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Background: Disjunctive Logic Programs (DLPs)
I An extension of normal logic programs in terms of proper

disjunctive rules [Gelfond and Lifschitz, 1991]:
h1 ∨ · · · ∨ hl ← a1 ∧ · · · ∧ an ∧ ¬b1 ∧ · · · ∧ ¬bm.

I The main decision problems of DLPs are either ΣP
2 - or

ΠP
2 -complete [Eiter and Gottlob, 1995].

I A number of native answer set solvers that implement the
search for answer sets in the disjunctive case:

— DLV [Leone et al., 1998/2006]
— GNT [J. et al., 2000/2006]
— CMODELS [Giunchiglia et al., 2006]
— CLASPD [Drescher et al., 2008]

I The underlying (co)NP-oracle can only be accessed in an
indirect way, e.g., using saturation or meta programming.
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Background: Saturation

I A positive disjunctive program P can be embedded in a
DLP as an oracle by including

— the rule u ← ¬u for a new atom u not occurring in P,
— the rule u ∨ h1 ∨ · · · ∨ hl ← a1 ∧ · · · ∧ an for each rule of P,

and
— the rule a← u for each atom of P.

I The atoms in P and u form a single strongly connected
component (SCC) that cannot be shifted.

I It is impossible to exploit default negation in the oracle as
pointed out by [Eiter and Polleres, 2006].

I It is also quite difficult to detect and maintain oracles of the
form above in existing encodings.
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Background: Meta Interpretation
I Meta interpretation renders disjunctive rules as data

[Eiter and Polleres, 2006; Gebser et al. 2011]:

r : h1 ∨ · · · ∨ hl ← a1 ∧ · · · ∧ an ∧ ¬b1 ∧ · · · ∧ ¬bm.

7−→


head(r ,h1). . . . head(r ,hl).
pbody(r ,a1). . . . pbody(r ,an).
npody(r ,b1). . . . nbody(r ,bm).

I The semantics of rules can be tailored using meta rules:
in(H) ← head(R,H) ∧

in(P) : pbody(R,P) ∧
¬in(N) : nbody(R,N) ∧
¬in(OH) : head(R,OH) : OH 6= H.

I Second-order features can be expressed via saturation.
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Our Approach
I A new way of combining (normal) logic programs so that

— the interface for oracles is made explicit and
— the semantics is defined in terms of stable-unstable models.

I Distinguished features:
— All variables are quantified implicitly (no prenex form)!
— A proof-of-concept implementation is readily obtained in the

SAT-TO-SAT framework [J. et al., 2016].
— The entire PH can be covered using the idea recursively.
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Outline
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Logic Programs: Syntax and Semantics

I A (normal) logic program P over a signature σ may have a
set of parameters τ ⊆ σ not occurring in the heads of rules.

I An interpretation M ⊆ σ of P is
1. a stable model of P, iff M is a ⊆-minimal model of the

Gelfond-Lifschitz reduct PM , and
2. a parameterized stable model of P, iff M is a stable model

of the program P ∪ {a←| a ∈ τ ∩M}.

Example
Consider the following program P parameterized by τ = {c}:

a← b ∧ c. b ← c. b ← a ∧ ¬c. a← ¬c.

Then M1 = {a,b, c} and M2 = {a,b} are stable given τ .
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Combination
I A combined logic program is pair (Pg ,Pt ) of normal logic

programs Pg and Pt with vocabularies σg and σt such that
1. the generating program Pg is parameterized by τg ⊆ σg and
2. the testing program Pt is parameterized by σg ∩ σt .

Example
Consider the following combined logic program (Pg ,Pt ):

{y1,n1, y2,n2}
y1 ← ¬x1.
n1 ← ¬p1.
y2 ← ¬x2.
n2 ← ¬p2.
{x1,p1, x2,p2}

{tx , fx , ty , fy , f1, f2, f}
f1 ← ¬y1 ∧ n1 ∧ tx . f2 ← ¬y2 ∧ n2 ∧ tx .
f1 ← ¬y1 ∧ ¬n1 ∧ fx . f2 ← ¬y2 ∧ ¬n2 ∧ fx .
f1 ← y1 ∧ n1 ∧ ty . f2 ← y2 ∧ n2 ∧ ty .
f1 ← y1 ∧ ¬n1 ∧ fy . f2 ← y2 ∧ ¬n2 ∧ fy .
f ← f1 ∧ f2. tx ← ¬fx . ty ← ¬fy .
f ← ¬f . fx ← ¬tx . fy ← ¬ty .

