

Stable-Unstable Semantics: Beyond NP with Normal Logic Programs

Bart Bogaerts^{1,2}, Tomi Janhunen¹, Shahab Tasharrofi¹

- 1) Aalto University, Finland
- 2) KU Leuven, Belgium

ICLP'16, New York City, October 19, 2016

Background: Disjunctive Logic Programs (DLPs)

An extension of normal logic programs in terms of proper disjunctive rules [Gelfond and Lifschitz, 1991]:

$$h_1 \vee \cdots \vee h_l \leftarrow a_1 \wedge \cdots \wedge a_n \wedge \neg b_1 \wedge \cdots \wedge \neg b_m$$
.

- ► The main decision problems of DLPs are either Σ_2^P or Π_2^P -complete [Eiter and Gottlob, 1995].
- ► A number of native answer set solvers that implement the search for answer sets in the disjunctive case:
 - DLV [Leone et al., 1998/2006]
 - GnT [J. et al., 2000/2006]
 - CMODELS [Giunchiglia et al., 2006]
 - CLASPD [Drescher et al., 2008]
- ► The underlying (co)NP-oracle can only be accessed in an indirect way, e.g., using saturation or meta programming.

Background: Saturation

- A positive disjunctive program P can be embedded in a DLP as an oracle by including
 - the rule $u \leftarrow \neg u$ for a new atom u not occurring in \mathcal{P} ,
 - the rule $u \lor h_1 \lor \cdots \lor h_l \leftarrow a_1 \land \cdots \land a_n$ for each rule of \mathcal{P} , and
 - the rule $a \leftarrow u$ for each atom of \mathcal{P} .
- ► The atoms in P and u form a single strongly connected component (SCC) that cannot be shifted.
- It is impossible to exploit default negation in the oracle as pointed out by [Eiter and Polleres, 2006].
- ▶ It is also quite difficult to detect and maintain oracles of the form above in existing encodings.

Background: Meta Interpretation

Meta interpretation renders disjunctive rules as data [Eiter and Polleres, 2006; Gebser et al. 2011]:

$$r: h_1 \lor \dots \lor h_l \leftarrow a_1 \land \dots \land a_n \land \neg b_1 \land \dots \land \neg b_m.$$

$$\longmapsto \begin{cases} head(r, h_1). & \dots & head(r, h_l). \\ pbody(r, a_1). & \dots & pbody(r, a_n). \\ npody(r, b_1). & \dots & nbody(r, b_m). \end{cases}$$

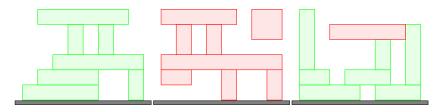
The semantics of rules can be tailored using meta rules:

$$\mathsf{in}(H) \leftarrow \mathsf{head}(R,H) \land \\ \mathsf{in}(P) : \mathsf{pbody}(R,P) \land \\ \neg \mathsf{in}(N) : \mathsf{nbody}(R,N) \land \\ \neg \mathsf{in}(OH) : \mathsf{head}(R,OH) : OH \neq H.$$

Second-order features can be expressed via saturation.

Our Approach

- A new way of combining (normal) logic programs so that
 - the interface for oracles is made explicit and
 - the semantics is defined in terms of stable-unstable models.
- Distinguished features:
 - All variables are quantified implicitly (no prenex form)!
 - A proof-of-concept implementation is readily obtained in the SAT-TO-SAT framework [J. et al., 2016].
 - The entire PH can be covered using the idea recursively.



Outline

Logic Programs: Syntax and Semantics

- ▶ A (normal) logic program \mathcal{P} over a signature σ may have a set of parameters $\tau \subseteq \sigma$ not occurring in the heads of rules.
- ▶ An interpretation $M \subseteq \sigma$ of \mathcal{P} is
 - 1. a stable model of \mathcal{P} , iff M is a \subseteq -minimal model of the Gelfond-Lifschitz reduct \mathcal{P}^{M} , and
 - 2. a parameterized stable model of \mathcal{P} , iff M is a stable model of the program $\mathcal{P} \cup \{a \leftarrow | a \in \tau \cap M\}$.

Example

Consider the following program P parameterized by $\tau = \{c\}$:

$$a \leftarrow b \land c$$
. $b \leftarrow c$. $b \leftarrow a \land \neg c$. $a \leftarrow \neg c$.

Then $M_1 = \{a, b, c\}$ and $M_2 = \{a, b\}$ are stable given τ .

