MODEL EXPANSION IN THE PRESENCE OF FUNCTION SYMBOLS USING CONSTRAINT PROGRAMMING

Broes De Cat – Bart Bogaerts – Jo Devriendt – Marc Denecker
KRR group - KU Leuven
Knowledge Representation and Reasoning

- Separate knowledge from computation
 - Study of knowledge involved in applications
 - And the general tasks for which it is used

- Representation: rich, declarative logic
- Reasoning: efficient inference engines

Aims:
- Recognize similar applications => reuse knowledge
- Recognize similar tasks => reuse inference engines
Knowledge

Vocabulary

Theory

Structure

Inferences

Model expansion

Querying

Deduction

Visualization

Model revision

...

Procedural interface
Model expansion

- **Model generation**
 - Find models of a theory T

- **Model expansion**
 - Given a partial structure S

- **Related to**
 - Answer Set generation (ASP)
 - CSP solving (CP)
 - SAT

- **State-of-the-art approach**
 - ground/unroll & search / BnB
Terminology

<table>
<thead>
<tr>
<th>FO/SAT</th>
<th>CP</th>
<th>ASP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentence</td>
<td>Constraint</td>
<td>Rule/constraint</td>
</tr>
<tr>
<td>Theory</td>
<td>Set of constraints</td>
<td>Logic program</td>
</tr>
<tr>
<td>Structure</td>
<td>Data</td>
<td>Facts</td>
</tr>
<tr>
<td>Model</td>
<td>Solution</td>
<td>Answer set</td>
</tr>
<tr>
<td>Function</td>
<td>Variable</td>
<td>Function</td>
</tr>
<tr>
<td>Variable</td>
<td>(variable)</td>
<td>Variable</td>
</tr>
</tbody>
</table>
MX WITH FUNCTION SYMBOLS USING CP?

- Modelling <> encoding
 - KR languages => (more natural) modelling
 - SAT/ASP => clause/nogood learning
 - CP => concise, propagation

- Grounding to SAT/ASP explodes size

 => Function symbols give rise to CP constraints
 => Search combining SAT – ASP – CP

Take away message

 Model (+ improve engine) <> encode
Function symbols give rise to CP constraints

Search combining SAT – ASP – CP

Maintain structure as long as possible
Rich, quantified input (FO(.), ASP, Zinc, ...)

Ground / unroll

Ground input (with finite-domain constraints)

Sugar, BEE, Gringo, Mingo

Transform to pure SAT – CP – MIP

SAT – CP – MIP solver

Clingcon, EZ(CSP)

ASP solver

CP Solver

Native SAT+ASP+CP

MinisatID, Inca
THE LANGUAGE FO(.)^IDP

- Full first-order logic
- Type system (e.g. P(type_1, ..., type_n))
 - Type = set of domain elements
 - Atoms outside type => false
- Definitions (set of rules)
 \[\forall x[node] : r(x) \leftarrow \text{start}(x) \lor (\exists y[node] : \text{edge}(y, x) \land r(y)) \]
- Aggregates (weight/card rules)
 \[\text{sum} (\{ x[node] \ y[node] : \text{edge}(x, y) : \text{weight}(x, y) \}) \]
- Partial functions
 \[\neg \text{edge}(x, y) \Rightarrow \neg \text{denoting}(\text{weight}(x, y)) \]
2-D Square Packing Theory

\[\forall id_1 \ id_2 : id_1 \neq id_2 \Rightarrow noOverlap(id_1, id_2) \]

\[\begin{align*}
\forall id_1 \ id_2 : & \quad noOverlap(id_1, id_2) \leftarrow \\
& \quad leftof(id_1, id_2) \lor leftof(id_2, id_1) \\
& \quad \lor below(id_1, id_2) \lor below(id_2, id_1)
\end{align*} \]

\[\begin{align*}
\forall id_1 \ id_2 : & \quad leftof(id_1, id_2) \leftarrow \\
& \quad pos_x(id_1) + size(id_1) \leq pos_x(id_2)
\end{align*} \]

\[pos_x(largest) = 0 \land pos_y(largest) = 0 \]

\[\{ \forall id_1 : largest = id_1 \leftarrow \forall id_2 : size(id_1) \geq size(id_2) \} \]
GROUNDING

