Stable-Unstable Semantics: Beyond NP with Normal Logic Programs

Bart Bogaerts1,2, Tomi Janhunen1, Shahab Tasharrofi1

1) Aalto University, Finland
2) KU Leuven, Belgium

ICLP'16, New York City, October 19, 2016
Background: Disjunctive Logic Programs (DLPs)

- An extension of normal logic programs in terms of proper disjunctive rules [Gelfond and Lifschitz, 1991]:
 \[h_1 \lor \cdots \lor h_l \leftarrow a_1 \land \cdots \land a_n \land \neg b_1 \land \cdots \land \neg b_m. \]

- The main decision problems of DLPs are either \(\Sigma_2^P \)- or \(\Pi_2^P \)-complete [Eiter and Gottlob, 1995].

- A number of native answer set solvers that implement the search for answer sets in the disjunctive case:
 - DLV [Leone et al., 1998/2006]
 - GNT [J. et al., 2000/2006]
 - CMODELS [Giunchiglia et al., 2006]
 - CLASP-D [Drescher et al., 2008]

- The underlying (co)NP-oracle can only be accessed in an indirect way, e.g., using saturation or meta programming.
Background: Saturation

- A positive disjunctive program \mathcal{P} can be embedded in a DLP as an oracle by including
 - the rule $u \leftarrow \neg u$ for a new atom u not occurring in \mathcal{P},
 - the rule $u \lor h_1 \lor \cdots \lor h_l \leftarrow a_1 \land \cdots \land a_n$ for each rule of \mathcal{P}, and
 - the rule $a \leftarrow u$ for each atom of \mathcal{P}.

- The atoms in \mathcal{P} and u form a single strongly connected component (SCC) that cannot be shifted.

- It is impossible to exploit default negation in the oracle as pointed out by [Eiter and Polleres, 2006].

- It is also quite difficult to detect and maintain oracles of the form above in existing encodings.
Background: Meta Interpretation

- Meta interpretation renders disjunctive rules as data
 [Eiter and Polleres, 2006; Gebser et al. 2011]:

 \[
 r : h_1 \lor \cdots \lor h_l \leftarrow a_1 \land \cdots \land a_n \land \neg b_1 \land \cdots \land \neg b_m.
 \]

 \[
 \mapsto \begin{cases}
 \text{head}(r, h_1). & \ldots & \text{head}(r, h_l). \\
 \text{pbody}(r, a_1). & \ldots & \text{pbody}(r, a_n). \\
 \text{nbody}(r, b_1). & \ldots & \text{nbody}(r, b_m).
 \end{cases}
 \]

- The semantics of rules can be tailored using meta rules:

 \[
 \text{in}(H) \leftarrow \text{head}(R, H) \land \\
 \text{in}(P) : \text{pbody}(R, P) \land \\
 \neg \text{in}(N) : \text{nbody}(R, N) \land \\
 \neg \text{in}(OH) : \text{head}(R, OH) : \text{OH} \neq H.
 \]

- Second-order features can be expressed via saturation.
Our Approach

- A new way of combining (normal) logic programs so that
 - the interface for oracles is made explicit and
 - the semantics is defined in terms of stable-unstable models.

- Distinguished features:
 - All variables are quantified implicitly (no prenex form)!
 - A proof-of-concept implementation is readily obtained in the SAT-TO-SAT framework [J. et al., 2016].
 - The entire PH can be covered using the idea recursively.
A (normal) logic program \(\mathcal{P} \) over a signature \(\sigma \) may have a set of parameters \(\tau \subseteq \sigma \) not occurring in the heads of rules.

An interpretation \(M \subseteq \sigma \) of \(\mathcal{P} \) is

1. a stable model of \(\mathcal{P} \), iff \(M \) is a \(\subseteq \)-minimal model of the Gelfond-Lifschitz reduct \(\mathcal{P}^M \), and
2. a parameterized stable model of \(\mathcal{P} \), iff \(M \) is a stable model of the program \(\mathcal{P} \cup \{ a \leftarrow | a \in \tau \cap M \} \).

