ⊥ = x0 < x1 < · · · < > = xn in
L. We call y ∈ L a direct successor of x ∈ L if x < y and there is no z such that x < z < y. The branching
width of a finite L is the maximum over all x ∈ L of the number of direct successors of x. All complexity
results presented below are in terms of the sum of the branching width and the height of the input lattice.
This means that we use the sum of the branching width and the height as the measure of our input.1

Let FC denote the function problem: given one of the 〈L,O〉 in C and p, p′ ∈ L, compute

1. O(p),

2. p ∨ p′, and

3. {x | x is a direct successor of p}.

We assume that FC can be solved in polynomial time.
The kind of setting used here is not so unusual: it is essentially an algebraic variant of data complexity.

For instance, in logic programming, each non-ground program P determines a class of lattices and associated
operators (immediate consequence operators of the groundings of P with respect to a given domain). The
height and branching width of the lattice are then polynomial in terms of the domain size. In this setting,
the problem FCP is indeed polynomially solvable.

Theorem 4.1. Let C be a class as above. The decision problem “given Li ∈ C, x, y ∈ Li, is y safely
derivable from x by Oi?” is in co-NP.

Proof. Algorithm 1 contains a nondeterministic program to decide that y is not safely derivable from x. It
takes as input 〈L,O〉, x, and y.

Algorithm 1 Nondeterministic algorithm to decide that y is not safely derivable from x by O.
s← x
while true do

if y 6≤ x ∨O(s) then
return true

else if O(s) ≤ s then
return false

else
choose an s′ ∈ Li with s < s′ ≤ s ∨O(s)
s← s′

end if
end while

This program nondeterministically traverses an O-induction from x. Every state x′ that can be reached
by a natural induction from x can be reached by a run of this program. The algorithm stops with true when

1As you might notice, the input of some of the problems we consider also contains, besides 〈L,O〉 a number of lattice points.
It is always possible to encode lattice points in a way that is polynomial in terms of the sum of the branching width and height
of the lattice, e.g., by describing paths from ⊥ to the given lattice point.

4 COMPLEXITY 10

it reaches a lattice point that provides a counterexample for the safe derivability of y. It stops with false

if the reached structure is a prefixpoint of O and it still provides no counterexample for the safe derivability
of y. In this case, the traversed O-induction was a terminal one that was not a witness that y was not safely
derivable.

One run of the algorithm builds a strictly growing sequence of lattice points; hence, the number of
iterations is bound by the height of the lattice. At each step, the main computations are the computations
of O(x), x ∨ O(x) and checking for two lattice points whether one is smaller than the other. In order to
branch on all elements {s′ | s ≤ s′ ≤ s ∨ O(s)}, we can iteratively compute all direct successors of s and
check whether they satisfy the condition above. These operations require to solve the function problem FC .
Hence, Algorithm 1 runs in nondeterministic polynomial time that has a run and terminates with true if
and only if y is not safely derivable from x. It follows that deciding that y is not safely derivable from x is
in NP and its dual is in co-NP.

Theorem 4.2. Let C be a class as above. The decision problem “given 〈L,O〉 ∈ C, s ∈ L, is safe(O) ≥ s?”
is in ∆P

2 . For some classes C, this problem is co-NP hard.

Proof. We first show containment in ∆P
2 . First note that if y is safely derivable from x, then so is every z

with x ≤ z ≤ y. Hence, the safely defined point can be reached by a safe O-induction such that for each
j, xj+1 is a direct successor of xj . By solving a polynomial number (in terms of the branching width of L)
of co-NP problems, we can compute the set of direct successors y of x that are safely derivable from x. By
doing this a polynomial number of times (in terms of the height of L), we find the safely defined structure
and can determine whether safe(O) ≤ s.

We now show the hardness result. To do this, we encode the co-NP hard problem of deciding validity of
a propositional formula ϕ (over a propositional vocabulary Σ) in Disjunctive Normal Form (DNF). Let Val
denote a symbol not in Σ and Σ′ = Σ∪{Val}. Consider the lattice 〈L,≤〉 = 〈2Σ′ ,⊆〉, i.e., elements of L are
propositional interpretations of Σ′. Consider a logic program P over Σ′ that consists of a rule

Val ← x1 ∧ · · · ∧ xn

for each disjunct x1 ∧ · · · ∧ xn of ϕ and of a rule

x← Val

for each x in Σ.
We claim that Val ∈ safe(TP) if and only if ϕ is valid.
To see this, note that for each interpretation I of Σ′, Val ∈ TP(I) if and only if I |= ϕ.
Now, if ϕ is false in ∅, then ϕ is not valid. In this case, ∅ is a fixpoint of TP and hence (∅) is the unique

TP -induction. We see that in this case, Val 6∈ safe(TP) and ϕ is not valid.
Otherwise, ∅ |= ϕ. In this case {Val} is derivable from ∅, but not necessarily safely derivable. If ϕ is

valid, then Val ∈ TP(I) for each I and hence {Val} ≤ ∅ ∨ TP(I) for each I. Thus in this case, {Val} is
indeed safely derivable. On the other hand, if ϕ is not valid, there exists an interpretation I ⊆ Σ such that
I 6|= ϕ. Now, in this case Val 6∈ TP(I ∪ {Val}). Notice that I ∪ {Val} is derivable from {Val}. This means
that (∅, {Val}, {Val} ∪ I) is a TP -induction with {Val} 6≤ ∅ ∨ TP(I ∪ {Val}), i.e., that {Val} is not safely
derivable from ∅.

We conclude that safe(TP) is greater than {Val} if and only if ϕ is valid. Since deciding validity of a
sentence in DNF is co-NP hard, we obtain the desired result.

As can be seen, there still is a gap in the complexity results: we managed to prove containment in ∆P
2

but only co-NP hardness in Theorem 4.2. While we tried, we did not manage to close this gap and present
this as a challenge to the community.

5 PRELIMINARIES: AFT 11

5. Preliminaries: AFT

Given a lattice L, approximation fixpoint theory makes use of the lattice L2. We define projections
for pairs as usual: (x, y)1 = x and (x, y)2 = y. Pairs (x, y) ∈ L2 are used to approximate all elements
in the interval [x, y] = {z | x ≤ z ∧ z ≤ y}. We call (x, y) ∈ L2 consistent if x ≤ y, that is, if [x, y] is
non-empty. We use Lc to denote the set of consistent elements. Elements (x, x) ∈ Lc are called exact.
We sometimes use the tuple (x, y) and the interval [x, y] interchangeably. The precision ordering on L2 is
defined as (x, y) ≤p (u, v) if x ≤ u and v ≤ y. In case (u, v) is consistent, this means that (x, y) approximates
all elements approximated by (u, v), or in other words that [u, v] ⊆ [x, y]. If L is a complete lattice, then
〈L2,≤p〉 is also a complete lattice.

