On Local Domain Symmetry for Model Expansion

<u>Jo Devriendt</u>, Bart Bogaerts, Maurice Bruynooghe, Marc Denecker

University of Leuven / Aalto University

October 21, 2016

General symmetry definition

Given a vocabulary Σ , theory T, and domain D, a symmetry σ for T is a permutation on the set of D,Σ -structures Γ_D such that for all $I \in \Gamma_D$:

$$I \models T \text{ iff } \sigma(I) \models T$$

General symmetry definition

Given a vocabulary Σ , theory T, and domain D, a symmetry σ for T is a permutation on the set of D,Σ -structures Γ_D such that for all $I \in \Gamma_D$:

$$I \models T \text{ iff } \sigma(I) \models T$$

Why study symmetry? speeding up search – symmetry breaking avoid parts of the search space symmetrical to failed parts

More symme

Conclusion

Outline

Intro

- Theory symmetry
- MX symmetry
- Efficient breaking
- More symmetry
- Conclusion

Prelims: First-Order Logic (FO)

- vocabulary Σ of (function and predicate) symbols S/k
- Σ -theory T
- Σ-structure /
 - domain D
 - interpretations S^I for all $S \in \Sigma$

Semantics captured by satisfiability relation:

 $I \models T$

Prelims: First-Order Logic (FO)

- vocabulary Σ of (function and predicate) symbols S/k
- Σ -theory T
- Σ-structure /
 - domain D
 - interpretations S' for all $S \in \Sigma$

Semantics captured by satisfiability relation:

 $I\models T$

In ASP: program \leftrightarrow theory, set of facts \leftrightarrow structure.

Prelims: First-Order Logic (FO)

- vocabulary Σ of (function and predicate) symbols S/k
- Σ -theory T
- Σ-structure /
 - domain D
 - interpretations S' for all $S \in \Sigma$

Semantics captured by satisfiability relation:

$$I \models T$$

In ASP: program \leftrightarrow theory, set of facts \leftrightarrow structure. For the rest of the talk: vocabulary and domain are implicit and fixed.

Running example: graph coloring

$$T_{gc}$$
:

$$\begin{aligned} \forall x_1 \ y_1 \colon & \textit{Edge}(x_1, y_1) \Rightarrow \textit{Color}(x_1) \neq \textit{Color}(y_1) \\ \forall x_2 \ y_2 \colon & \textit{Edge}(x_2, y_2) \Rightarrow \textit{V}(x_2) \land \textit{V}(y_2) \\ \forall x_3 \colon & \textit{C}(\textit{Color}(x_3)) \end{aligned}$$

I_{gc}:

$$V^{I_{gc}} = \{t, u, v, w\} \quad C^{I_{gc}} = \{r, g, b\}$$

$$Edge^{I_{gc}} = \{(t, u), (u, v), (v, w), (w, t)\}$$

$$Color^{I_{gc}} = t \mapsto r, u \mapsto g, v \mapsto b, w \mapsto g, r \mapsto r, g \mapsto g, b \mapsto b$$

Note: $I_{gc} \models T_{gc}$

Symmetry for a theory

General symmetry definition

Given a vocabulary Σ , theory T, and domain D, a symmetry σ for T is a permutation on the set of D,Σ -structures Γ_D such that for all $I \in \Gamma_D$:

$$I \models T \text{ iff } \sigma(I) \models T$$

Symmetries compose to symmetry groups

Global Domain Symmetry

Permutation π on D induces permutation σ_{π} on Γ_D :

$$(\pi(d_1),\ldots,\pi(d_n))\in P^{\sigma_\pi(I)} ext{ iff } (d_1,\ldots,d_n)\in P'$$

 $f^{\sigma_\pi(I)}(\pi(d_1),\ldots,\pi(d_n))=\pi(d_0) ext{ iff } f'(d_1,\ldots,d_n)=d_0$

Let's call such induced σ_{π} a Global Domain Symmetry for T. Intuitively, domain renaming π preserves satisfiability: $\sigma_{\pi}(I) \models T$ iff $I \models T$ Intro

More symmet

Conclusion

Graph coloring ctd.

Let $\pi = (\mathbf{v} \ \mathbf{r})$, so σ_{π} maps

to

which still models T_{gc} .

Connectively closed argument positions

More precise notion of domain symmetry: apply π only on limited set of argument positions A.