- **Preprocessing:**
 - **Unnest** functions:

 \[P(f(x)) \implies !y: f(x)=y \implies P(y) \]
 - **Graph** functions:

 \[f(x)=y \implies F(x,y), \#\{y: F(x,y)\}=1 \]

- **Rewrite rules**
 - **Instantiate** variable
 - Replace with values in the domain
 - **Evaluate** formula/term
 - Use structure as soon as possible
 - **Introduce** new atom/constant
 - To normalize on-the-fly
Grounding

- **Priority on rules**
 - Instantiate top-down, depth-first
 - Less memory intensive
 - Evaluate as-soon-as-possible
 - Introduce atom/constant only on context change
 - Use subformula to reduce domain size
 \[
 \neg x[1,10]: x<3 \Rightarrow P(x) \quad \text{[Wittockx, 2010]}
 \]
 - ...

Supported symbols

- Allowing functions results “constraints”
 \[\text{pos}_x(\text{largest})=0 \]
 \[\text{pos}_x(\text{id}) + \text{size}(\text{id}) < \text{pos}_x(\text{id}') \]

- Symbols supported by the solver
 - Arithmetic
 - Element constraint
 - Binary comparison
 - Uninterpreted functions
 - ...

- Solver provides
 list \(S \) of supported symbols + context
GROUNDING

- Preprocessing:
 - Unnest functions **not in S**
 \[P(f(x)) \implies !y: f(x)=y \implies P(y) \]
 - Graph functions **not in S**
 \[f(x)=y \implies F(x,y), \#\{y: F(x,y)\}=1 \]

- Rewrite rules
 - Instantiate variable
 - Replace with values in the domain
 - Evaluate formula/term
 - Use structure as soon as possible
 - Introduce new atom/constant
 - To normalize on-the-fly
GROUND THEORY

- Grounding can be passed to any solver supporting S

- Now assume \(S \) are all functions symbols
 - Results in full ground FO(.)
 - Definitions
 - Aggregates
 - Nested functions

- Can we build a solver for this?
GROUND FO(.)

\[L_1 \lor \ldots \lor L_n. \]
\[Q(\overline{c}). \]
\[f(\overline{c}) \sim c'. \]
\[\text{agg} \left(\{L_1 : c_1\} \cup \cdots \cup \{L_n : c_n\} \right) \sim c'. \]

\[P(\overline{c}) \leftarrow L_1 \land \ldots \land L_n. \]
\[P(\overline{c}) \leftarrow L_1 \lor \ldots \lor L_n. \]
\[P(\overline{c}) \leftarrow Q(\overline{c}'). \]
\[P(\overline{c}) \leftarrow f(\overline{c}) \sim c'. \]
\[P(\overline{c}) \leftarrow \text{agg} \left(\{L_1 : c_1\} \cup \cdots \cup \{L_n : c_n\} \right) \sim c'. \]
SAT Modulo Theories
(Nieuwenhuys et al.)

DPLL(T) architecture
Add new propagation mechanisms to SAT with learning
Lazy Clause Generation [Stuckey et al., 2008]

- Constraint = large set of implications
- Explanation = applied implications

LCG:
- Encode functions as Boolean atoms
- Whenever a constraint would propagate instead, add a clause representing it

 E.g.: $c1 = c2$

 if $c1 < 5$, then would propagate $c2 < 5$
 instead, add clause $Tc1 < 5 \Rightarrow Tc2 < 5$

- Or lazier: build it when the explanation is requested
Lazy Grounding

[De Cat et al., 2008]

- Module for constraint c
 - Set of (quantified) sentences
 - + intelligent watches on when to ground what parts

Order encoding of c, domain D

$$\forall x[D - d_n] T_{c \leq x} \Rightarrow T_{c \leq next(x)}$$
$$\forall x[D - d_1] T_{c > x} \Rightarrow T_{c > prev(x)}$$

- Note: requires on-the-fly addition of atoms, variables and constraints!
Comparison constraint