AFT studies fixpoints of lattice operators O : L→ L through operators approximating O. An operator
A : L2 → L2 is an approximator of O if it is ≤p-monotone, and O(x) ∈ A(x, x) for all x ∈ L. It follows
from this definition that approximators map Lc into Lc. As usual, we restrict our attention to symmetric
approximators: approximators A such that for all x and y, A(x, y)1 = A(y, x)2. DMT (2004) showed that
the consistent fixpoints of interest (defined below) are uniquely determined by an approximator’s restriction
to Lc, hence, sometimes we only define approximators on Lc.

AFT studies fixpoints of O using fixpoints of A. The A-Kripke-Kleene fixpoint is the ≤p-least fixpoint
of A and has the property that it approximates all fixpoints of O. A partial A-stable fixpoint is a pair (x, y)
such that x = lfp(A(·, y)1) and y = lfp(A(x, ·)2), where A(·, y)1 denotes the operator L→ L : x 7→ A(x, y)1

and analogously for A(x, ·)2. The A-well-founded fixpoint is the least precise partial A-stable fixpoint. An
A-stable fixpoint of O is a fixpoint x of O such that (x, x) is a partial A-stable fixpoint. This is equivalent
to the condition that x = lfp(A(·, x)1). A-stable fixpoints are minimal fixpoints of O. The A-Kripke-Kleene
fixpoint of O can be constructed by iterative applications of A, starting from (⊥,>). For the A-well-founded
fixpoint, a similar constructive characterization has been worked out by Denecker and Vennekens (2007).

Definition 5.1. An A-refinement of (x, y) is a pair (x′, y′) ∈ L2 satisfying one of the following two condi-
tions:

• (x, y) ≤p (x′, y′) ≤p A(x, y), or

• x′ = x and A(x, y′)2 ≤ y′ ≤ y.

An A-refinement is strict if (x, y) 6= (x′, y′).

Definition 5.2. A well-founded induction of A is a sequence (xi, yi)i≤β with β an ordinal such that

• (x0, y0) = (⊥,>);

• (xi+1, yi+1) is an A-refinement of (xi, yi), for all i < β;

• (xλ, yλ)=lub≤p
{(xi, yi)|i < λ} for limit ordinals λ ≤ β.

A well-founded induction is terminal if its limit (xβ , yβ) has no strict A-refinements.

Denecker and Vennekens (2007) showed that all terminal A-inductions converge to the A-well-founded
fixpoint of O.

Logic Programming. In the context of logic programming, elements of the bilattice
(
2Σ
)2

are pairs (I1, I2)
of interpretations. Such a pair (I1, I2) corresponds to a four-valued interpretation I that interprets each
atom as true (t), false (f), unknown (u) or inconsistent (i):

pI =


t if p ∈ I1 and p ∈ I2
u if p ∈ I1 and p 6∈ I2
f if p 6∈ I1 and p 6∈ I2
i if p 6∈ I1 and p ∈ I2

6 SAFE INDUCTIONS AND AFT 12

A ∧B B
t f u

A
t t f u
f f f f
u u f u

A ∨B B
t f u

A
t t t t
f t f u
u t u u

¬A

A
t f
f t
u u

Figure 1: The Kleene truth tables (Kleene, 1938).

Truth values are ordered by the truth order ≤t induced by f ≤t u ≤t t, f ≤t i ≤t t. The pair (I1, I2)
approximates all interpretations I ′ with I1 ⊆ I ′ ⊆ I2. We often identify an interpretation I with the four-
valued interpretation (I, I). We are mostly concerned with consistent (also called partial or three-valued)
interpretations: tuples I = (I1, I2) with I1 ⊆ I2. For such an interpretation, the atoms in I1 are true (t) in
I, the atoms in I2 \ I1 are unknown (u) in I and the other atoms are false (f) in I. If I is a three-valued
interpretation, and ϕ a formula, we write ϕI for the standard three-valued valuation based on the Kleene
truth tables (see Figure 1).

Several approximators have been defined for logic programs. The most common is Fitting’s immediate
consequence operator ΨP (Fitting, 2002), a direct generalisation of TP to partial interpretations, given by

pψP(I) = max
≤t

{body(r)I | r ∈ P ∧ head(r) = p}

DMT (2000) showed that the well-founded fixpoint of ΨP is the well-founded model of P as defined by
Van Gelder et al. and that ΨP -stable fixpoints are exactly the stable models of P as defined by Gelfond
and Lifschitz. In this case, the operator ΨP(·, y)1 coincides with the immediate consequence operator of the
Gelfond-Lifschitz reduct (Gelfond and Lifschitz, 1988).

6. Safe Inductions and AFT

In this section, we study how (safe) O-inductions relate to the fixpoints studied in AFT.

Theorem 6.1. Let O be an operator and A an approximator of O. The A-well-founded fixpoint approximates
the safely defined point by O.

The proof makes use of the following proposition.

Proposition 6.2. Let O be an operator and A an approximator of O. Let (xi, yi)i≤β be an A-well-founded
induction. The following claims hold:

1. (xi)i≤β is a safe O-induction, and
2. for each i ≤ β and each O-induction N = (zj)j≤α with z0 = xi, it holds that zα ≤ yβ

Proof. The proof is by induction on the length β of the well-founded induction.
Our claim trivially holds for β = 0 and it is easy to see that it is preserved in limit ordinals. Assume it

holds for i, we show that it also holds for i+ 1; we distinguish two cases.
First, assume that (xi, yi) ≤p (xi+1, yi+1) ≤p A(xi, yi).

1. We show that xi+1 is safely derivable from xi. Since every tuple in a well-founded induction is
consistent (Denecker and Vennekens, 2007), (xi, yi) ≤p (xi, xi) and hence it holds that

xi ≤ xi+1 ≤ A(xi, yi)1 ≤ A(xi, xi)1 ≤ O(xi),

hence xi+1 is derivable from xi. Furthermore, we know that for each O-induction N = (zi)i≤α with
z0 = xi, it holds that

xi ≤ zα ≤ yi.
Since A is an approximator of O and zα ∈ [xi, yi], it holds that

xi+1 ≤ A(xi, yi)1 ≤ O(zα) ≤ xi ∨O(zα).