Combination

- ▶ A combined logic program is pair $(\mathcal{P}_g, \mathcal{P}_t)$ of normal logic programs \mathcal{P}_g and \mathcal{P}_t with vocabularies σ_g and σ_t such that
 - 1. the generating program \mathcal{P}_a is parameterized by $\tau_a \subseteq \sigma_a$ and
 - 2. the testing program \mathcal{P}_t is parameterized by $\sigma_q \cap \sigma_t$.

Example

Consider the following combined logic program $(\mathcal{P}_g, \mathcal{P}_t)$:

$$\frac{\{y_1, n_1, y_2, n_2\}}{y_1 \leftarrow \neg x_1.} \\
n_1 \leftarrow \neg p_1. \\
y_2 \leftarrow \neg x_2. \\
n_2 \leftarrow \neg p_2. \\
\{x_1, p_1, x_2, p_2\}$$

Stable-Unstable Semantics

- Let $(\mathcal{P}_g, \mathcal{P}_t)$ be a combined logic program with vocabularies σ_g and σ_t .
- ▶ A interpretation $I \subseteq \sigma_g$ is a stable-unstable model of $(\mathcal{P}_q, \mathcal{P}_t)$ iff the following two conditions hold:
 - 1. *I* is a parameterized stable model of \mathcal{P}_g with respect to τ_g (the parameters of \mathcal{P}_g) and
 - 2. there is no parameterized stable model J of \mathcal{P}_t that coincides with I on $\sigma_t \cap \sigma_g$ (i.e., such that $I \cap \sigma_t = J \cap \sigma_g$).

Example

For the combined program

$$\mathcal{P}_g$$
: $a \leftarrow \neg b$. $b \leftarrow \neg a$. \mathcal{P}_t : $c \leftarrow a, \neg c$.

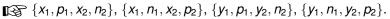
the only stable-unstable model is $M = \{a\}$.

Example

$$\frac{\{y_1, n_1, y_2, n_2\}}{y_1 \leftarrow \neg x_1.} \\
n_1 \leftarrow \neg p_1. \\
y_2 \leftarrow \neg x_2. \\
n_2 \leftarrow \neg p_2. \\
\{x_1, p_1, x_2, p_2\}$$

$\{t_x, t_x, t_y, t_y, t_1, t_2, t\}$		
$f_1 \leftarrow \neg y_1 \wedge n_1 \wedge t_x$.	$f_2 \leftarrow \neg y_2 \wedge n_2 \wedge t_x$.	
$f_1 \leftarrow \neg y_1 \wedge \neg n_1 \wedge f_x.$	$f_2 \leftarrow \neg y_2 \wedge \neg n_2 \wedge f_x$.	
$f_1 \leftarrow y_1 \wedge n_1 \wedge t_y$.	$f_2 \leftarrow y_2 \wedge n_2 \wedge t_y$.	
$f_1 \leftarrow y_1 \wedge \neg n_1 \wedge f_y$.	$f_2 \leftarrow y_2 \wedge \neg n_2 \wedge f_y$.	
$f \leftarrow f_1 \wedge f_2$.	$t_X \leftarrow \neg f_X$. $t_Y \leftarrow \neg f_Y$.	
$f \leftarrow \neg f$.	$f_X \leftarrow \neg t_X$. $f_y \leftarrow \neg t_y$.	
$\{y_1, n_1, y_2, n_2\}$		

Clause	M_i	Stable models given M_i
$X \vee X$	$\{x_1, p_1, x_2, p_2\}$	$\{f_x, f_y, f_1, f_2, f\}, \{f_x, t_y, f_1, f_2, f\}$
$X \vee \overline{X}$	$\{x_1, p_1, x_2, n_2\}$	_
$x \vee y$	$\{x_1, p_1, y_2, p_2\}$	$\{f_x, f_y, f_1, f_2, f\}$
$x \vee \overline{y}$	$\{x_1, p_1, y_2, n_2\}$	$\{f_x,t_y,f_1,f_2,f\}$
		•••



Results

- Any disjunctive program \mathcal{P} can be rewritten as a combined logic program $(\mathcal{P}_g, \mathcal{P}_t)$ as done by GNT [J. et al., 2006].
- ▶ We call a combined logic program $(\mathcal{P}_g, \mathcal{P}_t)$ independent, if $\sigma_g \cap \sigma_t = \emptyset$, i.e., \mathcal{P}_g and \mathcal{P}_t cannot interact with each other.
- ▶ Deciding the existence of a stable-unstable model for a finite combined program $(\mathcal{P}_g, \mathcal{P}_t)$ is
 - 1. Σ_2^P -complete in general, and
 - 2. D^P-complete for independent combined programs.

