
ACompositional Typed Higher-
Order Logic with De�nitions

Ingmar Dasseville - Matthias Van Der Hallen -
Bart Bogaerts - Gerda Janssens - Marc Denecker

International Conference on Logic Programming, 2016

1 � Motivation and Context 2/14

Goal in KR:

build expressive logics

by integrating useful and expressive language constructs

in a meaning preserving way

A Compositional Typed Higher-Order Logic with De�nitions

1 � One motivating example 3/14

To add aggregate expressions to logic programming and ASP: many e�ort
years, several PhD's and many papers.

A Compositional Typed Higher-Order Logic with De�nitions

1 � One motivating example 4/14

To add a nested cardinality aggregate Card to classical logic:

New syntactical rule in de�nition of term:

Card({x : ϕ}) is a term if ϕ is a formula

New semantical rule in de�nition of term evaluation:

(Card({x : ϕ})I = #({d |I [x : d] |= ϕ})

We are ready.

A Compositional Typed Higher-Order Logic with De�nitions

1 � One motivating example 4/14

To add a nested cardinality aggregate Card to classical logic:

New syntactical rule in de�nition of term:

Card({x : ϕ}) is a term if ϕ is a formula

New semantical rule in de�nition of term evaluation:

(Card({x : ϕ})I = #({d |I [x : d] |= ϕ})

We are ready.

A Compositional Typed Higher-Order Logic with De�nitions

1 � Goal 5/14

Developing a compositional method to extend rule sets under well-founded
and stable semantics with new language constructs.

A Compositional Typed Higher-Order Logic with De�nitions

1 � Timeline 6/14

Last Year: Adding templates to KR languages

Result: Framework for adding language constructs and building logics

This Year: Building a general logic including compositionality principles

A Compositional Typed Higher-Order Logic with De�nitions

2 � Compositionality according to Frege 7/14

De�nition (Compositionality according to Frege)

The meaning of a complex expression is determined by the meanings of its
constituent expressions and the rules used to combine them

A Compositional Typed Higher-Order Logic with De�nitions

2 � Formalizing Frege's principle 8/14

The semantics for a logic L and a language constructs C must satisfy:

SemL(C(e1, ...,en)) = SemC(SemL(e1), ...,SemL(en))

A Compositional Typed Higher-Order Logic with De�nitions

2 � Infon 9/14

What is SemL(C(e1, ...,en)) mathematically?

Logic expressions express �information�

Infon : mathematical semantical object to express information

Function from structures to values
= A quantum of information
Confer intensional objects (e.g., Montague)

Infon of p∨q
Maps {p} to True
Maps {} to False

Infon of c+3
Maps {c = 5} to 8

A Compositional Typed Higher-Order Logic with De�nitions

2 � Infon 9/14

What is SemL(C(e1, ...,en)) mathematically?

Logic expressions express �information�

Infon : mathematical semantical object to express information

Function from structures to values
= A quantum of information
Confer intensional objects (e.g., Montague)

Infon of p∨q
Maps {p} to True
Maps {} to False

Infon of c+3
Maps {c = 5} to 8

A Compositional Typed Higher-Order Logic with De�nitions

2 � Infon 9/14

What is SemL(C(e1, ...,en)) mathematically?

Logic expressions express �information�

Infon : mathematical semantical object to express information

Function from structures to values
= A quantum of information
Confer intensional objects (e.g., Montague)

Infon of p∨q
Maps {p} to True
Maps {} to False

Infon of c+3
Maps {c = 5} to 8

A Compositional Typed Higher-Order Logic with De�nitions

2 � Language Constructs 10/14

Syntax: Extend the set of valid expressions

Typing: Not all expressions within the grammar are sensible
(e.g. 1+�hello�)

Semantics: What infon corresponds to the expression?

A Compositional Typed Higher-Order Logic with De�nitions

2 � Language Constructs 10/14

Syntax: Extend the set of valid expressions

Typing: Not all expressions within the grammar are sensible
(e.g. 1+�hello�)

Semantics: What infon corresponds to the expression?

A Compositional Typed Higher-Order Logic with De�nitions

2 � Language Constructs 10/14

Syntax: Extend the set of valid expressions

Typing: Not all expressions within the grammar are sensible
(e.g. 1+�hello�)

Semantics: What infon corresponds to the expression?

A Compositional Typed Higher-Order Logic with De�nitions

2 � Formalized version 11/14

A language expression C is:

Abstract syntax C(e1, ...,en)

Typing function on types: TypC(type1, . . . , typen) such that

TypL(C(e1, ...,en)) = TypC(TypL(e1), ...,TypL(en))

Semantic function on infons: SemC(Infon1, . . . , Infonn) such that

SemL(C(e1, ...,en)) = SemC(SemL(e1), ...,SemL(en))

A Compositional Typed Higher-Order Logic with De�nitions

2 � Formalized version 11/14

A language expression C is:

Abstract syntax C(e1, ...,en)

Typing function on types: TypC(type1, . . . , typen) such that

TypL(C(e1, ...,en)) = TypC(TypL(e1), ...,TypL(en))

Semantic function on infons: SemC(Infon1, . . . , Infonn) such that

SemL(C(e1, ...,en)) = SemC(SemL(e1), ...,SemL(en))

A Compositional Typed Higher-Order Logic with De�nitions

2 � Formalized version 11/14

A language expression C is:

Abstract syntax C(e1, ...,en)

Typing function on types: TypC(type1, . . . , typen) such that

TypL(C(e1, ...,en)) = TypC(TypL(e1), ...,TypL(en))

Semantic function on infons: SemC(Infon1, . . . , Infonn) such that

SemL(C(e1, ...,en)) = SemC(SemL(e1), ...,SemL(en))

A Compositional Typed Higher-Order Logic with De�nitions

2 � De�ning a higher order logic 12/14

Simply typed lambda calculus

Higher order types
Lambda Abstractions

De�nitions

Higher order Rules
Well-founded/stable semantics, lifted

A Compositional Typed Higher-Order Logic with De�nitions

3 � Applications 13/14

Higher Order De�nitions

{
∀cu r ∀Move ∀ IsWon :
win (cur , Move , IsWon) ← IsWon (cur) ∨

∃ nxt : Move(cur , nxt) ∧ l o s e (nxt ,Move , IsWon) .

∀cu r ∀Move ∀IsWon :
l o s e (cur ,Move , IsWon) ← ¬IsWon (cur) ∧

∀ nxt : Move(cur , nxt) ⇒ win (nxt ,Move , IsWon) .
}

A Compositional Typed Higher-Order Logic with De�nitions

4 � Summary 14/14

Meaning of a logical expression is an infon.

Composionality obtained using Frege's principle.

Integration of common logical and functional language constructs.

Simplifying current and enabling new applications.

But we need solvers!

A Compositional Typed Higher-Order Logic with De�nitions

	Goal
	Compositionality
	Applications