Since this holds for each O-induction, xi+1 is indeed safely derivable from xi.

6 SAFE INDUCTIONS AND AFT 13

2. Let (zi)i≤α be an O-induction in xi. From the induction hypothesis, it follows that zα ≤ yi. We
show that zα ≤ yi+1 by induction on α. Since well-founded inductions are consistent and increasing
in precision, it holds that xi ≤ xi+1 ≤ yi+1 ≤ yi, hence our claim holds for α = 0 (since z0 = xi). It is
clear that this property is preserved in limit ordinals. Assume it holds for α = j, we show that it also
holds for j + 1. We have that xi ≤ zj ≤ yi. Since A is an approximator of O,

O(zj) ∈ A(zj , zj) ≥p A(xi, yi) ≥p (xi+1, yi+1).

Hence, it follows that O(zj) ≤ yi+1. Thus also zj+1 ≤ zj ∨O(zj) ≤ yi+1 and indeed, the claim follows.

Second, assume that xi+1 = xi and A(xi, yi+1)2 ≤ yi+1 ≤ yi.

1. The first claim is trivial since xi+1 = xi.

2. Let (zj)j≤α be an O-induction in xi. From the induction hypothesis, it follows that zα ≤ yi. We
show that zα ≤ yi+1 by induction on α. Since well-founded inductions are consistent and increasing
in precision, it holds that xi ≤ xi+1 ≤ yi+1 ≤ yi, hence our claim holds for α = 0 (since z0 = xi). It is
clear that this property is preserved in limit ordinals. Assume it holds for α = j, we show that it also
holds for j + 1. We have that xi ≤ zj ≤ yi+1. Since A is an approximator of O,

O(zj) ∈ A(zj , zj) ≥p A(xi, yi+1).

Hence O(zj) ≤ A(xi, yi+1)2 ≤ yi+1. Since also zj ≤ yi+1, it follows that zj+1 ≤ zj ∨O(zj) ≤ yi+1 and
indeed, the claim follows.

Proof of Theorem 6.1. Let z denote the safely defined point of O and let (xβ , yβ) denote the A-well-founded
fixpoint of O. For any terminal A-well-founded induction (xi, yi)i≤β , it holds that xβ ≤ z by the first point
of Proposition 6.2. Furthermore, by the second point of Proposition 6.2 it holds that any O-induction stays
under yβ ; hence z ≤ yβ .

Example 6.3 (Example 3.9 continued). In this example, the well-founded model is ({p}, {p}), i.e., it is
two-valued. It follows immediately from Theorem 6.1 that in this case safe(TP) = {p} as well. N

Example 6.4. Consider a logic program

P =

 p
q ← ¬r ∧ p
r ← ¬q ∧ p


The ΨP -well-founded model of P is ({p}, {p, q, r}). In this case, the only safe-terminal strict induction is

(∅, {p}).

Indeed, from {p}, the interpretations {p, q}, {p, r}, and {p, q, r} are derivable, but none of them is safely
derivable. Hence, the operator TP is not complete. N

Example 6.5. Consider a logic program

P =

{
p← p
p← ¬p

}
In this case, the ΨP -well-founded model of P is (∅, {p}). This is not two-valued. The safely defined point
by TP is {p} since

(∅, {p})

is a safe-terminal TP induction. Hence, the operator TP is complete. N

Theorem 6.1 has several consequences.

6 SAFE INDUCTIONS AND AFT 14

Corollary 6.6. If the A-well-founded fixpoint of O is exact, i.e., equal to (x, x) for some x ∈ L, then O is
complete and safe(O) = x.

The converse of Corollary 6.6 does not hold: it can be the case that O is complete while the A-well-
founded fixpoint is not exact. This can be seen, e.g., in Example 6.11.

Corollary 6.7. Let O be an operator and A an approximator of O. The A-Kripke-Kleene fixpoint of O
approximates the safely defined point by O.

Corollary 6.8. If the A-Kripke-Kleene fixpoint of O is exact, i.e., equal to (x, x) for some x ∈ L, then O
is complete and safe(O) = x.

Safe O-inductions identify a unique lattice point of interest. Since an operator can have multiple stable
fixpoints, we cannot expect a strong link between the safely defined point and stable fixpoints. However, we
do find the following relation between stable fixpoints and O-inductions.

Theorem 6.9. Let A be an approximator of O. If x is an A-stable fixpoint of O, then x is the limit of a
terminal O-induction.

Proof. If x is an A-stable fixpoint of O, then x = lfp(A(·, x)1). Consider the sequence (xi)i≤α given by

x0 = ⊥,
xi+1 = A(xi, x)1,

xλ = lub({xi | i < λ}), for limit ordinals λ.

If α is large enough, it holds that x = xα. We claim that (xi)i≤α is an O-induction. First, since A(·, x)1

is monotone, xi+1 ≥ xi for each i. Second, notice that for each i, xi ≤ x, hence xi ∈ [xi, x] and thus
O(xi) ∈ A(xi, x), i.e., O(xi) ≥ A(xi, x)1. From this we conclude that xi+1 ≤ O(xi) ≤ O(xi) ∨ xi. Thus
(xi)i≤α is indeed an O-induction. It is terminal since x is a fixpoint of O.

Example 6.10. Consider the logic program

P =

{
p← ¬q
q ← ¬p

}
It holds that {p} is a stable model of P (i.e., a ΨP -stable fixpoint of TP). Also, {p} is the limit of the TP -
induction (∅, {p}). This induction is not safe since (∅, {q}) is also a TP -induction and {p} 6≤ TP({q}) ∨ ∅ =
{q}. N

The limit of a terminal O induction is not always a stable fixpoint of O. In fact, the example below
shows that there exist safe inductions such that the limit is not A-stable for any approximator of O.