Encodings

- Winning strategies for parity games
 - Correspond to model checking problems in μ -calculus.
 - Plays are infinite paths in a graph.
 - Existing encodings in difference logic [Heljanko et al., 2012] can be improved to be linear.
- Conformant planning
 - Certain facts about the initial state and/or the actions' effects are unknown.
 - The native ASP encoding of [Leone et al., 2001] can now be expressed without saturation.
- Points of no return in formula-labeled graphs
 - New prototypical problem that combines graphs and logic.

Points of No Return

- ▶ Based on a directed multigraph G = (V, A, s):
 - V is a set of vertices,
 - $s \in V$ is an initial vertex, and
 - A is a set of arcs $u \stackrel{\phi}{\longrightarrow} v$ labeled by Boolean formulas ϕ .
- The criteria for a point of no return:

$$S = V_0 \underbrace{\phi_{n+m}}_{V_{n+m-1}} \underbrace{V_2}_{V_2} \underbrace{V_{n-1}}_{V_{n+1}} \underbrace{\phi_n}_{V_n = V}$$

 $\phi_1 \wedge \cdots \wedge \phi_n \in SAT$ but $\phi_1 \wedge \cdots \wedge \phi_{n+m} \in UNSAT$ (always).

▶ In general, it is a Σ_2^P -complete decision problem to verify if a given vertex $v \in V$ is a point of no return.

Encoding: Generating Program \mathcal{P}_g

```
0 \le \#\{\operatorname{pick}_{\sigma}(X,Y)\} \le 1 \leftarrow \operatorname{arc}(X,Y,L).
\leftarrow \operatorname{pick}_{a}(X, Y) \wedge \operatorname{pick}_{a}(X', Y')
     \wedge arc(X, Y, pos(A)) \wedge arc(X', Y', neg(A)).
r_{\alpha}(X) \leftarrow \operatorname{init}(X).
r_q(Y) \leftarrow r_q(X) \wedge \mathsf{pick}_q(X, Y).
\leftarrow \neg \mathsf{r}_{a}(X) \wedge \mathsf{pick}_{a}(X, Y).
\leftarrow \mathsf{ponr}(X) \wedge \neg \mathsf{r}_{\sigma}(X).
\leftarrow \mathsf{ponr}(X) \wedge \mathsf{pick}_{\sigma}(X, Y).
\leftarrow \operatorname{pick}_{\sigma}(X, Y) \wedge \operatorname{pick}_{\sigma}(X, Z) \wedge Y \neq Z.
\leftarrow \operatorname{pick}_{a}(X, Y) \wedge \operatorname{pick}_{a}(Z, Y) \wedge X \neq Z.
```

Encoding: Testing Program P_t

```
0 \leq \#\{\operatorname{pick}_{t}(X, Y)\} \leq 1 \leftarrow \operatorname{arc}(X, Y, L).
\operatorname{pick}(X,Y) \leftarrow \operatorname{pick}_{\iota}(X,Y).
\operatorname{pick}(X, Y) \leftarrow \operatorname{pick}_{\sigma}(X, Y).
\leftarrow pick(X, Y) \land pick(X', Y') \land
     \operatorname{arc}(X, Y, \operatorname{pos}(A)) \wedge \operatorname{arc}(X', Y', \operatorname{neg}(A)).
r_t(X) \leftarrow ponr(X).
r_t(Y) \leftarrow r_t(X) \wedge pick_t(X, Y).
\leftarrow \neg \mathsf{r}_t(X) \wedge \mathsf{pick}_t(X, Y).
\leftarrow \operatorname{init}(X) \wedge \neg r_t(X).
\leftarrow \operatorname{init}(X) \wedge \operatorname{pick}_{t}(X, Y).
\leftarrow \operatorname{pick}_{t}(X, Y) \wedge \operatorname{pick}_{t}(X, Z) \wedge Y \neq Z.
\leftarrow \operatorname{pick}_{t}(X, Y) \wedge \operatorname{pick}_{t}(Z, Y) \wedge X \neq Z.
```

The SAT-TO-SAT Architecture

► The core SAT-TO-SAT solver [J. et al., 2016] consists of two CDCL SAT solvers essentially solving a formula $\exists \vec{x}(\phi \land \neg \exists \vec{v}\psi)$.

