
Stable-Unstable Semantics:
Beyond NP with Normal Logic Programs
Bart Bogaerts1,2, Tomi Janhunen1, Shahab Tasharrofi1

1) Aalto University, Finland
2) KU Leuven, Belgium

ICLP’16, New York City, October 19, 2016

ICLP’16, October 19, 2016

2/??

Background: Disjunctive Logic Programs (DLPs)
I An extension of normal logic programs in terms of proper

disjunctive rules [Gelfond and Lifschitz, 1991]:
h1 ∨ · · · ∨ hl ← a1 ∧ · · · ∧ an ∧ ¬b1 ∧ · · · ∧ ¬bm.

I The main decision problems of DLPs are either ΣP
2 - or

ΠP
2 -complete [Eiter and Gottlob, 1995].

I A number of native answer set solvers that implement the
search for answer sets in the disjunctive case:

— DLV [Leone et al., 1998/2006]
— GNT [J. et al., 2000/2006]
— CMODELS [Giunchiglia et al., 2006]
— CLASPD [Drescher et al., 2008]

I The underlying (co)NP-oracle can only be accessed in an
indirect way, e.g., using saturation or meta programming.

ICLP’16, October 19, 2016

3/??

Background: Saturation

I A positive disjunctive program P can be embedded in a
DLP as an oracle by including

— the rule u ← ¬u for a new atom u not occurring in P,
— the rule u ∨ h1 ∨ · · · ∨ hl ← a1 ∧ · · · ∧ an for each rule of P,

and
— the rule a← u for each atom of P.

I The atoms in P and u form a single strongly connected
component (SCC) that cannot be shifted.

I It is impossible to exploit default negation in the oracle as
pointed out by [Eiter and Polleres, 2006].

I It is also quite difficult to detect and maintain oracles of the
form above in existing encodings.

ICLP’16, October 19, 2016

4/??

Background: Meta Interpretation
I Meta interpretation renders disjunctive rules as data

[Eiter and Polleres, 2006; Gebser et al. 2011]:

r : h1 ∨ · · · ∨ hl ← a1 ∧ · · · ∧ an ∧ ¬b1 ∧ · · · ∧ ¬bm.

7−→


head(r ,h1). . . . head(r ,hl).
pbody(r ,a1). . . . pbody(r ,an).
npody(r ,b1). . . . nbody(r ,bm).

I The semantics of rules can be tailored using meta rules:
in(H) ← head(R,H) ∧

in(P) : pbody(R,P) ∧
¬in(N) : nbody(R,N) ∧
¬in(OH) : head(R,OH) : OH 6= H.

I Second-order features can be expressed via saturation.

ICLP’16, October 19, 2016

5/??

Our Approach
I A new way of combining (normal) logic programs so that

— the interface for oracles is made explicit and
— the semantics is defined in terms of stable-unstable models.

I Distinguished features:
— All variables are quantified implicitly (no prenex form)!
— A proof-of-concept implementation is readily obtained in the

SAT-TO-SAT framework [J. et al., 2016].
— The entire PH can be covered using the idea recursively.

ICLP’16, October 19, 2016

6/??

Outline

ICLP’16, October 19, 2016

7/??

Logic Programs: Syntax and Semantics

I A (normal) logic program P over a signature σ may have a
set of parameters τ ⊆ σ not occurring in the heads of rules.

I An interpretation M ⊆ σ of P is
1. a stable model of P, iff M is a ⊆-minimal model of the

Gelfond-Lifschitz reduct PM , and
2. a parameterized stable model of P, iff M is a stable model

of the program P ∪ {a←| a ∈ τ ∩M}.

Example
Consider the following program P parameterized by τ = {c}:

a← b ∧ c. b ← c. b ← a ∧ ¬c. a← ¬c.

Then M1 = {a,b, c} and M2 = {a,b} are stable given τ .

ICLP’16, October 19, 2016

8/??

Combination
I A combined logic program is pair (Pg ,Pt) of normal logic

programs Pg and Pt with vocabularies σg and σt such that
1. the generating program Pg is parameterized by τg ⊆ σg and
2. the testing program Pt is parameterized by σg ∩ σt .

Example
Consider the following combined logic program (Pg ,Pt):

{y1,n1, y2,n2}
y1 ← ¬x1.
n1 ← ¬p1.
y2 ← ¬x2.
n2 ← ¬p2.
{x1,p1, x2,p2}

{tx , fx , ty , fy , f1, f2, f}
f1 ← ¬y1 ∧ n1 ∧ tx . f2 ← ¬y2 ∧ n2 ∧ tx .
f1 ← ¬y1 ∧ ¬n1 ∧ fx . f2 ← ¬y2 ∧ ¬n2 ∧ fx .
f1 ← y1 ∧ n1 ∧ ty . f2 ← y2 ∧ n2 ∧ ty .
f1 ← y1 ∧ ¬n1 ∧ fy . f2 ← y2 ∧ ¬n2 ∧ fy .
f ← f1 ∧ f2. tx ← ¬fx . ty ← ¬fy .
f ← ¬f . fx ← ¬tx . fy ← ¬ty .