Example 6.11. Consider the logic program

P =


p← p
p← q
q ← ¬p
q ← q


In this case (∅, {q}, {q, p}) is the unique terminal TP -induction. It can be verified that this is a safe induction
and that TP is complete. The safely defined point is a non-minimal fixpoint of TP , hence it is also non-
grounded (see (Bogaerts et al., 2015)) and not an A-stable fixpoint for any approximator A of TP . In the
well-founded model of P, all atoms are unknown. N

While Theorem 6.1 shows that the relation between safe inductions and the well-founded fixpoint is
strong, Example 6.11 shows that the connection with the other fixpoints defined in AFT is weaker.

7 SAFE INDUCTIONS AND AUTOEPISTEMIC LOGIC 15

7. Safe Inductions and Autoepistemic Logic

Recently, Bogaerts et al. (2016) exposed a problem in several semantics of autoepistemic logic (AEL).
They showed that for very simple, stratified theories, the well-founded and other semantics fail to identify
the intended model. They solved this problem by defining, algebraically, a new constructive semantics that
is based on a refined notion of approximations of a lattice point (more refined than intervals, i.e., elements
of L2). In this section, we show that safe inductions provide a direct solution to the aforementioned problem
without the need for any approximation. First, we recall some background on AEL.

7.1. AFT and Autoepistemic Logic

AEL is a non-monotonic logic for modeling the beliefs or knowledge of a rational agent with perfect
introspection capabilities (Moore, 1985).

Let L be the language of propositional logic based on a set of atoms Σ. Extending this language with
a modal operator K, which is read “I (the agent) know”2, yields a language LK of modal propositional
logic. An autoepistemic theory is a set of formulas in LK . A crucial assumption about such theories that
distinguishes this logic from the standard modal logic S5 is that all of the agent’s knowledge is encoded in
the theory: it either belongs to the theory, or can be derived from it. Levesque (1990) called this the “all I
know assumption”.

A modal formula is a formula of the form Kψ; an objective formula is a formula without modal subfor-
mulas. If ϕ is a formula, At(ϕ) denotes the set of all atoms that occur in ϕ and AtO(ϕ) the set of all atoms
that occur objectively in ϕ, i.e., outside of the scope of an operator K.

An interpretation is a subset of Σ. A possible world structure is a set of interpretations. A possible world
structure can be seen as a Kripke structure in which the accessibility relation is total. The set of all possible
world structures is denotedWΣ; it forms a lattice with the knowledge order ≤k such that Q ≤k Q′ iff Q ⊇ Q′.
A possible world structure Q is a mathematical object to represent all situations that are possible according
to the agent: interpretations q ∈ Q represent possible states of affairs, i.e., states of affairs consistent with
the agent’s knowledge, and interpretations q 6∈ Q represent impossible states of affairs, i.e., states of affairs
that violate the agent’s knowledge.

If ϕ is a formula in LK , Q is a possible world structure and I is an interpretation, satisfaction of ϕ with
respect to Q and I (denoted Q, I |= ϕ) is defined as in the modal logic S5 by the standard recursive rules of
propositional satisfaction augmented with one additional rule:

Q, I |= Kϕ if Q, I ′ |= ϕ for every I ′ ∈ Q.

In this formula, Q represents the belief of the agent and I represents the actual state of the world. Modal
formulas are evaluated with respect to the agent’s belief, while objective formulas are evaluated with respect
to the actual state of the world. We furthermore define Q |= Kϕ (ϕ is known in Q) if Q, I |= ϕ for every
I ∈ Q. Moore (1985) associated with every theory T an operator DT on WΣ as follows:

DT (Q) = {I ∈ WΣ | Q, I |= T }.

The intuition behind this operator is that DT (Q) is a revision of Q consisting of all worlds that are consistent
with the agent’s current beliefs (Q) and the constraints in T .

DMT (2003) defined approximators for DT and showed that AFT induces all main and some new
semantics for AFT.

Monotonically Stratified AEL Theories. Following Vennekens et al. (2006), we call an autoepistemic theory
T stratifiable3 w.r.t. a partition (Σi)0≤i≤n of its alphabet if there exists a partition (Ti)0≤i≤n of T such
that for each i, AtO(Ti) ⊆ Σi and At(Ti) ⊆

⋃
0≤j≤i Σj . This notion of stratification significantly extends

2Or, following DMT (2011): “My knowledge entails”.
3As mentioned in the introduction, we restrict to finite stratifications here.

7 SAFE INDUCTIONS AND AUTOEPISTEMIC LOGIC 16

the notion from Marek and Truszczyński (1991). A stratification is modally separated if for every modal
subformula Kψ of Ti, either At(ψ) ⊆ Σi or At(ψ) ⊆

⋃
0≤j<i Σj .

Let Σ1 and Σ2 be two disjoint vocabularies. If Q1 and Q2 are possible world structures over Σ1 and
Σ2 respectively, then the extension of Q1 by Q2 is the possible world structure over Σ1 ∪ Σ2 defined as

Q1 ⊕Q2
def
= {I1 ∪ I2 | I1 ∈ Q1 ∧ I2 ∈ Q2}. If Q is a possible world structure over Σ1 ∪ Σ2, the restriction of

Q to Σ1 is Q|Σ1

def
= {I ∩ Σ1 | I ∈ Q}.

DMT (2011) have made strong arguments in favor of a constructive semantics for AEL. Bogaerts et al.
(2016), however, showed that the two constructive semantics induced by AFT (well-founded and Kripke-
Kleene semantics) are too weak for AEL. They gave the following example.

Example 7.1. Consider the autoepistemic theory

T = {q ⇔ ¬Kp, r ⇔ ¬Kq}.

The informal reading of this theory is as follows:

“I (an introspective autoepistemic agent) only know the following: q holds iff I do not know p
and r holds iff I do not know q.”

Since p does not occur objectively in T , an agent who only knows T does not have any information
about p. Thus, in the intended model, it knows neither p nor ¬p, i.e., ¬Kp and ¬K¬p must hold in the
intended model. The first sentence then entails q, hence Kq must hold. Now, the last sentence implies ¬r;
the intended model is thus {{p, q}, {q}}, the unique possible world structure in which ¬Kp,¬K¬p,Kq, and
K¬r hold. N

Bogaerts et al. (2016) showed that the well-founded semantics (for any approximator) fails to identify the
intended model in the above example. They generalized this example to the class of monotonically stratified
theories and defined a notion of perfect model for them.

Definition 7.2. We say that T is monotonically stratified with respect to a partition (Σi)0≤i≤n of its
alphabet if there is a modally separated stratification (Ti)0≤i≤n of T such that all subformulas Kψ of Ti
with At(ψ) ⊆ Σi occur negatively (in the scope of an odd number of negations) in Ti.