Example
Consider the following program \(\mathcal{P} \) parameterized by \(\tau = \{ c \} \):

\[
\begin{align*}
a & \leftarrow b \land c. \\
b & \leftarrow c. \\
b & \leftarrow a \land \neg c. \\
a & \leftarrow \neg c.
\end{align*}
\]

Then \(M_1 = \{ a, b, c \} \) and \(M_2 = \{ a, b \} \) are stable given \(\tau \).
A combined logic program is pair \((\mathcal{P}_g, \mathcal{P}_t)\) of normal logic programs \(\mathcal{P}_g\) and \(\mathcal{P}_t\) with vocabularies \(\sigma_g\) and \(\sigma_t\) such that

1. the generating program \(\mathcal{P}_g\) is parameterized by \(\tau_g \subseteq \sigma_g\) and
2. the testing program \(\mathcal{P}_t\) is parameterized by \(\sigma_g \cap \sigma_t\).

Example

Consider the following combined logic program \((\mathcal{P}_g, \mathcal{P}_t)\):

\[
\begin{align*}
\{y_1, n_1, y_2, n_2\} & \\
\hline
y_1 & \leftarrow \neg x_1.
\end{align*}
\]

\[
\begin{align*}
n_1 & \leftarrow \neg p_1.
\hline
y_2 & \leftarrow \neg x_2.
\end{align*}
\]

\[
\begin{align*}
n_2 & \leftarrow \neg p_2.
\hline
\{x_1, p_1, x_2, p_2\}
\end{align*}
\]

\[
\begin{align*}
\{t_x, f_x, t_y, f_y, f_1, f_2, f\} & \\
\hline
f_1 & \leftarrow \neg y_1 \land n_1 \land t_x.
\hline
f_2 & \leftarrow \neg y_2 \land n_2 \land t_x.
\end{align*}
\]

\[
\begin{align*}
f_1 & \leftarrow \neg y_1 \land \neg n_1 \land f_x.
\hline
f_2 & \leftarrow \neg y_2 \land \neg n_2 \land f_x.
\end{align*}
\]

\[
\begin{align*}
f_1 & \leftarrow y_1 \land n_1 \land t_y.
\hline
f_2 & \leftarrow y_2 \land n_2 \land t_y.
\end{align*}
\]

\[
\begin{align*}
f_1 & \leftarrow y_1 \land \neg n_1 \land f_y.
\hline
f_2 & \leftarrow y_2 \land \neg n_2 \land f_y.
\end{align*}
\]

\[
\begin{align*}
f & \leftarrow f_1 \land f_2.
\hline
t_x & \leftarrow \neg f_x.
\hline
t_y & \leftarrow \neg f_y.
\end{align*}
\]

\[
\begin{align*}
f & \leftarrow \neg f.
\hline
f_x & \leftarrow \neg t_x.
\hline
f_y & \leftarrow \neg t_y.
\end{align*}
\]

\[
\{y_1, n_1, y_2, n_2\}
\]
Stable-Unstable Semantics

Let \((\mathcal{P}_g, \mathcal{P}_t)\) be a combined logic program with vocabularies \(\sigma_g\) and \(\sigma_t\).

A interpretation \(I \subseteq \sigma_g\) is a stable-unstable model of \((\mathcal{P}_g, \mathcal{P}_t)\) iff the following two conditions hold:

1. \(I\) is a parameterized stable model of \(\mathcal{P}_g\) with respect to \(\tau_g\) (the parameters of \(\mathcal{P}_g\)) and
2. there is no parameterized stable model \(J\) of \(\mathcal{P}_t\) that coincides with \(I\) on \(\sigma_t \cap \sigma_g\) (i.e., such that \(I \cap \sigma_t = J \cap \sigma_g\)).

Example

For the combined program

\[
\mathcal{P}_g: \quad a \leftarrow \neg b. \quad b \leftarrow \neg a.
\]
\[
\mathcal{P}_t: \quad c \leftarrow a, \neg c.
\]

the only stable-unstable model is \(M = \{a\}\).
Example

<table>
<thead>
<tr>
<th>Clause</th>
<th>M_i</th>
<th>Stable models given M_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \lor x$</td>
<td>${x_1, p_1, x_2, p_2}$</td>
<td>${f_x, f_y, f_1, f_2, f}, {f_x, t_y, f_1, f_2, f}$</td>
</tr>
<tr>
<td>$x \lor \lnot x$</td>
<td>${x_1, p_1, x_2, n_2}$</td>
<td>$____$</td>
</tr>
<tr>
<td>$x \lor y$</td>
<td>${x_1, p_1, y_2, p_2}$</td>
<td>${f_x, f_y, f_1, f_2, f}$</td>
</tr>
<tr>
<td>$x \lor \lnot y$</td>
<td>${x_1, p_1, y_2, n_2}$</td>
<td>${f_x, t_y, f_1, f_2, f}$</td>
</tr>
</tbody>
</table>

\[
\{x_1, p_1, x_2, n_2\}, \{x_1, n_1, x_2, p_2\}, \{y_1, p_1, y_2, n_2\}, \{y_1, n_1, y_2, p_2\}.
\]
Results