 Argument position S|n with S/k ∈ Σ and 1 ≤ n ≤ k denotes S's nth argument. f|0 is output argument position.

Connectively closed argument positions

More precise notion of domain symmetry: apply π only on limited set of argument positions A.

- Argument position S|n with S/k ∈ Σ and 1 ≤ n ≤ k denotes S's nth argument. f|0 is output argument position.
- Argument positions are connected under theory *T* if one occurs as subterm of the other, if they are connected by =, or if they are connected by quantified variables.

Connectively closed argument positions

More precise notion of domain symmetry: apply π only on limited set of argument positions A.

- Argument position S|n with S/k ∈ Σ and 1 ≤ n ≤ k denotes S's nth argument. f|0 is output argument position.
- Argument positions are connected under theory T if one occurs as subterm of the other, if they are connected by =, or if they are connected by quantified variables.
- A set of argument positions A is connectively closed under T if no other argument positions of Σ are connected to A under T.

Intuitively, a partition of connectively closed argument positions under T corresponds to a well-defined typing of T.

Graph coloring ctd.

 T_{gc} :

$$\begin{aligned} \forall x_1 \ y_1 \colon & \textit{Edge}(x_1, y_1) \Rightarrow \textit{Color}(x_1) \neq \textit{Color}(y_1) \\ \forall x_2 \ y_2 \colon & \textit{Edge}(x_2, y_2) \Rightarrow \textit{V}(x_2) \land \textit{V}(y_2) \\ \forall x_3 \colon & \textit{C}(\textit{Color}(x_3)) \end{aligned}$$

Graph coloring ctd.

 T_{gc} :

$$\begin{aligned} \forall x_1 \ y_1 \colon & \textit{Edge}(x_1, y_1) \Rightarrow \textit{Color}(x_1) \neq \textit{Color}(y_1) \\ \forall x_2 \ y_2 \colon & \textit{Edge}(x_2, y_2) \Rightarrow \textit{V}(x_2) \land \textit{V}(y_2) \\ \forall x_3 \colon & \textit{C}(\textit{Color}(x_3)) \end{aligned}$$

Connectively closed argument position partition under T_{gc} :

- $\{V|1, Edge|1, Edge|2, Color|1\}$
- $\{C|1, Color|0\}$

Local Domain Symmetry

Permutation π on D and argument position set A induce permutation σ_{π}^{A} on Γ_{D} :

$$(\pi^A(d_1),\ldots,\pi^A(d_n))\in \mathcal{P}^{\sigma_\pi^A(I)} ext{ iff } (d_1,\ldots,d_n)\in \mathcal{P}'$$

 $f^{\sigma_\pi^A(I)}(\pi^A(d_1),\ldots,\pi^A(d_n))=\pi^A(d_0) ext{ iff } f'(d_1,\ldots,d_n)=d_0$

where π^{A} applies π only on argument positions in A.

Local Domain Symmetry

Permutation π on D and argument position set A induce permutation σ_{π}^{A} on Γ_{D} :

$$(\pi^A(d_1),\ldots,\pi^A(d_n))\in \mathcal{P}^{\sigma_\pi^A(I)} ext{ iff } (d_1,\ldots,d_n)\in \mathcal{P}'$$

 $f^{\sigma_\pi^A(I)}(\pi^A(d_1),\ldots,\pi^A(d_n))=\pi^A(d_0) ext{ iff } f'(d_1,\ldots,d_n)=d_0$

where π^{A} applies π only on argument positions in A.

If A is connectively closed under T, $\sigma_{\pi}^{\rm A}$ is a local domain symmetry of T.

Intuitively, σ_{π}^{A} permutes domain element tuples according to some type A of T.

Graph coloring ctd. Let $\pi = (v \ r)$ and $A = \{V|1, Edge|1, Edge|2, Color|1\}$, so σ_{π}^{A} maps

to

which still models T_{gc} .

Local Domain Symmetry

 So far, so good: more or less known in literature (MACE, SEM, Paradox, ...)