The construction of the perfect model of an autoepistemic theory is as follows. In a monotonically
stratified theory, each theory Ti defines knowledge of the symbols in Σi in terms of knowledge of symbols in
lower strata (Σj with j < i). The last condition of Definition 7.2 guarantees that for a fixed interpretation
of the knowledge of lower strata, DTi is a monotone operator and hence its intended fixpoint is clear.
The perfect model of T is then constructed by iterated monotone inductions, each of them computing the
knowledge of symbols in Σi based on the knowledge of symbols in lower strata. In the example above, first
ignorance of p is established; next, knowledge of q is established and in the final stage, knowledge of ¬r is
concluded. This construction was formalized as follows.

Proposition 7.3 (Proposition 3.3 from Bogaerts et al. [2016]). Let (Ti)0≤i≤n be a monotonic stratification
of T w.r.t. (Σi)0≤i≤n. For some i, let Qi−1 be a possible world structure over

⋃
j<i Σj. The operator

Di :WΣi
→WΣi

: Q 7→ DTi(Q⊕Qi−1)|Σi
is monotone.

Definition 7.4. Let T be a monotonically stratified autoepistemic theory and (Ti)0≤i≤n a monotonic
stratification of T . The perfect model of T (denoted pm(T)) is defined by induction on n.

• If n = 0, then DT is monotone and the perfect model of T is the least fixpoint of DT .

• Otherwise, let Qn−1 denote pm(
⋃
j<n Tj) and let Dn be as in Proposition 7.3; in this case we define

pm(T) as lfp(Dn)⊕Qn−1.

In general, the construction of the perfect model may not always work as expected. Bogaerts et al. (2016)
defined a criterion that guarantees that this construction behaves nicely, called weak permaconsistency.

7 SAFE INDUCTIONS AND AUTOEPISTEMIC LOGIC 17

Definition 7.5. An autoepistemic theory T is called weakly permaconsistent if for every possible world
structure Q, there is at least one I such that Q, I |= T .

This resulted in a “sanity criterion” for semantics of autoepistemic logic as follows.

Definition 7.6. We say that a semantics for autoepistemic logic respects stratification if all weakly perma-
consistent monotonically stratified theories have exactly one model, namely their perfect model.

7.2. AEL and Safe Inductions

Here, we show that the safely defined point of DT manages to identify the fixpoint of interest for
Example 7.1 and that this result generalizes: the safely defined semantics (defined formally below) respects
stratification. This result shows that safe inductions can identify the perfect model, without prior information
on the stratification and without the need for any form of approximation. Even stronger, the perfect model
construction is a terminal safe induction.

Definition 7.7. The safely defined semantics is given by Q |=sd T if Q = safe(DT) and DT is complete.

The condition that DT is complete has as effect here that the safely defined model of T must be a
fixpoint of DT . In other words, the knowledge of the agent must be such that it can no longer be revised
by the revision operator.

Example 7.8 (Example 7.1 continued). A first observation is that there are no possible world structures Q
such that DT (Q) |= Kp or DT (Q) |= K¬p. Hence, if N = (Qi)i≤β is a DT -induction in ⊥ = 2{p,q,r}, it also
has the property that Qi 6|= Kp and Qi 6|= K¬p for each i. For each Qi, it then holds that DT (Qi) |= Kq.

From this it follows that Qq
def
= {{p, q}, {q}, {p, q, r}, {q, r}}, the ≤k-least possible world structure in which

Kq holds, is safely derivable from ⊥. Now, for every possible world structure Q ≥k Qq, it holds that
DT (Q) |= K¬r. Thus, this also holds for all possible world structures in a DT -induction from Qq. Hence, it
follows that {{p, q}, {q}} is safely derivable from Qq. Since this is a fixpoint of DT , the safe DT -induction

(⊥, Qq, {{p, q}, {q}})

is terminal and hence also safe-terminal. Thus, the perfect model of T is indeed the safely defined point by
DT . N

We now show that the above example is not a coincidence, i.e., that it generalizes to the class of
monotonically stratified theories.

Theorem 7.9. The safely defined semantics respects stratification. That is: for each monotonically stratified
theory T : if T is weakly permaconsistent, then DT is complete and safe(DT) is the perfect model of T .

The proof of this theorem makes use of the following two results.

Lemma 7.10. Suppose (Ti)0≤i≤n is a monotone stratification of T w.r.t. (Σi)0≤i≤n. Let Σ′i denote
⋃
j≤i Σj

for each i. For every possible world structure Q it holds that

DT (Q) =
⊕

0≤i≤n

DTi(Q|Σ′i)|Σi
.

Proof. For every interpretation it holds that I ∈ DT (Q) if and only if

Q, I |= T .

Since (Ti)0≤i≤n is a partition of T , this condition is equivalent with

Q, I |= Ti for each i.

7 SAFE INDUCTIONS AND AUTOEPISTEMIC LOGIC 18

To evaluate whether Q, I |= Ti, objective atoms are evaluated with respect to I, and modal atoms with
respect to Q. Since all objective atoms in Ti are over Σi and all modal atoms in Ti are over Σ′i, the previous
condition is equivalent with

Q|Σ′i , I|Σi
|= Ti for each i.

Hence, for each i,
DT (Q)|Σi

= DTi(Q|Σ′i)|Σi

and the result follows.

Lemma 7.11. Suppose T is monotonically stratified w.r.t. (Σi)0≤i≤n. Furthermore suppose T is weakly
permaconsistent. Let Σ′i denote

⋃
j≤i Σi for each i. If Q1 and Q2 are two possible world structures such that

Q1|Σ′i = Q2|Σ′i , then also DT (Q1)|Σ′i = DT (Q2)|Σ′i .

Proof. This is proven as part of Theorem 6.3 by Bogaerts et al. (2016).

Lemma 7.10 shows how DT is composed from the various DTi . Lemma 7.11 states that if two possible
world structures agree on the lower strata, then so does their image under DT for any weakly permaconsistent
theory T . In other words: the knowledge of symbols in a given stratum in DT (Q) only depends on the
knowledge of symbols of smaller (or equal) strata in Q.