{y1,n1, y2,n2}
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Stable-Unstable Semantics

I Let (Pg ,Pt ) be a combined logic program with
vocabularies σg and σt .

I A interpretation I ⊆ σg is a stable-unstable model of
(Pg ,Pt ) iff the following two conditions hold:

1. I is a parameterized stable model of Pg with respect to τg
(the parameters of Pg) and

2. there is no parameterized stable model J of Pt that
coincides with I on σt ∩ σg (i.e., such that I ∩ σt = J ∩ σg).

Example
For the combined program

Pg : a← ¬b. b ← ¬a. Pt : c ← a,¬c.

the only stable-unstable model is M = {a}.
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Example

{y1,n1, y2,n2}
y1 ← ¬x1.
n1 ← ¬p1.
y2 ← ¬x2.
n2 ← ¬p2.
{x1,p1, x2,p2}

{tx , fx , ty , fy , f1, f2, f}
f1 ← ¬y1 ∧ n1 ∧ tx . f2 ← ¬y2 ∧ n2 ∧ tx .
f1 ← ¬y1 ∧ ¬n1 ∧ fx . f2 ← ¬y2 ∧ ¬n2 ∧ fx .
f1 ← y1 ∧ n1 ∧ ty . f2 ← y2 ∧ n2 ∧ ty .
f1 ← y1 ∧ ¬n1 ∧ fy . f2 ← y2 ∧ ¬n2 ∧ fy .
f ← f1 ∧ f2. tx ← ¬fx . ty ← ¬fy .
f ← ¬f . fx ← ¬tx . fy ← ¬ty .

{y1,n1, y2,n2}

Clause Mi Stable models given Mi
x ∨ x {x1,p1, x2,p2} {fx , fy , f1, f2, f}, {fx , ty , f1, f2, f}
x ∨ x {x1,p1, x2,n2} —
x ∨ y {x1,p1, y2,p2} {fx , fy , f1, f2, f}
x ∨ y {x1,p1, y2,n2} {fx , ty , f1, f2, f}
. . . . . . . . .

+ {x1,p1, x2,n2}, {x1,n1, x2,p2}, {y1,p1, y2,n2}, {y1,n1, y2,p2}.



ICLP’16, October 19, 2016

11/??

Results

I Any disjunctive program P can be rewritten as a combined
logic program (Pg ,Pt ) as done by GNT [J. et al., 2006].

I We call a combined logic program (Pg ,Pt ) independent, if
σg ∩ σt = ∅, i.e., Pg and Pt cannot interact with each other.

I Deciding the existence of a stable-unstable model for a
finite combined program (Pg ,Pt ) is

1. ΣP
2 -complete in general, and

2. DP-complete for independent combined programs.
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Encodings

I Winning strategies for parity games
— Correspond to model checking problems in µ-calculus.
— Plays are infinite paths in a graph.
— Existing encodings in difference logic [Heljanko et al., 2012]

can be improved to be linear.

I Conformant planning
— Certain facts about the initial state and/or the actions’

effects are unknown.
— The native ASP encoding of [Leone et al., 2001] can now

be expressed without saturation.

I Points of no return in formula-labeled graphs
— New prototypical problem that combines graphs and logic.
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Points of No Return
I Based on a directed multigraph G = (V ,A, s):

— V is a set of vertices,
— s ∈ V is an initial vertex, and
— A is a set of arcs u φ−→ v labeled by Boolean formulas φ.

I The criteria for a point of no return:

G

s = v0

v1
v2

vn−1

vn = v

vn+1
vn+m−1

φ1 φ2 φn

φn+1

φn+m

φ1 ∧ · · · ∧ φn ∈ SAT but φ1 ∧ · · · ∧ φn+m ∈ UNSAT (always).

I In general, it is a ΣP
2 -complete decision problem to verify if

a given vertex v ∈ V is a point of no return.
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Encoding: Generating Program Pg

0 ≤ #{pickg(X ,Y )} ≤ 1← arc(X ,Y ,L).

← pickg(X ,Y ) ∧ pickg(X ′,Y ′)
∧arc(X ,Y ,pos(A)) ∧ arc(X ′,Y ′,neg(A)).

rg(X )← init(X ).
rg(Y )← rg(X ) ∧ pickg(X ,Y ).

← ¬rg(X ) ∧ pickg(X ,Y ).