{y1,n1, y2,n2}

ICLP’16, October 19, 2016

9/??

Stable-Unstable Semantics

I Let (Pg ,Pt) be a combined logic program with
vocabularies σg and σt .

I A interpretation I ⊆ σg is a stable-unstable model of
(Pg ,Pt) iff the following two conditions hold:

1. I is a parameterized stable model of Pg with respect to τg
(the parameters of Pg) and

2. there is no parameterized stable model J of Pt that
coincides with I on σt ∩ σg (i.e., such that I ∩ σt = J ∩ σg).

Example
For the combined program

Pg : a← ¬b. b ← ¬a. Pt : c ← a,¬c.

the only stable-unstable model is M = {a}.

ICLP’16, October 19, 2016

10/??

Example

{y1,n1, y2,n2}
y1 ← ¬x1.
n1 ← ¬p1.
y2 ← ¬x2.
n2 ← ¬p2.
{x1,p1, x2,p2}

{tx , fx , ty , fy , f1, f2, f}
f1 ← ¬y1 ∧ n1 ∧ tx . f2 ← ¬y2 ∧ n2 ∧ tx .
f1 ← ¬y1 ∧ ¬n1 ∧ fx . f2 ← ¬y2 ∧ ¬n2 ∧ fx .
f1 ← y1 ∧ n1 ∧ ty . f2 ← y2 ∧ n2 ∧ ty .
f1 ← y1 ∧ ¬n1 ∧ fy . f2 ← y2 ∧ ¬n2 ∧ fy .
f ← f1 ∧ f2. tx ← ¬fx . ty ← ¬fy .
f ← ¬f . fx ← ¬tx . fy ← ¬ty .

{y1,n1, y2,n2}

Clause Mi Stable models given Mi
x ∨ x {x1,p1, x2,p2} {fx , fy , f1, f2, f}, {fx , ty , f1, f2, f}
x ∨ x {x1,p1, x2,n2} —
x ∨ y {x1,p1, y2,p2} {fx , fy , f1, f2, f}
x ∨ y {x1,p1, y2,n2} {fx , ty , f1, f2, f}
.

+ {x1,p1, x2,n2}, {x1,n1, x2,p2}, {y1,p1, y2,n2}, {y1,n1, y2,p2}.

ICLP’16, October 19, 2016

11/??

Results

I Any disjunctive program P can be rewritten as a combined
logic program (Pg ,Pt) as done by GNT [J. et al., 2006].

I We call a combined logic program (Pg ,Pt) independent, if
σg ∩ σt = ∅, i.e., Pg and Pt cannot interact with each other.

I Deciding the existence of a stable-unstable model for a
finite combined program (Pg ,Pt) is

1. ΣP
2 -complete in general, and

2. DP-complete for independent combined programs.

ICLP’16, October 19, 2016

12/??

Encodings

I Winning strategies for parity games
— Correspond to model checking problems in µ-calculus.
— Plays are infinite paths in a graph.
— Existing encodings in difference logic [Heljanko et al., 2012]

can be improved to be linear.

I Conformant planning
— Certain facts about the initial state and/or the actions’

effects are unknown.
— The native ASP encoding of [Leone et al., 2001] can now

be expressed without saturation.

I Points of no return in formula-labeled graphs
— New prototypical problem that combines graphs and logic.

ICLP’16, October 19, 2016

13/??

Points of No Return
I Based on a directed multigraph G = (V ,A, s):

— V is a set of vertices,
— s ∈ V is an initial vertex, and
— A is a set of arcs u φ−→ v labeled by Boolean formulas φ.

I The criteria for a point of no return:

G

s = v0

v1
v2

vn−1

vn = v

vn+1
vn+m−1

φ1 φ2 φn

φn+1

φn+m

φ1 ∧ · · · ∧ φn ∈ SAT but φ1 ∧ · · · ∧ φn+m ∈ UNSAT (always).

I In general, it is a ΣP
2 -complete decision problem to verify if

a given vertex v ∈ V is a point of no return.

ICLP’16, October 19, 2016

14/??

Encoding: Generating Program Pg

0 ≤ #{pickg(X ,Y)} ≤ 1← arc(X ,Y ,L).

← pickg(X ,Y) ∧ pickg(X ′,Y ′)
∧arc(X ,Y ,pos(A)) ∧ arc(X ′,Y ′,neg(A)).

rg(X)← init(X).
rg(Y)← rg(X) ∧ pickg(X ,Y).