Proof of Theorem 7.9. In this proof, we will use the following notation. If Σ′ ⊆ Σ and Q′ is a possible world
structure over Σ′, we use dQ′e to denote the ≤k-least possible world structure Q over Σ such that Q|Σ′ = Q′.
It is easy to see that

dQ′e =
∧
{Q | Q|Σ′ = Q′} = Q′ ⊕⊥|Σ\Σ′ .

Let (Ti)0≤i≤n be a monotonic stratification of T with respect to (Σi)0≤i≤n. Furthermore, let Σ′i denote⋃
j≤i Σj for each i. We will prove the following claim by induction on i.

Claim: for each i, there exists a safe DT -induction N = (Qj)j≤β in ⊥ such that

Qβ = dpm(
⋃
{Tk | k ≤ i})e.

Taking i = n, the theorem easily follows from the claim. Indeed, the claim than yields that

Qβ = dpm(
⋃
{Tk | k ≤ n})e = dpm(T)e = pm(T),

i.e., that there exists a safe induction that has pm(T) as limit. Since the perfect model of T is always a
fixpoint of DT , the aforementioned safe-induction is terminal and DT is indeed complete.

We now show that the claim indeed holds. The claim is trivial for the empty theory (i = −1). Assuming
it holds for i < n, we show that it holds as well for i + 1. Let N = (Qj)j≤β be a safe DT -induction in ⊥
such that

Qβ = dpm(
⋃
{Tk | k ≤ i})e.

Consider the sequence (Q′k)k≤α given by

Q′0 = Qβ ,

Q′λ =
∨
k<λ

Q′k for limit ordinals λ < α,

Q′k+1 = dDT (Qk)|Σ′i+1
e for each k < α.

From Lemma 7.10, it follows that

Q′k+1 = dDT (Qk)|Σ′i+1
e

= dD⋃
j≤i Tj (Qk)|Σ′i ⊕DTi+1

(Qk)|Σi+1
e.

8 SAFE INDUCTIONS AND ARGUMENTATION FRAMEWORKS 19

Since Qβ |Σ′i is the perfect model of
⋃
j≤i Tj we then find that

Q′k+1 = dQβ |Σ′i ⊕DTi+1
(Qk)|Σi+1

e.

Or, using Di as defined in Proposition 7.3, we find that

Q′k+1 = dQβ |Σ′i ⊕Di+1(Qk|Σi+1)e.

Hence, for sufficiently large α, we find that Q′α = dpm(
⋃
{Tk | k ≤ i+ 1})e. What remains to prove is that

1. (Q′k)k≤α is a DT -induction in Qβ , and

2. (Q′k)k≤α is safe.

The fact (1), that it is a DT -induction in Qβ , follows easily from the fact that for every possible world
structure Q, dQ|Σ′e ≤k Q. Hence,

Q′k+1 = dDT (Qk)|Σ′i+1
e

≤k DT (Qk).

To see that (2) holds, i.e., that (Q′k)k≤α is a safe DT -induction, take any DT -induction (Q′′l)l≤γ in Q′k.
First we claim that for each l, Q′′l |Σ′i = Qβ . This claim clearly holds for j = 0 since Q′′0 = Q′k. If it holds
for l, from Lemma 7.11, it follows that DT (Q′′l)|Σi = Qβ as well. Hence, it also holds for l + 1. Similarly,
we find that Q′′l |Σi+1 ≥k Q′k|Σi+1 . Since each Di as defined in Proposition 7.3 is a monotone operator, we
thus find that Q′k|Σ′i+1

≤k Q′′l |Σ′i+1
. Furthermore, since Q′k = dQ′k|Σ′i+1

e, we find that Q′k ≤k Q′′l for each l.

Taking l = γ, we find that (Q′k)k≤α is indeed safe.

8. Safe Inductions and Argumentation Frameworks

Abstract argumentation frameworks (AFs) (Dung, 1995) are simple and abstract systems to deal with
contentious information and draw conclusions from it. An AF is a directed graph where the nodes are
arguments and the edges encode a notion of attack between arguments. In AFs, we are not interested in
the actual content of arguments; this information is abstracted away. In spite of their conceptual simplicity,
there exist many different semantics with different properties in terms of characterization, existence and
uniqueness.

Recently, Strass (2013) showed that many of the existing semantics of AFs (and, as a generalization,
also of abstract dialectical frameworks (ADFs) (Brewka and Woltran, 2010; Brewka et al., 2013)) can be
obtained by a direct applications of AFT. In this section we use the aforementioned study to relate safe
inductions to AFs.

An abstract argumentation framework Θ is a directed graph (A,R) in which the nodes A represent
arguments and the edges in R represent attacks between arguments. We say that a attacks b if (a, b) ∈ R.
A set S ⊆ A attacks a if some s ∈ S attacks a. A set S ⊆ A defends a if it attacks all attackers of a. An
interpretation of an AF Θ = (A,R) is a subset S of A. The intended meaning of such an interpretation is
that all arguments in S are accepted (or believed) and all arguments not in S are rejected. Interpretations
are ordered according to the acceptance relation: S1 ≤ S2 iff S1 ⊆ S2, i.e., if S2 accepts more arguments than
S1. There exist many different semantics of AFs which each define different sets of acceptable arguments
according to different standards or intuitions. The major semantics for argumentation frameworks can be
formulated using two operators: the characteristic function FΘ, which maps an interpretation S to

FΘ(S) = {a ∈ A | S defends a}

and the operator UΘ (U stands for unattacked), which maps an interpretation S to

UΘ(S) = {a ∈ A | a is not attacked by S}.

9 CONCLUSION 20

An interpretation S is conflict-free if it is a postfixpoint of UΘ (S ≤ UΘ(S)), i.e., if no argument in S is
attacked by S. The characteristic function is a monotone operator; its least fixpoint is called the grounded
extension of Θ. The operator UΘ is an anti-monotone operator; its fixpoints are called stable extensions of
Θ. Many more semantics, such as admissible interpretations, complete extensions, semi-stable extensions,
stage extensions and preferred extensions (Dung, 1995) can be characterized using the above operators as
well.

The following theorem shows that the grounded extensions as defined in argumentation theory have very
close ties to safe inductions.

Theorem 8.1. Let Θ be an argumentation framework. The following are all equal

• the grounded extension of Θ,

• the safely defined point by FΘ,

• the safely defined point by UΘ.