- Using a recursive SAT-TO-SAT architecture, quantified Boolean formulas (QBFs) can be solved [B. et al., 2016b].
- It is possible to translate second-order specifications into SAT-TO-SAT instances [B. et al., 2016a].

```
 T_{SM}: \quad \forall A: \mathsf{i}(A) \Rightarrow \mathsf{a}(A). \\ \forall R: \mathsf{r}(R) \Rightarrow \big( (\forall A: \mathsf{pb}(R,A) \Rightarrow \mathsf{i}(A)) \land (\forall B: \mathsf{nb}(R,B) \Rightarrow \neg \mathsf{i}(B)) \Rightarrow \\ \exists H: \mathsf{h}(R,H) \land \mathsf{i}(H) \big). \\ \neg \exists \mathsf{i}': \\ (\forall A: \mathsf{i}'(A) \Rightarrow \mathsf{i}(A)) \land (\exists A: \mathsf{i}(A) \land \neg \mathsf{i}'(A)) \land \\ \forall R: \mathsf{r}(R) \Rightarrow \big( (\forall A: \mathsf{pb}(R,A) \Rightarrow \mathsf{i}'(A)) \land \\ (\forall B: \mathsf{nb}(R,B) \Rightarrow \neg \mathsf{i}(B)) \Rightarrow \exists H: \mathsf{h}(R,H) \land \mathsf{i}'(H)).
```

Proof-of-Concept Implementation

► The stable-unstable semantics can specified using a second-order theory T_{SU}:

$$\begin{split} & \mathcal{T}_{\mathcal{SM}}[\mathsf{r}/\mathsf{r}_g, \mathsf{a}/\mathsf{a}_g, \mathsf{h}/\mathsf{h}_g, \mathsf{pb}/\mathsf{pb}_g, \mathsf{nb}/\mathsf{nb}_g]. \\ & \neg \exists \mathsf{i}_t : \mathcal{T}_{\mathcal{SM}}[\mathsf{r}/\mathsf{r}_t, \mathsf{a}/\mathsf{a}_t, \mathsf{h}/\mathsf{h}_t, \mathsf{pb}/\mathsf{pb}_t, \mathsf{nb}/\mathsf{nb}_t, \mathsf{i}/\mathsf{i}_t] \\ & \wedge (\forall A : \mathsf{a}_g(A) \wedge \mathsf{a}_t(A) \Rightarrow (\mathsf{i}(A) \Leftrightarrow \mathsf{i}_t(A))). \end{split}$$

For a second-order interpretation I that captures the structure of a combined logic program $(\mathcal{P}_q, \mathcal{P}_t)$,

$$I \models T_{SU} \iff i^I$$
 is a stable-unstable model of $(\mathcal{P}_g, \mathcal{P}_t)$.

► The implementation is available under
http://research.ics.aalto.fi/software/sat/sat-to-sat/

Beyond Σ_2^P/Π_2^P with Normal Logic Programs

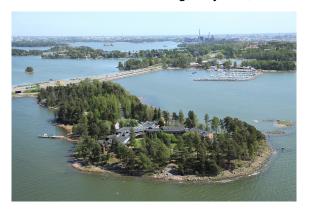
- Combined programs can be generalized using a parameter k that determines the depth of combination:
 - any normal logic program \mathcal{P} is 1-combined,
 - any combined logic program $(\mathcal{P}_q, \mathcal{P}_t)$ is 2-combined, and
 - for k > 2, a k-combined program is a pair $(\mathcal{P}, \mathcal{C})$ where \mathcal{P} is a normal program and \mathcal{C} is a (k-1)-combined program.
- ▶ The stable-unstable semantics is analogously defined for k-combined programs with the depth of combination k > 2.
- In general, it is Σ^P_k-complete to decide if a finite k-combined program has a stable-unstable model.

Conclusion

- Combined logic programs under stable-unstable models enable programming on the second level of the PH.
- ► The new methodology surpasses the need for previous saturation and meta-interpretation techniques.
- A proof-of-concept implementation is obtained by combining CDCL SAT solvers in an appropriate way.
- ▶ By recursive application of the idea, we obtain a gateway to programming on any level *k* of the PH.
- There are interesting avenues for future work:
 - Building a native solver for combined programs
 - The theory of stable-unstable semantics as such

See You at LPNMR'17 in Finland

14th International Conference on Logic Programming and Nonmonotonic Reasoning, July 3–6, 2017



http://lpnmr2017.aalto.fi/