- Any disjunctive program \mathcal{P} can be rewritten as a combined logic program $(\mathcal{P}_g, \mathcal{P}_t)$ as done by GNT [J. et al., 2006].

- We call a combined logic program $(\mathcal{P}_g, \mathcal{P}_t)$ independent, if $\sigma_g \cap \sigma_t = \emptyset$, i.e., \mathcal{P}_g and \mathcal{P}_t cannot interact with each other.

- Deciding the existence of a stable-unstable model for a finite combined program $(\mathcal{P}_g, \mathcal{P}_t)$ is
 1. Σ_2^P-complete in general, and
 2. D^P-complete for independent combined programs.
Encodings

► **Winning strategies for parity games**
 — Correspond to model checking problems in μ-calculus.
 — Plays are infinite paths in a graph.
 — Existing encodings in difference logic [Heljanko et al., 2012] can be improved to be linear.

► **Conformant planning**
 — Certain facts about the initial state and/or the actions’ effects are unknown.
 — The native ASP encoding of [Leone et al., 2001] can now be expressed without saturation.

► **Points of no return** in formula-labeled graphs
 — New prototypical problem that combines graphs and logic.
Points of No Return

- Based on a directed multigraph $G = (V, A, s)$:
 - V is a set of vertices,
 - $s \in V$ is an initial vertex, and
 - A is a set of arcs $u \xrightarrow{\phi} v$ labeled by Boolean formulas ϕ.

- The criteria for a point of no return:

 $s = v_0 \xrightarrow{\phi_{n+m}} v_1 \xrightarrow{\phi_1} \cdots \xrightarrow{\phi_n} v_{n-1} \xrightarrow{\phi_n} v_n = v$

 $\phi_1 \land \cdots \land \phi_n \in \text{SAT}$ but $\phi_1 \land \cdots \land \phi_{n+m} \in \text{UNSAT}$ (always).

- In general, it is a Σ^P_2-complete decision problem to verify if a given vertex $v \in V$ is a point of no return.
Encoding: Generating Program \mathcal{P}_g

\[0 \leq \#\{\text{pick}_g(X, Y)\} \leq 1 \leftarrow \text{arc}(X, Y, L). \]
\[\leftarrow \text{pick}_g(X, Y) \land \text{pick}_g(X', Y') \land \text{arc}(X, Y, \text{pos}(A)) \land \text{arc}(X', Y', \text{neg}(A)). \]
\[r_g(X) \leftarrow \text{init}(X). \]
\[r_g(Y) \leftarrow r_g(X) \land \text{pick}_g(X, Y). \]
\[\leftarrow \neg r_g(X) \land \text{pick}_g(X, Y). \]
\[\leftarrow \text{ponr}(X) \land \neg r_g(X). \]
\[\leftarrow \text{ponr}(X) \land \text{pick}_g(X, Y). \]
\[\leftarrow \text{pick}_g(X, Y) \land \text{pick}_g(X, Z) \land Y \neq Z. \]
\[\leftarrow \text{pick}_g(X, Y) \land \text{pick}_g(Z, Y) \land X \neq Z. \]
Encoding: Testing Program P_t