Proof. Since the grounded extension of Θ is the least fixpoint of FΘ, it follows from Proposition 3.25 that
the first two are equal. To see that the last two are equal, we claim that UΘ is an anti-monotone operator
with U2

Θ = FΘ; the result then follows from Proposition 3.26.
To see that our claim holds, notice that a ∈ FΘ(S) if and only if S defends a. This holds if and only if S

attacks all attackers of a, i.e., if for all attackers b of a, b 6∈ UΘ(S). This holds iff a is not a is not attacked
by UΘ(S), i.e., iff a ∈ U2

Θ(S), which is what we needed to show.

Example 8.2. Consider the following framework:

a // b

��

// e

c // doo

In this example a is unattacked, hence we expect it to be accepted; b is attacked by a, hence should not be
accepted. The argument e is defended by a, hence can safely be accepted. c and d mutually attack each
other and hence, defend themselves. Since we have already established that b is rejected, the only remaining
argument that defends c is c itself. The grounded extension rejects self-defending arguments (i.e., rejects
both c and d); it is {a, e}. The grounded extension is the limit of the following induction (that is both a
safe FΘ- and a safe UΘ-induction:

(∅, {a}, {a, e}). N

9. Conclusion

In this paper, we presented the notions of O-inductions and safe O-inductions for a lattice operator O.
We studied how they relate to various fixpoints of O studied in AFT. We studied the semantics induced
by these concepts in the context of autoepistemic logic, where we find that the safely defined point has
interesting properties for a class of operators. We applied our theory to Dung’s argumentation frameworks,
where we found that for two existing operators, safe inductions yield the same (existing) semantics. It is
a topic of future work to study the semantics induced by safe inductions for other application domains of
AFT, such as abstract dialectical frameworks (Brewka and Woltran, 2010) and active integrity constraints
(Flesca et al., 2004; Bogaerts and Cruz-Filipe, 2018). For the latter, we conjecture that safe inductions will
prove helpful to tackle the problems with the well-founded semantics such as Example 18 of Cruz-Filipe
(2016).

Acknowledgements. This work was supported by the KU Leuven under project GOA 13/010 and by the
Research Foundation - Flanders (FWO-Vlaanderen). Bart Bogaerts is a postdoctoral fellow of the Research
Foundation – Flanders (FWO).

9 CONCLUSION 21

References

Antic, C., Eiter, T., Fink, M., 2013. Hex semantics via approximation fixpoint theory. In: Cabalar, P., Son, T. C. (Eds.), Logic
Programming and Nonmonotonic Reasoning, 12th International Conference, LPNMR 2013, Corunna, Spain, September
15-19, 2013. Proceedings. Vol. 8148 of LNCS. Springer, pp. 102–115.
URL http://dx.doi.org/10.1007/978-3-642-40564-8_11

Apt, K. R., Blair, H. A., Walker, A., 1988. Towards a theory of declarative knowledge. In: (Minker, 1988), pp. 89–148.
Bogaerts, B., Cruz-Filipe, L., 2018. Fixpoint semantics for active integrity constraints. Artif. Intell. 255, 43–70.

URL https://doi.org/10.1016/j.artint.2017.11.003

Bogaerts, B., Vennekens, J., Denecker, M., 2015. Grounded fixpoints and their applications in knowledge representation. Artif.
Intell. 224, 51–71.
URL http://dx.doi.org/10.1016/j.artint.2015.03.006

Bogaerts, B., Vennekens, J., Denecker, M., Sep. 2016. On well-founded set-inductions and locally monotone operators. ACM
Trans. Comput. Logic 17 (4), 27:1–27:32.
URL http://doi.acm.org/10.1145/2963096

Bogaerts, B., Vennekens, J., Denecker, M., 2017. Safe inductions: An algebraic study. In: (Sierra, 2017), pp. 859–865.
URL https://doi.org/10.24963/ijcai.2017/119

Brewka, G., Strass, H., Ellmauthaler, S., Wallner, J. P., Woltran, S., 2013. Abstract dialectical frameworks revisited. In: Rossi,
F. (Ed.), IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China,
August 3-9, 2013. IJCAI/AAAI, pp. 803–809.
URL http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6551

Brewka, G., Woltran, S., 2010. Abstract dialectical frameworks. In: Lin, F., Sattler, U., Truszczyński, M. (Eds.), Principles of
Knowledge Representation and Reasoning: Proceedings of the Twelfth International Conference, KR 2010, Toronto, Ontario,
Canada, May 9-13, 2010. AAAI Press, pp. 102–111.
URL http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1294

Cruz-Filipe, L., Nov. 2016. Grounded fixpoints and active integrity constraints. In: Carro, M., King, A., De Vos, M., Saeedloei,
N. (Eds.), Technical Communications of the 32nd International Conference on Logic Programming, ICLP 2016 TCs, October
16-21, 2016, New York City, USA. Vol. 52 of OASIcs. Schloss Dagstuhl, pp. 11:1–11:14.
URL https://doi.org/10.4230/OASIcs.ICLP.2016.11

Denecker, M., Marek, V., Truszczyński, M., 2000. Approximations, stable operators, well-founded fixpoints and applications
in nonmonotonic reasoning. In: Minker, J. (Ed.), Logic-Based Artificial Intelligence. Vol. 597 of The Springer International
Series in Engineering and Computer Science. Springer US, pp. 127–144.
URL http://dx.doi.org/10.1007/978-1-4615-1567-8_6

Denecker, M., Marek, V., Truszczyński, M., 2003. Uniform semantic treatment of default and autoepistemic logics. Artif. Intell.
143 (1), 79–122.
URL http://dx.doi.org/10.1016/S0004-3702(02)00293-X

Denecker, M., Marek, V., Truszczyński, M., Jul. 2004. Ultimate approximation and its application in nonmonotonic knowledge
representation systems. Information and Computation 192 (1), 84–121.
URL https://lirias.kuleuven.be/handle/123456789/124562

Denecker, M., Marek, V., Truszczyński, M., 2011. Reiter’s default logic is a logic of autoepistemic reasoning and a good one, too.
In: Brewka, G., Marek, V., Truszczyński, M. (Eds.), Nonmonotonic Reasoning – Essays Celebrating Its 30th Anniversary.
College Publications, pp. 111–144.
URL http://arxiv.org/abs/1108.3278

Denecker, M., Vennekens, J., 2007. Well-founded semantics and the algebraic theory of non-monotone inductive definitions. In:
Baral, C., Brewka, G., Schlipf, J. S. (Eds.), LPNMR. Vol. 4483 of Lecture Notes in Computer Science. Springer, pp. 84–96.
URL http://dx.doi.org/10.1007/978-3-540-72200-7_9