Local Domain Symmetry

- So far, so good: more or less known in literature (MACE, SEM, Paradox, ...)
- What if we have to take pre-interpreted symbols into account? \rightarrow Model eXpansion

First-Order Model Expansion (MX)

In:

- vocabulary $\Sigma = \Sigma_{in} \cup \Sigma_{out} \ (\Sigma_{in} \cap \Sigma_{out} = \emptyset)$
- Σ -theory T
- Σ_{in} -structure I_{in}
 - domain D
 - interpretations $S^{I_{in}}$ to $S\in \Sigma_{in}$

Out:

- Σ_{out} -structure I_{out} such that $I_{in} \sqcup I_{out} \models T$
 - same domain D
 - $I_{in} \sqcup I_{out}$ merges both structures to a Σ -structure
- or "unsat"

First-Order Model Expansion (MX)

In:

- vocabulary $\Sigma = \Sigma_{in} \cup \Sigma_{out} \ (\Sigma_{in} \cap \Sigma_{out} = \emptyset)$
- Σ-theory T
- Σ_{in} -structure I_{in}
 - domain D
 - interpretations $S^{I_{in}}$ to $S\in \Sigma_{in}$

Out:

- Σ_{out} -structure I_{out} such that $I_{in} \sqcup I_{out} \models T$
 - same domain D
 - $I_{in} \sqcup I_{out}$ merges both structures to a Σ -structure
- or "unsat"

Shortened as $MX(T, I_{in})$.

Graph coloring ctd.

 T_{gc} :

$$\begin{aligned} \forall x_1 \ y_1 \colon & \textit{Edge}(x_1, y_1) \Rightarrow \textit{Color}(x_1) \neq \textit{Color}(y_1) \\ \forall x_2 \ y_2 \colon & \textit{Edge}(x_2, y_2) \Rightarrow \textit{V}(x_2) \land \textit{V}(y_2) \\ \forall x_3 \colon & \textit{C}(\textit{Color}(x_3)) \end{aligned}$$

l_{gcin}:

$$V^{I_{gcin}} = \{t, u, v, w\} \quad C^{I_{gcin}} = \{r, g, b\}$$

Edge^{I_{gcin}} = $\{(t, u), (u, v), (v, w), (w, t)\}$

Graph coloring ctd.

I_{gcout}:

 $\textit{Color}^{\textit{I}_{gcout}} = t \mapsto r, u \mapsto g, v \mapsto b, w \mapsto g, r \mapsto r, g \mapsto g, b \mapsto b$

 $I_{gcin} \sqcup I_{gcout}$:

Note: $I_{gcin} \sqcup I_{gcout} \models T_{gc}$

More symm

Conclusion

Symmetry for MX

Symmetry for $MX(T, I_{in})$

A symmetry σ for $MX(T, I_{in})$ is a permutation on the set of D, Σ_{out} -structures Γ_D such that for all $I \in \Gamma_D$:

$$I_{in} \sqcup I_{out} \models T$$
 iff $I_{in} \sqcup \sigma(I_{out}) \models T$

Intuitively, symmetry must preserve input structure.

Sufficient condition for MX-symmetry?

• Local domain symmetry σ_{π}^{A} where A is connectively closed under T and π such that $\sigma_{\pi}^{A}(I_{in}) = I_{in}$

Sufficient condition for MX-symmetry?

• Local domain symmetry σ_{π}^{A} where A is connectively closed under T and π such that $\sigma_{\pi}^{A}(I_{in}) = I_{in}$

MX symmetry

• Does not work well for independent symbols connected under *T*:

Both graphs Edge/2 and Edge'/2 have different symmetries, but since their argument positions typically are connected by a V/1 argument position, no π exists that is consistent with the symmetry of both graphs.

Sufficient condition for MX-symmetry?

We defined transformation for $MX(T, I_{in})$ to $MX(T^*, I_{in}^*)$ such that

Sufficient condition for MX-symmetry

 σ_{π}^{A} is a local domain symmetry for $MX(T, I_{in})$ if A is connectively closed under T^{*} and $\sigma_{\pi}^{A}(I_{in}^{*}) = I_{in}^{*}$.

Intuitively, $MX(T, I_{in})$ decouples all occurrences of pre-interpreted symbols.

- given $MX(T, I_{in})$, finding good A is easy
 - Partition argument positions in T^{\ast} in connectively closed classes

- given $MX(T, I_{in})$, finding good A is easy
 - Partition argument positions in T^{\ast} in connectively closed classes
- how about π such that $\sigma_{\pi}^{A}(I_{in}^{*}) = I_{in}^{*}$?