\[
0 \leq \#\{\text{pick}_t(X, Y)\} \leq 1 \leftarrow \text{arc}(X, Y, L).
\]
\[
\text{pick}(X, Y) \leftarrow \text{pick}_t(X, Y).
\]
\[
\text{pick}(X, Y) \leftarrow \text{pick}_g(X, Y).
\]
\[
\leftarrow \text{pick}(X, Y) \land \text{pick}(X', Y') \land
\quad \text{arc}(X, Y, \text{pos}(A)) \land \text{arc}(X', Y', \text{neg}(A)).
\]
\[
\text{r}_t(X) \leftarrow \text{ponr}(X).
\]
\[
\text{r}_t(Y) \leftarrow \text{r}_t(X) \land \text{pick}_t(X, Y).
\]
\[
\leftarrow \neg \text{r}_t(X) \land \text{pick}_t(X, Y).
\]
\[
\leftarrow \text{init}(X) \land \neg \text{r}_t(X).
\]
\[
\leftarrow \text{init}(X) \land \text{pick}_t(X, Y).
\]
\[
\leftarrow \text{pick}_t(X, Y) \land \text{pick}_t(X, Z) \land Y \neq Z.
\]
\[
\leftarrow \text{pick}_t(X, Y) \land \text{pick}_t(Z, Y) \land X \neq Z.
\]
The SAT-TO-SAT Architecture

- The core SAT-TO-SAT solver [J. et al., 2016] consists of two CDCL SAT solvers essentially solving a formula
 \[\exists \vec{x}(\phi \wedge \neg \exists \vec{y}\psi). \]

- Using a recursive SAT-TO-SAT architecture, quantified Boolean formulas (QBFs) can be solved [B. et al., 2016b].

- It is possible to translate second-order specifications into SAT-TO-SAT instances [B. et al., 2016a].

\[T_{SM} : \quad \forall A : i(A) \Rightarrow a(A). \]
\[\forall R : r(R) \Rightarrow \left((\forall A : pb(R, A) \Rightarrow i(A)) \wedge (\forall B : nb(R, B) \Rightarrow \neg i(B)) \right) \Rightarrow \]
\[\exists H : h(R, H) \wedge i(H). \]

\[\neg \exists i' : \]
\[\left((\forall A : i'(A) \Rightarrow i(A)) \wedge (\exists A : i(A) \wedge \neg i'(A)) \right) \wedge \]
\[\forall R : r(R) \Rightarrow \left((\forall A : pb(R, A) \Rightarrow i'(A)) \wedge \right) \]
\[\left((\forall B : nb(R, B) \Rightarrow \neg i(B)) \Rightarrow \exists H : h(R, H) \wedge i'(H) \right). \]
Proof-of-Concept Implementation

- The stable-unstable semantics can be specified using a second-order theory T_{SU}:

 $$T_{SM}[r/r_g, a/a_g, h/h_g, pb/pb_g, nb/nb_g].$$

 $$\neg \exists i_t : T_{SM}[r/r_t, a/a_t, h/h_t, pb/pb_t, nb/nb_t, i/i_t]$$

 $$\land (\forall A : a_g(A) \land a_t(A) \Rightarrow (i(A) \Leftrightarrow i_t(A))).$$

- For a second-order interpretation I that captures the structure of a combined logic program $(\mathcal{P}_g, \mathcal{P}_t)$,

 $$I \models T_{SU} \iff i^I \text{ is a stable-unstable model of } (\mathcal{P}_g, \mathcal{P}_t).$$

- The implementation is available under

 http://research.ics.aalto.fi/software/sat/sat-to-sat/
Beyond Σ_2^P/Π_2^P with Normal Logic Programs

- Combined programs can be generalized using a parameter k that determines the depth of combination:
 - any normal logic program \mathcal{P} is 1-combined,
 - any combined logic program $(\mathcal{P}_g, \mathcal{P}_t)$ is 2-combined, and
 - for $k > 2$, a k-combined program is a pair $(\mathcal{P}, \mathcal{C})$ where \mathcal{P} is a normal program and \mathcal{C} is a $(k-1)$-combined program.

- The stable-unstable semantics is analogously defined for k-combined programs with the depth of combination $k > 2$.

- In general, it is Σ_k^P-complete to decide if a finite k-combined program has a stable-unstable model.
Conclusion

▶ **Combined logic programs** under **stable-unstable** models enable programming on the second level of the PH.

▶ The new methodology surpasses the need for previous **saturation** and **meta-interpretation** techniques.

▶ A proof-of-concept **implementation** is obtained by combining CDCL SAT solvers in an appropriate way.

▶ By recursive application of the idea, we obtain a **gateway** to programming on any level k of the PH.

▶ There are interesting avenues for **future work**:
 — Building a native solver for combined programs
 — The theory of stable-unstable semantics as such
See You at LPNMR’17 in Finland

14th International Conference on Logic Programming and Nonmonotonic Reasoning, July 3–6, 2017

http://lpnmr2017.aalto.fi/