Denecker, M., Vennekens, J., 2014. The well-founded semantics is the principle of inductive definition, revisited. In: Baral, C.,
De Giacomo, G., Eiter, T. (Eds.), KR. AAAI Press, pp. 1–10.
URL http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7957

Denecker, M., Vennekens, J., Bogaerts, B., 2017. A logical study of some common principles of inductive definition and its
implications for knowledge representation. CoRR abs/1702.04551.
URL http://arxiv.org/abs/1702.04551

Dung, P. M., 1995. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming
and n-person games. Artif. Intell. 77 (2), 321 – 357.
URL http://dx.doi.org/10.1016/0004-3702(94)00041-X

Fitting, M., 2002. Fixpoint semantics for logic programming — A survey. Theoretical Computer Science 278 (1-2), 25–51.
URL http://dx.doi.org/10.1016/S0304-3975(00)00330-3

Flesca, S., Greco, S., Zumpano, E., 2004. Active integrity constraints. In: Moggi, E., Warren, D. S. (Eds.), Proceedings of the
6th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, 24-26 August 2004,
Verona, Italy. ACM, pp. 98–107.
URL http://doi.acm.org/10.1145/1013963.1013977

Gelfond, M., Lifschitz, V., 1988. The stable model semantics for logic programming. In: Kowalski, R. A., Bowen, K. A. (Eds.),
ICLP/SLP. MIT Press, pp. 1070–1080.
URL http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.6050

http://dx.doi.org/10.1007/978-3-642-40564-8_11
https://doi.org/10.1016/j.artint.2017.11.003
http://dx.doi.org/10.1016/j.artint.2015.03.006
http://doi.acm.org/10.1145/2963096
https://doi.org/10.24963/ijcai.2017/119
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6551
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1294
https://doi.org/10.4230/OASIcs.ICLP.2016.11
http://dx.doi.org/10.1007/978-1-4615-1567-8_6
http://dx.doi.org/10.1016/S0004-3702(02)00293-X
https://lirias.kuleuven.be/handle/123456789/124562
http://arxiv.org/abs/1108.3278
http://dx.doi.org/10.1007/978-3-540-72200-7_9
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7957
http://arxiv.org/abs/1702.04551
http://dx.doi.org/10.1016/0004-3702(94)00041-X
http://dx.doi.org/10.1016/S0304-3975(00)00330-3
http://doi.acm.org/10.1145/1013963.1013977
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.6050

9 CONCLUSION 22

Kleene, S. C., 1938. On notation for ordinal numbers. The Journal of Symbolic Logic 3 (4), 150–155.
URL http://www.jstor.org/stable/2267778

Levesque, H. J., 1990. All I know: A study in autoepistemic logic. Artif. Intell. 42 (2-3), 263–309.
URL http://dx.doi.org/10.1016/0004-3702(90)90056-6

Liu, F., Bi, Y., Chowdhury, M. S., You, J., Feng, Z., 2016. Flexible approximators for approximating fixpoint theory. In:
Khoury, R., Drummond, C. (Eds.), Advances in Artificial Intelligence - 29th Canadian Conference on Artificial Intelligence,
Canadian AI 2016, Victoria, BC, Canada, May 31 - June 3, 2016. Proceedings. Vol. 9673 of Lecture Notes in Computer
Science. Springer, pp. 224–236.
URL http://dx.doi.org/10.1007/978-3-319-34111-8_28

Marek, V., Truszczyński, M., 1991. Autoepistemic logic. J. ACM 38 (3), 588–619.
URL http://dx.doi.org/10.1145/116825.116836

Minker, J. (Ed.), 1988. Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann.
Moore, R. C., 1985. Semantical considerations on nonmonotonic logic. Artif. Intell. 25 (1), 75–94.

URL http://dx.doi.org/10.1016/0004-3702(85)90042-6

Przymusinski, T. C., 1988. On the declarative semantics of deductive databases and logic programs. In: (Minker, 1988), pp.
193–216.

Reiter, R., 1980. A logic for default reasoning. Artif. Intell. 13 (1-2), 81–132.
URL http://dx.doi.org/10.1016/0004-3702(80)90014-4

Sierra, C. (Ed.), 2017. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017,
Melbourne, Australia, August 19-25, 2017. ijcai.org.
URL http://www.ijcai.org/Proceedings/2017/

Strass, H., 2013. Approximating operators and semantics for abstract dialectical frameworks. Artif. Intell. 205, 39–70.
URL http://dx.doi.org/10.1016/j.artint.2013.09.004

Tarski, A., 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics.
van Emden, M. H., Kowalski, R. A., 1976. The semantics of predicate logic as a programming language. J. ACM 23 (4),

733–742.
URL http://dx.doi.org/10.1145/321978.321991

Van Gelder, A., Ross, K. A., Schlipf, J. S., 1991. The well-founded semantics for general logic programs. J. ACM 38 (3),
620–650.
URL http://dx.doi.org/10.1145/116825.116838

Vennekens, J., Gilis, D., Denecker, M., 2006. Splitting an operator: Algebraic modularity results for logics with fixpoint
semantics. ACM Trans. Comput. Log. 7 (4), 765–797.
URL http://dx.doi.org/10.1145/1182613.1189735

http://www.jstor.org/stable/2267778
http://dx.doi.org/10.1016/0004-3702(90)90056-6
http://dx.doi.org/10.1007/978-3-319-34111-8_28
http://dx.doi.org/10.1145/116825.116836
http://dx.doi.org/10.1016/0004-3702(85)90042-6
http://dx.doi.org/10.1016/0004-3702(80)90014-4
http://www.ijcai.org/Proceedings/2017/
http://dx.doi.org/10.1016/j.artint.2013.09.004
http://dx.doi.org/10.1145/321978.321991
http://dx.doi.org/10.1145/116825.116838
http://dx.doi.org/10.1145/1182613.1189735

	Introduction
	Preliminaries: Lattices and Operators
	Safe Inductions
	Complexity
	Preliminaries: AFT
	Safe Inductions and AFT
	Safe Inductions and Autoepistemic Logic
	AFT and Autoepistemic Logic
	AEL and Safe Inductions

	Safe Inductions and Argumentation Frameworks
	Conclusion

