dAEL
Distributed Autoepistemic Logic

IJCAI 2016 – NEW YORK

PIETER VAN HERTUM, MARCOS CRAMER, BART BOGAERTS, MARC DENECKER
Distributed Autoepistemic Logic and its application to **Access Control**

- **Access Control Policy**
 - A set of norms defining which principal is to be granted access to which resource under which circumstances

- **Access Control logic**
 - Represent policies
 - Represent requests
 - Reason about requests
 - *Access is granted if it is entailed by the policy*
Motivation: Example 1

- Agents
 - A: Professor
 - B: Student of A
 - C: Postdoc of A, supervising B
- A owns resource r, s
- A gives B access to s
- A delegates to the decision whether B has access to r
Motivation: Example 1

- An agent grants access if the request is a **logical consequence** of his theory.
- Agent knows if other agents grants access.
 = **POSITIVE MUTUAL INTROSPECTION**

\[
\text{Access}(B, s) \\
\text{Access}(B, r) \leftarrow C \text{ says } \text{Access}(B, r)
\]

\[
\text{Access}(B, r)
\]
Motivation: Example 2

- **Agents**
 - \(A \): Professor
 - \(B \): Student of \(A \)
 - \(C \): Postdoc of \(A \), supervising \(B \)
- \(A \) owns resource \(r \)
- \(A \) gives \(B \) access to \(r \)
- \(A \) gives \(C \) permission to revoke \(B \)’s access to \(r \)

Access

\[Access(B, r) \leftarrow \neg (C \text{ says } \neg Access(B, r)) \]
Motivation: Example 2

- An agent’s statements are a complete characterization of what he supports
- To give revocation rights, agent needs to know what an agent doesn’t support!
 \[\text{NEGATIVE MUTUAL INTROSPECTION}\]
Distributed Autoepistemic Logic and its application to Access Control

- Needed for our logic:
 - An agent grants access if the request is a logical consequence of his theory.
 - An agent’s statements are a complete characterization of what he supports.
 - Positive and negative mutual introspection needed.

- Autoepistemic logic (AEL)
 - Logic to model knowledge (single agent).
 - Reason about knowledge and knowledge derived of (lack of) knowledge.
 - A theory is a complete characterization of what is known.
 - K operator: I know → I support.
Autoepistemic logic: \mathcal{L}_k

- Syntax of \mathcal{L}_k over Σ
 - First order logic
 - $K(\psi) \in \mathcal{L}_k$ if $\psi \in \mathcal{L}_k$

- Structure I
 - As defined in FO
 - Potential state of affairs

- Possible world structure Q
 - Set of structures
 - All structures that are deemed possible

- Semantics: $\varphi^{Q,I} =$
 - Rules for FO
 - $(K\psi)^{Q,I} = t$ if $\psi^{Q,J} = t$ for each $J \in Q$
Autoepistemic logic
Semantics

- A possible world structure Q is consistent with a theory T iff

 $T^{Q,I} = t \text{ for each } I \in Q$

- Define revision operator D:

 $D_T(Q) = \{I|T^{Q,I} = t\}$

 What do I derive from T if I assume Q represents my current belief?

- T-Consistent possible world structures = fixpoints for D_T
Distributed Autoepistemic Logic

- \mathcal{L}_d over Σ and \mathcal{A}
- First order logic
- $K_A(\psi) \in \mathcal{L}_k$ if $\psi \in \mathcal{L}_k, A \in \mathcal{A}$

- Distributed possible world structure

$$Q = \langle Q_A \rangle_{A \in \mathcal{A}}$$
One pws per agent

- Valuation as AEL, but:

$$K_A(\psi)^{Q,I} = t \quad \text{if} \quad \psi^{Q,I} = t$$
for each $J \in Q_A$
Distributed Autoepistemic logic Semantics

- A distributed possible world structure Q is **consistent with a theory T** iff
 \[T^Q_I = t \text{ for each } I \in Q_A \]

- Define revision operator \mathcal{D}:
 \[\mathcal{D}_T(Q) = \langle \{ I | T^Q_A, I = t \} \rangle_{A \in \mathcal{A}} \]

What do I derive from T if I assume Q represents my current belief?

- T – Consistent **distributed** possible world structures = fixpoints for \mathcal{D}_T
dAEL example: *Child wants candy*

- Assume 2 agents: {Mom, Dad} and voc ={c}
- Child wants candy
 - Mom: You can have candy if it’s ok for your father
 - Dad: You can have candy if it’s ok for mom
- \(T_M = \{K_D(c) \Rightarrow c\} \) and \(T_D = \{K_M(c) \Rightarrow c\} \)
- Child knows dAEL and knows the 4 possible situations:
 - The empty possible world (inconsistent belief)
 - The belief of c
 - The disbelief of c
 - The lack of knowledge
dAEL
example: Child wants candy

- $T_M = \{K_D(c) \Rightarrow c\}$
- $T_D = \{K_M(c) \Rightarrow c\}$
- 4 possible situations
 - The empty possible world (inconsistent belief)
 - The belief of c
 - The disbelief of c
 - The lack of knowledge

- T – Consistent possible world structures:
 - One where nothing is known
 - One where they both know c
 - Or they both agree to candy, or none of them does

(= What Moore called autoepistemic expansions)

Not all fixpoints are interesting. Is consistent a good notion?
Our paper

- We study which fixpoints are interesting in the context of dAEL
- We find them using an *approximator* of revision operator
 - This is certainly known (by A)
 - This is certainly not known (by A)
- Approximation Fixpoint Theory

- Inductive definitions in dAEL
 - Allow us define access control policies
Different Semantics for dAEL example: Child wants candy

- $T_M = \{K_D(c) \Rightarrow c\}$
- $T_D = \{K_M(c) \Rightarrow c\}$
- 4 possible situations
 - The empty possible world (inconsistent belief)
 - The belief of c
 - The disbelief of c
 - The lack of knowledge

- **Kripke-Kleene model**
 - $K_D(c) = u$
 - $K_D(\neg c) = f$
 - $K_M(c) = u$
 - $K_M(\neg c) = f$
 - They don’t know whether to give candy, but know that they will never derive to not give candy.
Different Semantics for dAEL example: Child wants candy

- \(T_M = \{ K_D(c) \Rightarrow c \} \)
- \(T_D = \{ K_M(c) \Rightarrow c \} \)

4 possible situations
- The empty possible world (inconsistent belief)
- The belief of \(c \)
- The disbelief of \(c \)
- The lack of knowledge

- **Stable model**
 - Only 1: nothing is known
 - They know that they will never derive that they will give candy

- **Well-founded model**
 - Exact: nothing is known (=stable model)
 - They know that they will never derive that they will give candy

Stable and well-founded semantics are grounded
⇒ knowledge only derived if non-self supporting
Conclusion

- We propose a new logic: $dAEL$
 - Full mutual introspection
 - Good for delegation and revocation of access rights
 - AEL in a multi-agent case
 - Inductive definitions for $dAEL$: $dAEL(ID)$

- Future work: Decision procedure for $dAEL$