- given $MX(T, I_{in})$, finding good A is easy
 - Partition argument positions in T^{\ast} in connectively closed classes
- how about π such that $\sigma_{\pi}^{A}(I_{in}^{*}) = I_{in}^{*}$?

Answer:

• generate-and-test for domain element swaps $(d_1 \ d_2)$

- given $MX(T, I_{in})$, finding good A is easy
 - Partition argument positions in T^{\ast} in connectively closed classes
- how about π such that $\sigma_{\pi}^{A}(I_{in}^{*}) = I_{in}^{*}$?

Answer:

- generate-and-test for domain element swaps $(d_1 \ d_2)$
- encode to graph automorphism problem for more complicated $\boldsymbol{\pi}$
 - In: *I_{in}, A*
 - Out: generators π that induce symmetry $\sigma_\pi^{\mathcal{A}}$
 - Size of graph depends on size of I_{in} , not on size of T

Graph coloring ctd.

Symmetry breaking

Given symmetry group \mathbb{G} , construct symmetry breaking formula $\varphi(\mathbb{G})$. $\varphi(\mathbb{G})$ is sound if for each I_{out} , there exists some $\sigma \in \mathbb{G}$ such that $I_{in} \sqcup \sigma(I_{out}) \models \varphi(\mathbb{G})$. $\varphi(\mathbb{G})$ is complete if for each I_{out} , there exists exactly one $\sigma \in \mathbb{G}$ such that $I_{in} \sqcup \sigma(I_{out}) \models \varphi(\mathbb{G})$.

Symmetry breaking

Given symmetry group \mathbb{G} , construct symmetry breaking formula $\varphi(\mathbb{G})$. $\varphi(\mathbb{G})$ is sound if for each I_{out} , there exists some $\sigma \in \mathbb{G}$ such that $I_{in} \sqcup \sigma(I_{out}) \models \varphi(\mathbb{G})$. $\varphi(\mathbb{G})$ is complete if for each I_{out} , there exists exactly one $\sigma \in \mathbb{G}$ such that $I_{in} \sqcup \sigma(I_{out}) \models \varphi(\mathbb{G})$.

What is the size of $\varphi(\mathbb{G})$ to break \mathbb{G} completely?

Breaking local domain symmetry completely

 \mathbb{G}_{δ}^{A} is a local domain interchangeability group if A is a set of argument positions, $\delta \subseteq D$, and each permutation π over δ induces a local domain symmetry σ_{π}^{A} .

 \mathbb{G}_{δ}^{A} is broken completely with $O(|\delta|^{2})$ sized symmetry breaking formula if A contains at most one argument position S|i for each symbol $S \in \Sigma_{out}$.

Intuitively, after grounding, \mathbb{G}_{δ}^{A} represents row interchangeability of a Boolean variable matrix. Ordering the rows breaks all symmetry.

Graph coloring ctd.

Let $A = \{C|1, Color|0\}$, $\delta = \{r, b, g\}$. \mathbb{G}^{A}_{δ} represents the interchangeability of colors, and can be broken completely with a small symmetry breaking formula.

Graph coloring ctd.

Let $A = \{C|1, Color|0\}$, $\delta = \{r, b, g\}$. \mathbb{G}^{A}_{δ} represents the interchangeability of colors, and can be broken completely with a small symmetry breaking formula.

However, e.g. for the Ramsey number problem, $A = \{Edge|1, Edge|2, Color|1, ...\}$, so A' does not satisfy the "one argument position" condition.

Symmetry notions not captured by local domain symmetry

E.g. swapping colors of node v and t:

to

which still models T_{gc} .

- Notion of local domain symmetry
- Sufficient condition for symmetry detection in the context of an input structure
- Symmetry detection approach on predicate level
- Completeness guarantee for symmetry breaking
- Limits of our approach
- Notion can be extended to aggregates, non-monotonic rules, etc.
- Implementation in IDP

Conclusion

- Notion of local domain symmetry
- Sufficient condition for symmetry detection in the context of an input structure
- Symmetry detection approach on predicate level
- Completeness guarantee for symmetry breaking
- Limits of our approach
- Notion can be extended to aggregates, non-monotonic rules, etc.
- Implementation in IDP

Future work

Extend local domain symmetry to capture other notions of symmetry.

Thanks for your attention!

Questions?