← ¬rg(X) ∧ pickg(X ,Y).

← ponr(X) ∧ ¬rg(X).
← ponr(X) ∧ pickg(X ,Y).

← pickg(X ,Y) ∧ pickg(X ,Z) ∧ Y 6= Z .
← pickg(X ,Y) ∧ pickg(Z ,Y) ∧ X 6= Z .

ICLP’16, October 19, 2016

15/??

Encoding: Testing Program Pt

0 ≤ #{pickt (X ,Y)} ≤ 1← arc(X ,Y ,L).
pick(X ,Y)← pickt (X ,Y).
pick(X ,Y)← pickg(X ,Y).

← pick(X ,Y) ∧ pick(X ′,Y ′)∧
arc(X ,Y ,pos(A)) ∧ arc(X ′,Y ′,neg(A)).

rt (X)← ponr(X).
rt (Y)← rt (X) ∧ pickt (X ,Y).
← ¬rt (X) ∧ pickt (X ,Y).
← init(X) ∧ ¬rt (X).
← init(X) ∧ pickt (X ,Y).
← pickt (X ,Y) ∧ pickt (X ,Z) ∧ Y 6= Z .
← pickt (X ,Y) ∧ pickt (Z ,Y) ∧ X 6= Z .

ICLP’16, October 19, 2016

16/??

The SAT-TO-SAT Architecture
I The core SAT-TO-SAT solver [J. et al., 2016] consists of

two CDCL SAT solvers essentially solving a formula
∃~x(φ ∧ ¬∃~yψ).

I Using a recursive SAT-TO-SAT architecture, quantified
Boolean formulas (QBFs) can be solved [B. et al., 2016b].

I It is possible to translate second-order specifications into
SAT-TO-SAT instances [B. et al., 2016a].

TSM : ∀A : i(A) ⇒ a(A).
∀R : r(R) ⇒

(
(∀A : pb(R,A) ⇒ i(A)) ∧ (∀B : nb(R,B) ⇒ ¬i(B)) ⇒
∃H : h(R,H) ∧ i(H)

)
.

¬∃i′ :
(∀A : i′(A) ⇒ i(A)) ∧ (∃A : i(A) ∧ ¬i′(A))∧
∀R : r(R) ⇒

(
(∀A : pb(R,A) ⇒ i′(A))∧
(∀B : nb(R,B) ⇒ ¬i(B)) ⇒ ∃H : h(R,H) ∧ i′(H)

)
.

ICLP’16, October 19, 2016

17/??

Proof-of-Concept Implementation
I The stable-unstable semantics can specified using a

second-order theory TSU :

TSM [r/rg ,a/ag ,h/hg ,pb/pbg ,nb/nbg].

¬∃it : TSM [r/rt ,a/at ,h/ht ,pb/pbt ,nb/nbt , i/it]
∧ (∀A : ag(A) ∧ at (A)⇒ (i(A)⇔ it (A))).

I For a second-order interpretation I that captures the
structure of a combined logic program (Pg ,Pt),

I |= TSU ⇐⇒ i I is a stable-unstable model of (Pg ,Pt).

I The implementation is available under
http://research.ics.aalto.fi/software/sat/sat-to-sat/

http://research.ics.aalto.fi/software/sat/sat-to-sat/

ICLP’16, October 19, 2016

18/??

Beyond ΣP
2 /Π

P
2 with Normal Logic Programs

I Combined programs can be generalized using a parameter
k that determines the depth of combination:

— any normal logic program P is 1-combined,
— any combined logic program (Pg ,Pt) is 2-combined, and
— for k > 2, a k -combined program is a pair (P, C) where P is

a normal program and C is a (k − 1)-combined program.

I The stable-unstable semantics is analogously defined for
k -combined programs with the depth of combination k > 2.

I In general, it is ΣP
k -complete to decide if a finite

k -combined program has a stable-unstable model.

ICLP’16, October 19, 2016

19/??

Conclusion

I Combined logic programs under stable-unstable models
enable programming on the second level of the PH.

I The new methodology surpasses the need for previous
saturation and meta-interpretation techniques.

I A proof-of-concept implementation is obtained by
combining CDCL SAT solvers in an appropriate way.

I By recursive application of the idea, we obtain a gateway
to programming on any level k of the PH.

I There are interesting avenues for future work:
— Building a native solver for combined programs
— The theory of stable-unstable semantics as such

ICLP’16, October 19, 2016

20/??

See You at LPNMR’17 in Finland
14th International Conference on Logic Programming and

Nonmonotonic Reasoning, July 3–6, 2017

http://lpnmr2017.aalto.fi/

http://lpnmr2017.aalto.fi/