← ponr(X ) ∧ ¬rg(X ).
← ponr(X ) ∧ pickg(X ,Y ).

← pickg(X ,Y ) ∧ pickg(X ,Z ) ∧ Y 6= Z .
← pickg(X ,Y ) ∧ pickg(Z ,Y ) ∧ X 6= Z .
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Encoding: Testing Program Pt

0 ≤ #{pickt (X ,Y )} ≤ 1← arc(X ,Y ,L).
pick(X ,Y )← pickt (X ,Y ).
pick(X ,Y )← pickg(X ,Y ).

← pick(X ,Y ) ∧ pick(X ′,Y ′)∧
arc(X ,Y ,pos(A)) ∧ arc(X ′,Y ′,neg(A)).

rt (X )← ponr(X ).
rt (Y )← rt (X ) ∧ pickt (X ,Y ).
← ¬rt (X ) ∧ pickt (X ,Y ).
← init(X ) ∧ ¬rt (X ).
← init(X ) ∧ pickt (X ,Y ).
← pickt (X ,Y ) ∧ pickt (X ,Z ) ∧ Y 6= Z .
← pickt (X ,Y ) ∧ pickt (Z ,Y ) ∧ X 6= Z .
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The SAT-TO-SAT Architecture
I The core SAT-TO-SAT solver [J. et al., 2016] consists of

two CDCL SAT solvers essentially solving a formula
∃~x(φ ∧ ¬∃~yψ).

I Using a recursive SAT-TO-SAT architecture, quantified
Boolean formulas (QBFs) can be solved [B. et al., 2016b].

I It is possible to translate second-order specifications into
SAT-TO-SAT instances [B. et al., 2016a].

TSM : ∀A : i(A) ⇒ a(A).
∀R : r(R) ⇒

(
(∀A : pb(R,A) ⇒ i(A)) ∧ (∀B : nb(R,B) ⇒ ¬i(B)) ⇒
∃H : h(R,H) ∧ i(H)

)
.

¬∃i′ :
(∀A : i′(A) ⇒ i(A)) ∧ (∃A : i(A) ∧ ¬i′(A))∧
∀R : r(R) ⇒

(
(∀A : pb(R,A) ⇒ i′(A))∧
(∀B : nb(R,B) ⇒ ¬i(B)) ⇒ ∃H : h(R,H) ∧ i′(H)

)
.
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Proof-of-Concept Implementation
I The stable-unstable semantics can specified using a

second-order theory TSU :

TSM [r/rg ,a/ag ,h/hg ,pb/pbg ,nb/nbg].

¬∃it : TSM [r/rt ,a/at ,h/ht ,pb/pbt ,nb/nbt , i/it ]
∧ (∀A : ag(A) ∧ at (A)⇒ (i(A)⇔ it (A))).

I For a second-order interpretation I that captures the
structure of a combined logic program (Pg ,Pt ),

I |= TSU ⇐⇒ i I is a stable-unstable model of (Pg ,Pt ).

I The implementation is available under
http://research.ics.aalto.fi/software/sat/sat-to-sat/

http://research.ics.aalto.fi/software/sat/sat-to-sat/
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Beyond ΣP
2 /Π

P
2 with Normal Logic Programs

I Combined programs can be generalized using a parameter
k that determines the depth of combination:

— any normal logic program P is 1-combined,
— any combined logic program (Pg ,Pt ) is 2-combined, and
— for k > 2, a k -combined program is a pair (P, C) where P is

a normal program and C is a (k − 1)-combined program.

I The stable-unstable semantics is analogously defined for
k -combined programs with the depth of combination k > 2.

I In general, it is ΣP
k -complete to decide if a finite

k -combined program has a stable-unstable model.
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Conclusion

I Combined logic programs under stable-unstable models
enable programming on the second level of the PH.

I The new methodology surpasses the need for previous
saturation and meta-interpretation techniques.

I A proof-of-concept implementation is obtained by
combining CDCL SAT solvers in an appropriate way.

I By recursive application of the idea, we obtain a gateway
to programming on any level k of the PH.

I There are interesting avenues for future work:
— Building a native solver for combined programs
— The theory of stable-unstable semantics as such
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See You at LPNMR’17 in Finland
14th International Conference on Logic Programming and

Nonmonotonic Reasoning, July 3–6, 2017

http://lpnmr2017.aalto.fi/

http://lpnmr2017.aalto.fi/