Comparison \(P \Leftrightarrow c \leq c' \)

\[
\forall x [D \cup D'] \left(T_{c \leq x} \land T_{c' \geq x} \Rightarrow P \right).
\forall x [D \cup D'] \left(T_{c > x} \land T_{c' < x} \Rightarrow \neg P \right).
\forall x [D] \left(T_{c' \leq x} \land P \Rightarrow T_{c \leq x} \right).
\forall x [D] \left(T_{c' \geq x} \land \neg P \Rightarrow T_{c > x} \right).
\forall x [D'] \left(T_{c \geq x} \land P \Rightarrow T_{c' \geq x} \right).
\forall x [D'] \left(T_{c \leq x} \land \neg P \Rightarrow T_{c' < x} \right).
\]
Nested terms

- Nested terms $P \iff f(\bar{c}) \leq c'$

 $\forall \bar{x} \in dom_{\bar{c}} : T_{\bar{c}=\bar{x}} \Rightarrow (P \iff f(\bar{x}) \leq c')$

Partial functions

- Encoding: one additional atom “denoting$_c$”
- All other constraints:
 - As if conjoined with “denoting” of all their variables
SEARCH

- Decide
- UP
- Learn
- Encode_function
- Propagate_compare, Explain_compare
- Encode_aggregate (bounds propagation)
- Encode_nested
- Definition

Completion, Unfounded, Wellfounded
SEARCH: SAT+ASP+CP

CDCL

Choice
Learn
Backtrack

Clauses
Completion
Unfounded sets
Wellfounded
Pseudo-boolean Aggregates

Propagate
Explain

Order encoding $a \in [1,10000]$
$P \Leftrightarrow a < b$
$P \Leftrightarrow Q(a,b,c)$
$P \Leftrightarrow a+b+c+d = n$
Symmetry propagation

Minimize
RESULTS

INSTANCES SOLVED WITHIN TIMEOUT
Results

Grounding size (#atoms)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>weighted seq-disj, sched</td>
<td></td>
</tr>
<tr>
<td>incr sched</td>
<td></td>
</tr>
<tr>
<td>crossing min. *</td>
<td></td>
</tr>
<tr>
<td>still life *</td>
<td></td>
</tr>
<tr>
<td>packing</td>
<td></td>
</tr>
<tr>
<td>solitaire</td>
<td></td>
</tr>
<tr>
<td>pattern matching</td>
<td></td>
</tr>
<tr>
<td>no-mystery</td>
<td></td>
</tr>
<tr>
<td>sokoban</td>
<td></td>
</tr>
<tr>
<td>concrete deliv. *</td>
<td></td>
</tr>
<tr>
<td>graceful graphs</td>
<td></td>
</tr>
<tr>
<td>bottle fill</td>
<td></td>
</tr>
<tr>
<td>valve location</td>
<td></td>
</tr>
<tr>
<td>ricochet robots</td>
<td></td>
</tr>
<tr>
<td>stable marriage</td>
<td></td>
</tr>
</tbody>
</table>

![Bar chart showing results for various problems](chart.png)
RESULTS

- MiniZinc
 - Solver-independent CSP language

- MiniZinc challenge
 - Performance?

- Single best solver in MiniZinc portfolio
 [Amadini, Arxiv 1308.0227]
Learning Deterministic Finite State Automata (DFA)

- **Grammar learning**
 - Given a sequence of finite labeled strings

 - Derive matching automaton (trivial)

 ![Diagram of a DFA with transitions labeled 'a' and 'b' and accepting and rejecting states]

 - Improve it by reducing the number of nodes
DFA LEARNING DECISION PROBLEM

- 2000 lines C++ => 40 lines FO(.)^{IDP}
- Performance
CONCLUSION

- Configurable, efficient grounding algorithm
- Functions in logic give rise to constraint in the CP sense
- Search algorithm for full ground FO(.)
 - Combining SAT/ASP learning with CP propagation
 - First open-source LCG solver

- People might use function for modelling?
 Implicit function detection and rewriting
 [De Cat et al., ICLP 2013]